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Abstract. Let et = (et1, . . . , etp)′ be a p-dimensional nonnegative strict white noise with
finite second moments. Let hij(x) be nondecreasing functions from [0,∞) onto [0,∞) such
that hij(x) � x for i, j = 1, . . . , p. Let U = (uij) be a p × p matrix with nonnegative
elements having all its roots inside the unit circle. Define a process Xt = (Xt1, . . . , Xtp)

′

by
Xtj = uj1h1j(Xt−1,1) + . . .+ ujphpj(Xt−1,p) + etj

for j = 1, . . . , p. A method for estimating U from a realization X1, . . . , Xn is proposed. It
is proved that the estimators are strongly consistent.

Keywords: autoregressive process, estimating parameters, multidimensional process,
nonlinear process, nonnegative process
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1. Introduction

Consider a one-dimensional AR(1) process Xt given by Xt = bXt−1 + et where
b ∈ [0, 1) and et is a nonnegative strict white noise such that Ee2t < ∞. Define
F (x) = P (et < x). Bell and Smith [9] proved that

(1.1) b∗ = min

(
X2
X1

, . . . ,
Xn

Xn−1

)

is a strongly consistent estimator for b if and only if F (d) − F (c) < 1 for all 0 <

c < d < ∞. Anděl [3] derived the distribution of b∗ under the assumption that F is
the distribution function of an exponential distribution. Davis and McCormick [10]
obtained the asymptotic distribution of b∗ when F varies regularly at 0 and satisfies a
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suitable moment condition. For the case of AR(p) model with p > 1 a straightforward
generalization of (1.1) does not perform well. Anděl [5] suggested another estimator
based on a maximum likelihood argument. His method was modified and generalized
by An [1] and by An and Huang [2]. Asymptotic theory is developed in the paper
by Feigin and Resnick [11]. The method was applied to nonlinear one-dimensional
AR models by Anděl [4] and [6].

2. The model

Non-linear models of time series are important tools in statistical analysis of data.
Statistical tests show that many series introduced in textbooks and papers are non-
linear (see Tong [13]).
One of the simplest non-linear models is the one-dimensional non-linear AR(1)

process Xt defined by

(2.1) Xt = λ(Xt−1) + et

where λ is a non-linear function and et is a white noise. Even in this case it is quite
hard task to estimate the function λ from a realization X1, . . . , Xn (see Auestad and
Tjøstheim [8]). It was proved by Jones [12] under general assumptions about the
distribution function of et that the process {Xt} cannot be stationary because it has
“a drift to infinity” with a positive probability if there exist constants γ > 0 and
q > 1 such that |λ(x)| � γ|x|q for large |x|.
It is a problem how to generalize (2.1) to p-dimensional case. The linear p-di-

mensional AR(1) process Xt is given by Xt = UXt−1 + et where U is a p × p

matrix and et is a p-dimensional white noise. The model Xt = λ(Xt−1) + et with
a non-linear function λ : �p → �p is too general. In this case the function λ should
be estimated in a whole, not only its parameters. In this paper we introduce a
special non-linear model where Xt is created as a linear combination of non-linear
functions of components of Xt−1 plus a white noise (see (2.2) below). For simplicity
we assume that the non-linear functions are known and only the parameters of their
linear combinations must be estimated.
Remembering that a rapidly growing function λ in the one-dimensional model (2.1)

leads to serious problems we assume that our non-linear functions in p-dimensional
model do not grow faster than x (assumption A4).
The resulting model (2.2) seems to be quite flexible and its form enables to use

procedures for estimating parameters similar to those in linear models.
Now, we introduce some assumptions valid throughout the paper.
A1. Let U = (uij) be a p × p matrix with nonnegative elements such that all its

roots are inside the unit circle.
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A2. Let et = (et1, . . . , etp)′ be independent identically distributed random vectors
with nonnegative components and with finite second moments.
A3. Let Zt = (Zt1, . . . , Ztp)′ be the p-dimensional AR(1) process defined by

Zt = UZt−1 + et.
A4. Let hij(x) be measurable nondecreasing functions mapping [0,∞) onto [0,∞)

such that hij(x) � x for i, j = 1, . . . , p.
A5. Let P (et1 < c, . . . , etp < c) > 0 for every c > 0.
A6. There exists a constant Kij > 0 for each pair (i, j), i, j ∈ {1, . . . , p}, such that

P{et1 < c, . . . , et,j−1 < c, hji(etj) > Kji, et,j+1 < c, . . . , etp < c} > 0

for every c > 0.
Now, introduce a process Xt = (Xt1, . . . , Xtp)′ in the following way. Define Xt =

Zt for t � 1 and

(2.2) Xti =
p∑

j=1

uijhji(Xt−1,j) + eti, i = 1, . . . , p,

for t � 2. Then we say that {Xt, t � 1} is a nonlinear p-dimensional AR(1) process.
It follows from our assumptions that all the variables Xti are nonnegative.

3. Auxiliary results

Lemma 3.1. We have Xti � Zti for all t and i.

�����. The assertion can easily be proved by complete induction. �

Assume that a realization X1, . . . , Xn is given. Define

u+ij = min2�t�n

Xti

hji(Xt−1,j)
, i, j = 1, . . . , p.

Theorem 3.2. We have u+ij → uij a.s. for each i, j = 1, . . . , p as n →∞.

�����. Let Uk =
(
u
(k)
ij

)
for k = 1, 2, . . .. Since

Zt =
∞∑

k=0

Uket−k,

we can write

(3.1) Zti = eti +
∞∑

k=1

p∑

j=1

u
(k)
ij et−k,j , j = 1, . . . , p.

391



Since the elements uij are nonnegative, we have also u
(k)
ij � 0 for all i, j, k. Assump-

tion A1 also implies that
∑
k

∑
i

∑
j

u
(k)
ij < ∞ and thus there exists a constant L such

that u
(k)
ij � L for all i, j, k.

To simplify the notation, we prove the assertion only for i = j = 1. The proof for
any other pair (i, j) is the same. In our case we have

u+11 = u11 + min
2�t�n

p∑
j=2

u1jhj1(Xt−1,j) + et1

h11(Xt−1,1)
.

Let ε > 0 be a given number. Introduce the events

Qt =





ω :

p∑
j=2

u1jZt−1,j + et1

h11(et−1,1)
< ε





.

From the inequalities

hj1(Xt−1,j) � Xt−1,j � Zt−1,j, h11(Xt−1,1) � h11(et−1,1)

it follows that u+11 < u11 + ε if at least one of the events Q2, . . . , Qn occurs. But
u+11 � u11 trivially holds. We prove that for every ε > 0 with probability one there
exist infinitely many indices t � 2 such that the events Qt occur. This implies, of
course, that u+11 → u11 a.s. Using (3.1) we get

Qt =

{
ω : et1 +

p∑

j=2

u1j

[
et−1,j +

∞∑

k=1

p∑

i=1

u
(k)
ji et−1−k,i

]
< εh11(et−1,1)

}
.

Denote K = K11. For every integer M � 1 define the events

QtM1 =

{
ω : h11(et−1,1) > K, et1 <

εK

2Mp2
,

u1jet−1,j <
εK

2Mp2
for j = 2, . . . , p,

u1ju
(k)
ji et−1−k,i <

εK

2Mp2
for j = 2, . . . , p; i = 1, . . . , p;

k = 1, . . . , M

}
,

QtM2 =

{
ω :

∞∑

k=M+1

p∑

j=2

p∑

i=1

u1ju
(k)
ji et−1−k,i <

εK

2

}
.
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It is clear that Qt ⊃ QtM1 ∩QtM2. Let

Q∗
tM1 =

{
ω : h11(et−1,1) > K, et1 <

εK

2Mp2
,

et−1,j <
εK

2Mp2L
for j = 2, . . . , p,

et−1−k,i <
εK

2Mp2L2
for i = 1, . . . , p ; k = 1, . . . , M

}
.

Then QtM1 ⊃ Q∗
tM1 and our assumptions yield that neither P (QtM1) nor P (Q∗

tM1)
depend on t. Since

P (Q∗
tM1) = P

(
et1 <

εK

2Mp2

)

× P

{
h11(et−1,1) > K, et−1,j <

εK

2Mp2L
for j = 2, . . . , p

}

×
M∏

k=1

P

{
et−1−k,i <

εK

2Mp2L2
for i = 1, . . . , p

}
> 0,

we have also P (QtM1) > 0. Further, P (QtM2) → 1 as M → ∞ and the probability
P (QtM2) does not depend on t. Denote πM = P (QtM1). Let wM be the smallest
integer such that wMπM � 1 holds. Introduce the sets S1, S2, . . . in the following
way. Let S1 contain the elements of w1 triples

(1, 2, 3), (4, 5, 6), . . . , (3w1 − 2, 3w1 − 1, 3w1),

let S2 contain the elements of w2 four-tuples starting from 3w1 + 1, 3w1 + 2, 3w1 +
3, 3w1 + 4) and so on. The last elements of the triples, four-tuples etc. denote
t1, t2, . . .. If tr ∈ SM we have Qtr ⊃ QtrM1 ∩ QtrM2. The events Qt1M1, Qt2M1, . . .

are independent,
∞∑

r=1

P (QtrM1) �
∞∑

M=1

wMπM =∞,

P (QtrM2)→ 1 as r →∞ and the events QtrM1 and QtrM2 are independent for every
r = 1, 2, . . .. It follows from the generalized Borel lemma (see Anděl and Dupač [7])
that then with probability one infinitely many events QtrM1 ∩QtrM2 occur and thus
also infinitely many events Qt occur with probability one. �
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4. Estimating parameters

To simplify the notation, we consider in this section the case p = 2 only. The
procedure for p > 2 is analogous. First of all, we introduce a motivation of our
method of estimation.
It is known from simulations that u+ij cannot be used as estimator for uij because

the convergence u+ij → uij is very slow. Assume for a while that et1 and et2 are inde-
pendent random variables having the exponential distribution Ex(λ1) and Ex(λ2),
respectively. Then the conditional likelihood of X2, . . . , Xn, given X1, is

exp

{
−

n∑

t=2

[Xt1 − u11h11(Xt−1,1)− u12h21(Xt−1,2)]/λ1

}

× exp
{
−

n∑

t=2

[Xt2 − u21h12(Xt−1,1)− u22h22(Xt−1,2)]/λ2

}

under the conditions that

Xt1 − u11h11(Xt−1,1)− u12h21(Xt−1,2) � 0, t = 2, . . . , n,

and
Xt2 − u21h12(Xt−1,1)− u22h22(Xt−1,2) � 0, t = 2, . . . , n.

If these conditions are not satisfied then the conditional likelihood is zero. The
maximum likelihood method leads to the conclusion to estimate u11, u12 by the
variables which maximize

(4.1) a

n∑

t=2

h11(Xt−1,1) + b

n∑

t=2

h21(Xt−1,2)

for a � 0, b � 0 under the conditions

(4.2) Xt1 − ah11(Xt−1,1)− bh21(Xt−1,2) � 0, t = 2, . . . , n,

and to estimate u21, u22 by the variables which maximize

(4.3) c
n∑

t=2

h12(Xt−1,1) + d
n∑

t=2

h22(Xt−1,2)

for c � 0, d � 0 under the conditions

(4.4) Xt2 − ch12(Xt−1,1)− dh22(Xt−1,2) � 0, t = 2, . . . , n.
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One can expect that the results will be approximately the same as in the case that
we sum up to t = n+1 in (4.1) and (4.3). We prove that such estimators are strongly
consistent. Note that this assertion will be proved under our general assumptions
A1–A6 and that we do not use any specific distribution of et.

Theorem 4.1. Let u∗11, u
∗
12 be a solution of the linear program

(4.5) max
a,b

{
a

n∑

t=1

h11(Xt1) + b
n∑

t=1

h21(Xt2)

}

for a � 0, b � 0 under the conditions (4.2). Let u∗21, u
∗
22 be a solution of the linear

program

max
c,d

{
c

n∑

t=1

h12(Xt1) + d

n∑

t=1

h22(Xt2)

}

for c � 0, d � 0 under the conditions (4.4). Then u∗11 → u11, u∗12 → u12, u∗21 → u21,
u∗22 → u22 a.s. as n →∞.

�����. Instead of (4.5) we consider an equivalent formula, namely to solve

(4.6) max
a,b

{
a
1
n

n∑

t=1

h11(Xt1) + b
1
n

n∑

t=1

h21(Xt2)

}

for a � 0, b � 0 under (4.2). Assume first that u11 > 0, u12 > 0. Define

Mn = {(a, b) : a � 0, b � 0, Xt1 − ah11(Xt−1,1)− bh21(Xt−1,2) � 0,
t = 2, . . . , n},

M = {(a, b) : 0 � a � u11, 0 � b � u12}.

It is clear that M2 ⊃ M3 ⊃ . . .. We prove that Mn → M a.s. Theorem 2.2 implies
that there exists a sequence of indices ti such that

Xti1

h11(Xti−1,1)
→ u11 a.s.

Since
Xt1

h11(Xt−1,1)
= u11 +

u12h21(Xt−1,2) + et1

h11(Xt−1,1)

we can see that

(4.7)
h21(Xti−1,2)
h11(Xti−1,1)

→ 0 a.s.
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Because
Xt1

h21(Xt−1,2)
= u12 +

u11h11(Xt−1,1) + et1

h21(Xt−1,2)

using (4.7) we get
Xti1

h21(Xti−1,2)
→∞ a.s.

� 0 u11 Xt1

h11(Xt−1,1)

a
M

u12 q2

p

Xt1

h21(Xt−1,2)

b q1

Fig. 1

In this case the straight line p in Fig. 1 approaches the straight line q1. Quite similarly
it can be proved that with probability one there exists a sequence of straight lines p

converging to q2. It is easy to calculate that p intersects q1 at the point
(

u11, u12 +
et1

h21(Xt−1,2)

)

and thus no straight line p intersects M . Consider the sequence of linear programs
(4.6) for n →∞. We know that

h11(Xt1) � h11(et1), h21(Xt2) � h21(et2).

Denote
H11 = Eh11(et1), H21 = Eh21(et2).

Since h11(et1) as well as h21(et2) are i.i.d. random variables with finite second mo-
ments, the law of large numbers yields

1
n

n∑

t=1

h11(et1)→ H11,
1
n

n∑

t=1

h21(et2)→ H21 a.s.

On the other hand,

h11(Xt1) � Xt1 � Zt1, h21(Xt2) � Xt2 � Zt2.
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Our assumptions imply that the process Zt = (Zt1, Zt2)′ is ergodic. If we denote
L1 = EZt1, L2 = EZt2, then the ergodic theorem gives

1
n

n∑

t=1

Zt1 → L1,
1
n

n∑

t=1

Zt2 → L2.

Thus for every fixed ε > 0 there exists n0 such that with probability one we have for
all n � n0 that

H11 − ε � 1
n

n∑

t=1

h11(Xt1) � L1 + ε, H21 − ε � 1
n

n∑

t=1

h21(Xt2) � L2 + ε.

We choose ε so small that H11 − ε > 0, H21 − ε > 0. Therefore, the coefficients
standing by a and b in the expression (4.6) are positive and bounded for all sufficiently
large n and Mn → M . This implies that the sequence of any solutions of the linear
programs (4.6) converges to the point (u11, u12) in which (4.6) is maximized on M .
If u11 = 0 and/or u12 = 0, the arguments are analogous. The proof for u∗21, u

∗
22 is

similar. �

5. A numerical example

It is known from simulations as well as from theoretical results that the estimators
like u∗ij behave quite well in linear autoregressive processes. To illustrate our method
in non-linear models we considered the model

Xt1 = u11h11(Xt−1,1) + u12h21(Xt−1,2) + et1,

Xt2 = u21h12(Xt−1,1) + u22h22(Xt−1,2) + et2

where

h11(x) =

{
x2 for x ∈ [0, 1),
√

x for x � 1,
h21(x) =

{
0 for x ∈ [0, 1),
1 for x � 1,

h12(x) =

{
x for x ∈ [0, 1),
1 for x � 1,

h21(x) =





x

2
for x ∈ [0, 1),

0.5 + lnx for x � 1
and et1, et2 are independent random variables with exponential distribution Ex(1).
A realization of Xt1, Xt2 of the length 500 was simulated with

u11 = 0.7, u12 = 0.3, u21 = 0.1, u22 = 0.5.

The estimates u∗ij were calculated from the first n variables of this realization (n =
50, 100, 200, 500). The results are given in Tab. 1.
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Results of a simulation

n u∗11 u∗12 u∗21 u∗22
50 0.782 0.180 0.000 0.634
100 0.763 0.217 0.146 0.452
200 0.707 0.288 0.134 0.462
500 0.701 0.300 0.100 0.502

Tab. 1

The estimates seem to be satisfactory for n = 200 and the agreement with theo-
retical values is quite good for n = 500. Of course, more extensive simulations are
needed to see the small sample properties of our estimators in detail.
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