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Abstract. Nonsensitiveness regions for estimators of linear functions, for confidence el-
lipsoids, for the level of a test of a linear hypothesis on parameters and for the value of the
power function are investigated in a linear model with variance components.
The influence of the design of an experiment on the nonsensitiveness regions mentioned

is numerically demonstrated and discussed on an example.
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Introduction

Experiments in natural science, i.e. physics, chemistry, biology, etc., are provided
by measurement equipments characterized, among other, by parameters of the ac-

curacy. It is well known that the efficiency of estimators of useful parameters (they
represent the aim of the experiment) heavily depends on values of the accuracy pa-

rameters. If their true values are not used in calculation, then estimators of the
useful parameters are worse in comparison with estimators using true values; this

fact can produce the greater loss in the investment on experiments the greater is the
investment itself.

Thus it seems to be important to investigate boundaries of regions which cover

such values of deviations of the accuracy parameters from the true values which

1 Supported by the grants No. 201/96/0436 and 201/96/0665 of the Grant Agency of the
Czech Republic
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cannot destroy essentially the quality of estimators and other statistical inferences

connected with the useful parameters.
The aim of the paper is to give some rules for determining such boundaries in

different situations and to present some experience obtained in an application of these

rules. Papers [1], [3], [4], [5] and [6] represent the starting point of the contribution.

1. Notation and definitions

Let Y be an n-dimensional random vector and F = {F (·, β, ϑ) : β ∈ �
k , ϑ ∈ ϑ}

a class of distribution functions assigned to Y . Here β is a k-dimensional useful
parameter (the first order parameter; the aim of the experiment is to determine it),

�
k is a k-dimensional real vector space, ϑ is a p-dimensional accuracy parameter (its
components ϑ1, . . . , ϑp are variance components—the second order parameters) and

ϑ is an open set in the Euclidean topology of �p .

The class F satisfies two conditions:

∀{β ∈ �k , ϑ ∈ ϑ}
∫

�n

u dF (u, β, ϑ) = Xβ = E(Y )

(here X is a known n× k matrix) and

∀{β ∈ �k , ϑ ∈ ϑ}
∫

�n

(u−Xβ)(u−Xβ)′ dF (u, β, ϑ) =
p∑

i=1

ϑiVi = Σ(ϑ)

(here V1, . . . , Vp, are known n× n symmetric matrices).
The model described is written either in the form

(
Y, Xβ,Σ(ϑ)

)
, β ∈ �k , ϑ ∈ ϑ,

or in the form

Y ∼
(
Xβ,Σ(ϑ)

)
, β ∈ �k , ϑ ∈ ϑ.

For the sake of simplicity in the following the regular version (cf. [2]) of this model

will be considered, i.e. r(X) = k < n ∀{ϑ ∈ ϑ} Σ(ϑ) is positive definite (r(X) denotes
the rank of the matrix X).

The ϑ-LBLUE (locally best linear unbiased estimator) of β is

β̂(Y, ϑ) = [X ′Σ−1(ϑ)X ]−1X ′Σ−1(ϑ)Y

(cf. [7]). The quality of this estimator is naturally influenced by the chosen design
of the experiment. To investigate its affect is the aim of the numerical example 2.8.
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Definition 1.1. The random variable

∂β̂i(Y, ϑ)/∂ϑj , i = 1, . . . , k ; j = 1, . . . , p,

is called the sensitivity of the ith component β̂i(Y, ϑ) of the estimator β̂(Y, ϑ) on the

jth component ϑj of ϑ.

Let g(β) = g′β, g ∈ �k , β ∈ �k , be a given linear function of β and let ϑ∗ be the

true value of ϑ. The (ϑ∗+ δϑ)-LBLUE of g(·) may be approximated in the following
way:

g′β̂(Y, ϑ∗ + δϑ)
.
= g′β̂(Y, ϑ∗) + g′

∂β̂(Y, ϑ∗)
∂ϑ′

δϑ.

Thus the ϑ∗-LBLUE of g(·)

g′β̂(Y, ϑ∗) = g′[X ′Σ−1(ϑ∗)X ]−1X ′Σ−1(ϑ∗)Y,

with the well known property

∀{ϑ �= ϑ∗}Var[g′β̂(Y, ϑ∗)|ϑ∗] � Var[g′β̂(Y, ϑ)|ϑ∗],

is depreciated by the random variable

(1.1) g′
∂β̂(Y, ϑ∗)

∂ϑ′
δϑ.

It can be proved (cf. Statement 2.1 (iii)) that the random variables

g′β̂(Y, ϑ∗) and g′
∂β̂(Y, ϑ∗)

∂ϑ′
δϑ

are uncorrelated and therefore

(1.2) Var[g′β̂(Y, ϑ∗ + δϑ)|ϑ∗] .
= Var[g′β̂(Y, ϑ∗)|ϑ∗] + Var

[
g′

∂β̂(Y, ϑ∗)
∂ϑ′

δϑ|ϑ∗
]
;

in the following we denote

σ2g = Var[g
′β̂(Y, ϑ∗)|ϑ∗] = g′[X ′Σ−1(ϑ∗)X ]−1g.

Definition 1.2. The set


δϑ :

√√√√Var
[
g′

∂β̂(Y, ϑ∗)
∂ϑ′

δϑ
∣∣∣ϑ∗
]/

σg � εg



 ,
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where εg is a positive number chosen by the user, is called the relative (with respect

to σg) region of nonsensitiveness of the estimator of g(·) with respect to the second
order parameters.
The choice of the number εg depends on two factors: on the user’s requirement

expressed by the σg concerning the expected accuracy of the result, and on the actual
accuracy of the experiment expressed by

Var

(
g′β̂(Y, ϑ∗) +

∂g′β̂(Y, ϑ∗)
∂ϑ′

δϑ

∣∣∣∣∣ϑ
∗
)

.

Let, e.g., σg be much smaller number than the user requires, then the number εg in
the relation √√√√σ2g +Var

(
∂g′β̂(Y, ϑ∗)

∂ϑ′
δϑ

∣∣∣∣∣ϑ
∗

)
� σg

√
1 + ε2g

may be large. If, on the other hand, σg is the maximum value permitted by the user,

then εg must be zero.

������ 1.3. The region of nonsensitiveness can be defined in another way,
e.g. as the set 


δϑ :

√

Var
[
g′

∂β̂(Y, ϑ∗)
∂ϑ′

δϑ
∣∣∣ϑ∗
]

� κg





(an absolute region of nonsensitiveness), etc.

Regions of nonsensitiveness can be defined for another statistical inference, e.g. for
a confidence ellipsoid and for a test of a linear hypothesis on β.

2. Estimator of the function g(·)

In the following the relative regions of nonsensitiveness (see Definition 1.2) are

taken into account only. Let us consider the regular model Y ∼
(
Xβ,Σ(ϑ)

)
, β ∈ �k ,

ϑ ∈ ϑ, and a known function g(β) = g′β, β ∈ �
k , of β. Let ϑ∗ be the true value of

ϑ.
The statements of this section are proved in [5].

Statement 2.1. Let
v(Y, ϑ∗) = Y −Xβ̂(Y, ϑ∗)

and

L′
g = g′[X ′Σ−1(ϑ∗)X ]−1X ′Σ−1(ϑ∗);
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then

(i)
∂g′β̂(Y, ϑ∗)

∂ϑ′
δϑ = −L′

g

p∑

i=1

ViδϑiΣ
−1(ϑ∗)v(Y, ϑ∗),

(ii)

∀{β ∈ �k , ϑ ∈ ϑ} E
[

∂g′β̂(Y, ϑ∗)
∂ϑ′

δϑ

∣∣∣∣∣β, ϑ

]
= 0,

(iii)

∀{β ∈ �k} cov
[

∂g′β̂(Y, ϑ∗)
∂ϑ′

δϑ, β̂(Y, ϑ∗)
∣∣∣ϑ∗
]
= 0.

Statement 2.2.
∂g′β̂(Y, ϑ∗)

∂ϑ
∼ (0, Wg),

where

{Wg}i,j = L′
gVi[MXΣ(ϑ∗)MX ]+VjLg,

[MXΣ(ϑ∗)MX ]+ = Σ−1(ϑ∗)− Σ−1(ϑ∗)X [X ′Σ−1(ϑ∗)X ]−1X ′Σ−1(ϑ∗)

and MX = I −XX+.

Corollary 2.3.
∂g′β̂(Y, ϑ∗)

∂ϑ′
δϑ ∼ (0, δϑ′Wgδϑ).

Statement 2.4. On the basis of Definition 1.2, Statements 2.1, 2.2 and Corol-
lary 2.3, the nonsensitiveness region of the estimator of the function g(·) with respect
to the second order parameters can be written in the form

(2.1) {δϑ : δϑ′Wgδϑ � ε2gσ
2
g}.

If δϑ lies in this region, then
√√√√Var

[
∂g′β̂(Y, ϑ∗)

∂ϑ′
δϑ

∣∣∣∣∣ϑ
∗

]
� εgσg.

Corollary 2.5. Let Wg =
s∑

i=1
λifif

′
i be a spectral decomposition of the matrix

Wg, and let λ1 � λ2 � . . . . Then the region

(2.2)

{
δϑ : ‖δϑ‖ � εg

σg√
λ1

}
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is included in the region (2.1).

The region (2.2) seems to be more suitable for practical purposes.

Corollary 2.6. The critical direction of the change of the parameter ϑ on the

estimator of the function g′β is determined by the eigenvector f1 belonging to the

maximum eigenvalue of the matrixWg. In this direction the change of the dispersion

of the estimator of the function g′β of the first order parameter β caused by a change

δϑ of the second order parameter is maximum. Thus δϑcrit = cf1. If δσg means the

maximum torelable value of the change of the standard deviation in the estimator of

g′β, the constant c is a solution of the definition relation of δσg , i.e. of the equation

δσg =
√
Var[g′β̂1(Y, ϑ∗ + cf1)|ϑ∗]−

√
Var[g′β̂1(Y, ϑ∗)|ϑ∗].

Thus for c we obtain the formula

(2.3) c =

√[(
δσg +

√
g′C−1g

)2
− g′C−1g

]
/λ1;

it suffices to realize that

Var[g′β̂1(Y, ϑ∗)|ϑ∗ + cf1] = Var[g
′β1(Y, ϑ∗)|ϑ∗] + cf ′1Wgcf1

= g′C−1g + cf ′1

(
λ1f1f

′
1 +

s∑

i=2

λifif
′
i

)
cf1

= g′C−1g + c2λ1.

Corollary 2.7. The tolerable shift δσi in the standard deviation σi =
√

ϑi,

i = 1, . . . , p in dependence on the torelable shift δϑi is

(2.4) δσi =
√

ϑ∗ + δϑi − σ∗i ;

vice versa, δϑi = 2σ∗i δσi + (δσi)2, i = 1, . . . , p, thus δϑ is tolerable iff δσ =
(δσ1, . . . , δσp)′ is tolerable.

�����	� 2.8. Let us consider a linear relation y = β1+β2x. In order to deter-

mine the best estimators of the parameters β1 and β2 two devices with dispersions
ϑ∗1 = σ21 = 0.001

2 and ϑ∗2 = σ22 = 0.004
2, respectively, are at our disposal. The

measurement of y may be performed at different points x of the set of observation
points S = {x1, . . . , xn}, when simultaneously each of the devices may be used just l
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times (the result of a measurement is a 2l-dimensional realization of the random vec-

tor Y that models the measurement). In the situation described there exist
(
n
l

)(
n−l

l

)

different designs. The aim of the example is to illustrate how the choice of the design
of the experiment influences the regions of nonsensitivity of the parameters β1 and

β2.

In the following the abbreviate notation will be used for recording S: Let A be
the minimum value and B = A + (n − 1)∆ the maximum value of the observation
point, ∆ the difference between two sequential points. Then S{A(∆)B} denotes the
observation set S = {A, A+∆, A+ 2∆, . . . , B} (which contains n points).

Let l = 2 (each of the devices may be used just twice), let the first device (σ21 =

0.0012) be used in first two experiments, which means that

Σ(ϑ∗) = 10−6 ×




1, 0, 0, 0
0, 1, 0, 0

0, 0, 16, 0
0, 0, 0, 16


 ,

and let S = {−10(5)10}, which means that n = 5 and therefore there exist 30
different designs.

In the following the dependence on the chosen design will be recorded by the
left upper index k. This dependence occurs in the observation vector Y , the design

matrix X , the eigenvalue λ and in the standard deviation σg. Σ(ϑ∗) does not depend
on it if the experiment is performed in such a way that two first measurements are

realized by the device whose accuracy is characterized by σ21 = 0.001
2 and the second

two by the device with σ22 = 0.004
2.

The study is performed in two steps.

The first step consists in studying the relative and absolute regions of nonsensitive-
ness of parameters ϑ and σ of the parameter β1 (i.e. for g = e1 = (1, 0)′) estimated

on the basis of two extremum designs k = 1 and k = 2 (by k = 1 the design with
the maximum eigenvalue 1λ1 and by k = 2 the design with the minimum eigenvalue
2λ1 is denoted.

Table 2.1a contains results concerning the relative nonsensitiveness regions of the

parameter β1.

σ21 = 0.001
2 σ22 = 0.004

2

k x1 x2 x3 x4
λ1 σ2e1 σe1/

√
λ1

1 5 10 −5 0 584 946 2.3779× 10−6 2.016× 10−6
2 −5 5 0 10 22 486 0.4721× 10−6 4.582× 10−6

Table 2.1a: The relative nonsensitiveness regions for g(β) = e′1β = β1
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In accordance with (2.2) the ratio 4.582/2.016 = 2.273 shows that the design

k = 2 with the minimum eigenvalue of the matrix Wg tolerates in the relative sense
(with respect to σe1) 2.273 times larger change in the parameter ϑ than the design
k = 1 with the maximum eigenvalue. For the sake of completeness let us note that
2σe1/

1σe1 = 0.446 and the ratio
2λ1/

1λ1 = 0.038. In other words, the change δϑ

of the parameter ϑ∗ within the design k = 1 permits the change 2.237δϑ in the

parameter ϑ∗ within the design k = 2, which leads to the same value of the ratio

√√√√Var
[

∂e′1β̂(kY, ϑ∗)
∂ϑ′

δϑ

∣∣∣∣∣ϑ
∗

]/
kσe1

in the both designs mentioned.
The results concerning the absolute tolerable changes in ϑ and σ for β1 under the

condition that δσe1 toler =
2σe1 =

√
0.4721 × 10−3 = 0.687 × 10−3 (see Table 2.1a)

are given in Table 2.1b.

The eigenvector f1 belonging to the eigenvalues 1λ1 and 2λ1 is f1 = (16/
√
257,

−1/
√
257)′ and it is the same for both the designs. The eigenvalues 1λ2 and 2λ2 are

zero.

k λ1 σe1 × 103 c× 106 δϑcrit × 106 δσcrit × 103
1 584 946 1.542 2.104 (2.100,−0.131)′ (0.761,−0.016)′
2 22 486 0.687 7.935 (7.920,−0.495)′ (1.987, 0.000)′

Table 2.1b: The absolute nonsensitiveness regions for g(β) = e′1β = β1

The relations (2.3) and (2.4) were applied in Table 2.1b.

The ratio 2c/1c = 7.935/2.104 = 3.771 expresses that the design k = 2 permits
3.771 times larger change in the parameter ϑ than the design k = 1 for saving the

same quality of the estimator of the parameter β1. Analogous conclusions concern
the change in σ.

Table 2.2a for the function g(β) = e′2β = β2 is analogous to Table 2.1a. By k = 3
and k = 4 the design with the maximum and minimum eigenvalue, respectively, is

denoted.

σ21 = 0.001
2 σ22 = 0.004

2

k x1 x2 x3 x4
λ1 σ2e2 σe2/

√
λ1

3 0 5 −5 10 11 842 0.0512× 10−6 2.079× 10−6
4 −10 10 0 5 35.14908 0.0050× 10−6 11.882× 10−6

Table 2.2a: The relative nonsensitiveness regions for g(β) = e′2β = β2

The conclusions are analogous to the previous case.
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As far as Table 2.2b is concerned, the eigenvector belonging to the eigenvalues
3λ1 and 4λ1 is (16/

√
257,−1/

√
257)′ and the tolerable shift is δσe2 toler = 4σe2 =

0.070× 10−3.

k λ1 σe2 × 103 c× 106 δϑcrit × 106 δσcrit × 103
3 11 842 0.226 1.760 (1.757,−0.110)′ (0.660,−0.014)′
4 35.149 0.070 20.450 (20.410,−1.276)′ (3.627,−0.163)′

Table 2.2b: The absolute nonsensitiveness regions for g(β) = e′2β = β2

Here the ratio is 2c/1c = 11.617.
Since the second design is much better for determining β1 than the first one, the

shift δϑ is different in different designs if we require the equality

δ1σg = δ2σg,

i.e. the equality

√
Var[β̂1(1Y, ϑ∗ + δ1ϑ)|ϑ∗]−

√
Var[β̂1(1Y, ϑ∗)|ϑ∗]

=
√
Var[β̂1(2Y, ϑ∗ + δ2ϑ)|ϑ∗]−

√
Var[β̂1(2Y, ϑ∗)|ϑ∗]

to be fulfilled.
In both designs the tolerable inaccuracies in the parameters σ1 and σ2 are essen-

tially larger at the more precise device.
Also here essential differences, regarding the values σ2g and λ1, among designs can

be recognized.
In order to document in more detail the above mentioned facts, a survey of the

values kσg/
√

kλ1 for different E and different designs is given.
(i) The case of four measurements:

S = {−10(1)10}
number of designs 35,910
(σg/

√
λ1)max (σg/

√
λ1)min

g(β) = β1 68.86× 10−6 1.996× 10−6
g(β) = β2 75.86× 10−6 1.996× 10−6

S = {1, 4, 6, 9} or S = {2, 8, 12, 18}
number of designs 6
(σg/

√
λ1)max (σg/

√
λ1)min

g(β) = β1 6.541× 10−6 2.016× 10−6
g(β) = β2 16.031× 10−6 1.996× 10−6
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S = {2, 5, 7, 10}
number of designs 6
(σg/

√
λ1)max (σg/

√
λ1)min

g(β) = β1 7.221× 10−6 2.023× 10−6
g(β) = β2 16.031× 10−6 1.996× 10−6

S = {0, 3, 5, 8} or S = {0, 6, 10, 16}
number of designs 6
(σg/

√
λ1)max (σg/

√
λ1)min

g(β) = β1 6.135× 10−6 2.010× 10−6
g(β) = β2 16.031× 10−6 1.996× 10−6

S = {−7,−1, 3, 9}
number of designs 6
(σg/

√
λ1)max (σg/

√
λ1)min

g(β) = β1 4.274× 10−6 2.074× 10−6
g(β) = β2 16.031× 10−6 1.996× 10−6

S = {1(1)20}
number of designs 29,070
(σg/

√
λ1)max (σg/

√
λ1)min

g(β) = β1 90.579× 10−6 1.996× 10−6
g(β) = β2 75.865× 10−6 1.996× 10−6

S = {10(1)29}
number of designs 29,070
(σg/

√
λ1)max (σg/

√
λ1)min

g(β) = β1 73.716× 10−6 1.996× 10−6
g(β) = β2 75.865× 10−6 1.996× 10−6

(ii) The case of six measurements: here the measurement may be performed
at different points x when simultaneously each of the devices may be used just three
times (the result of a measurement is a 6-dimensional realization of the random vector

Y which models the measurement). The number of different designs is
(
n
3

)(
n−3
3

)
.

S = {1(1)7}
number of designs 140
(σg/

√
λ1)max (σg/

√
λ1)min

h(β) = β1 14.877× 10−6 1.998× 10−6
h(β) = β2 10.390× 10−6 2.031× 10−6

448



Example 2.8 shows quite clearly that the preparation of a measurement when

only the approximate values of variance components are at our disposal requires a
thorough preliminary analysis.

3. Confidence ellipsoid of a vector function of β

The problem is to determine for a given confidence level 1 − α and for a chosen
probability ε (this expresses the maximum acceptable reduction of the confidence

level 1−α reflecting the fact that the actual value ϑ∗ of the second order parameter
for estimating the parameter β is not known precisely) the regionKε of those changes

of the parameter ϑ that do not cause larger decrease of the confidence level than ε.
Within an example the dependence of the region Kε on the chosen design of the

experiment is shown.

Let Y ∼ Nn(Xβ,Σ(ϑ)) and let G be a given s×k matrix, such that r(G) = s < k.

Denote by kG(Y, ϑ) the random variable

kG(Y, ϑ) = [β∗ − β̂(Y, ϑ)]′G′
(
G[X ′Σ−1(ϑ)X ]−1G′

)−1
G[β∗ − β̂(Y, ϑ)],

where ϑ = ϑ∗ + δϑ and β∗, ϑ∗ are the actual values of the parameters β and ϑ,

respectively. Obviously kG(Y, ϑ∗) ∼ χ2s(0) (a random variable possessing the central
chi-square distribution with s degrees of freedom). Let χ2s(0; 1− α) be the (1 − α)-

quantile of this distribution.

The set

{
u : [u−Gβ̂(Y, ϑ∗)]′

(
G[X ′Σ−1(ϑ∗)X ]−1G′

)−1
(3.1)

× [u−Gβ̂(Y, ϑ∗)] � χ2s(0; 1− α)
}

represents the (1− α)-confidence ellipsoid of Gβ, β ∈ �k .

The statements given in the following are proved in [6].

Statement 3.1. The change

δkG = δϑ′∂kG(Y, ϑ∗)/∂ϑ

of kG caused by the change δϑ of the second order parameter is

δkG = − 2[β̂(Y, ϑ∗)− β∗]′X ′UGΣ(δϑ)Σ−1(ϑ∗)v

− [β̂(Y, ϑ∗)− β∗]′X ′UGΣ(δϑ)UGX [β̂(Y, ϑ∗)− β∗],
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where

UG = Σ
−1(ϑ∗)XC−1G′(GC−1G′)−1GC−1X ′Σ−1(ϑ∗).

Its mean value and variance are

(3.2) E(δkG|β∗, ϑ∗) = −Tr[UGΣ(δϑ)] = −δϑ′[Tr(UGV1), . . . ,Tr(UGVp)]
′

and

(3.3) Var(δkG|β∗, ϑ∗) = δϑ′(2SUG + 4CUG,[MXΣ(ϑ∗)MX ]+)δϑ,

respectively; here

{SUG}i,j = Tr(UGViUGVj), i, j = 1, . . . , p,

and

{CUG,[MXΣ(ϑ∗)MX ]+}i,j = Tr
(
UGVi[MXΣ(ϑ

∗)MX ]
+Vj

)
, i, j = 1, . . . , p.

The basis for defining the nonsensitiveness region of the confidence ellipsoid is the

Chebyshev inequality ([7], p. 75)

P
{∣∣δkG − E(δkG|β∗, ϑ∗)

∣∣ � t
√
Var(δkG|β∗, ϑ∗)

}
� 1

t2
, t > 0.

According to it, for a sufficiently large t, we can write

P
{∣∣δkG − E(δkG|β∗, ϑ∗)

∣∣ � t
√
Var(δkG|β∗, ϑ∗)

}
≈ 0.

This implies the inequality

δkG � E(δkG|β∗, ϑ∗) + t
√
Var(δkG|β∗, ϑ∗)

with sufficiently high probability. For δkG limited in this way we get

P{χ2s(0) + δkG � χ2s(0; 1− α)

� P{χ2s(0) + E(δkG|β∗, ϑ∗) + t
√
Var(δkG|β∗, ϑ∗) � χ2s(0; 1− α)}.

For a chosen probability ε only those δkG caused by the change δϑ of the parameter

ϑ∗ are acceptable that satisfy the inequality

E(δkG|β∗, ϑ∗) + t
√
Var(δkG|β∗, ϑ∗) < δε,
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where

δε = χ2s(0; 1− α)− χ2s(0; 1− α− ε),

since only those satisfy the inequality

P{χ2s(0) + δkG � χ2s(0; 1− α)} � α+ ε.

Thus according to (3.2) and (3.3) the inequality

−[Tr(UGV1), . . . ,Tr(UGVp)]δϑ+ t
√

δϑ′(2SUG + 4CUG,[MXΣ(ϑ∗)MX ]+)δϑ � δε

determines those changes of the second order parameter that ensure the tolerable

change of the confidence region given by ε.

Definition 3.2. The set

(3.4) Kε = {δϑ : −δϑ′a+ t
√

δϑ′Aδϑ � δε, δϑ ∈ �p , t > 0}

is said to be the nonsensitiveness region of the confidence ellipsoid (3.1). Here
a = [Tr(UGV1), . . . ,Tr(UGVp)]′, A = 2SUG + 4CUG,[MXΣ(ϑ∗)MX ]+ and t has to fulfil

the relation

(3.5) P
{
|δkG − E(δkG|β∗, ϑ∗)| � t

√
Var(δkG|β∗, ϑ∗)

}
≈ 0

and δε is given by the relationship

(3.6) P{χ2s(0) � χ2s(0; 1− α) − δε} = α+ ε.

������ 3.3. With respect to the Chebyshev inequality

if t = 5, then P{|δkG − E(δkG|β∗, ϑ∗)| � t
√
Var(δkG|β∗, ϑ∗)} � 0.04.

If δkG is approximately normally distributed, then

if t = 3, then P{|δkG − E(δkG|β∗, ϑ∗)| � t
√
Var(δkG|β∗, ϑ∗)} ≈ 0.003.

Thus it seems that the proper value of t lies in the interval [3, 5].

This is the reason that enables us to apply the almost practical certainty in the
Chebyshev inequality (see the preceding case).

������ 3.4. Let A = SUG + CUG,[MXΣ(ϑ∗)MX ]+ . Then M (SUG) ⊂ M (A). If

a = [Tr(UGV1), . . . ,Tr(UGVp)]′, then it can be proved (cf. [6]) that a ∈ M (SUG) ⊂
M (A) and the equation (t2A− aa′)x0 = aδε (with respect to x0) is consistent.
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Statement 3.5. Let

A = 2SUG + 4CUG,[MXΣ(ϑ∗)MX ]+

and

a = [Tr(UGV1), . . . ,Tr(UGVp)]′.

Then the boundary of the domain Kε, see (3.4), is

(3.7) K ε =

{
u : u ∈ �k , (u− u0)′(t2A− aa′)(u− u0) = δ2ε

t2

t2 − a′A−a

}
,

where u0 = δεA
−a/(t2 − a′A−a), and for t see (3.5).

Statement 3.6. Let β∗ and ϑ∗ be the actual values of β and ϑ, respectively. Let

G be an s× k matrix such that r(G) = s � k. Then

δϑ ∈ Kε ⇒
P
{
β∗ ∈

{
u : [u−Gβ̂(Y, ϑ∗ + δϑ)]′

(
G[X ′Σ−1(ϑ∗ + δϑ)X ]−1G′

)−1

×[u−Gβ̂(Y, ϑ∗ + δϑ)] � χ2s(0; 1− α)
}}

� 1− α− ε.

�����	� 3.7 (continuation of Example 2.8). The problem is to construct and
to compare the nonsensitiveness regions K ε for designs described in Tables 2.1a

and 2.2a. Figs 3.1–3.6 give graphic description of the nonsensitiveness regions K ε

defined by (3.7) for the confidence level 1 − α = 0.95, ε = 0.05 especially for β1,

where the designs characterized by the design matrices X1 =

(
1, 1, 1, 1
5, 10, −5, 0

)′

and X2 =

(
1, 1, 1, 1

−5, 5, 0, 10

)′
described in Table 2.1a were considered and β2,

where the designs characterized by the design matrices X3 =

(
1, 1, 1, 1

0, 5, −5, 10

)′

and X4 =

(
1, 1, 1, 1
−10, 10, 0, 5

)′
(see Table 2.2a) were considered. The solid lines in

the first column correspond to the design k = 1, the dot-and-dash lines in this column

correspond to the design k = 2. Analogously in the second column of figures, the
solid line corresponds to the design k = 3 and the dot-and-dash line to the design

k = 4. Here the dimension of the estimated function is s = 1 and δε = 1.135
(G = e′1 = (1, 0) or G = e′2 = (0, 1)).
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Nonsensitiveness regions K ε

α = 0.05
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As far as Fig. 3.7 is concerned, it shows for t = 3 (the solid line), t = 4 (the dashed
line) and t = 5 (the dot-and-dash line) the nonsensitivenes region K ε of the whole
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Nonsensitiveness regions K ε
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β2

β1

vector (β1, β2)′ for the design k = 3. Here the dimension of the estimated function
is s = 2 and δε = 1.386 (G = I).
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Fig. 3.8 demonstrates the change of the confidence ellipsoid of the vector (β1, β2)′

caused by the change of the second order parameter. The value δϑ = [−1.16 ×
10−7,−3.3× 10−6] corresponds to the point A lying on the boundary of the nonsen-
sitiveness region given on Fig. 3.7. The dot-and-dash line corresponds to the changed

value ϑ∗ + δϑ and the solid line to the actual value ϑ∗.

4. Linear hypothesis on β

The problem is to find such a neighbourhood of the parameter ϑ∗ in which the
substitution of ϑ for ϑ∗ does not cause an essential change in the risk α of the test of

the null hypothesis H0 : Hβ∗ + h = 0 against an alternative Ha : Hβ∗ + h = ξ �= 0.
Another problem is to find an analogous neighbourhood which does not cause an

essential change in the value of the power function at the point ξ. To say it more
precisely:

Let a test with the given risk α of the null hypothesis H0 : Hβ∗ + h = 0 against
the alternative Ha : Hβ∗ + h = ξ �= 0 be considered. Here two problems occur:
(i) to determine the region Rε with the property

δϑ ∈ Rε ⇒ P{TH(Y, ϑ∗ + δϑ) � χ2q(0; 1− α)|H0} � α+ ε

and

(ii) for a given ξ to determine the region Hε,ξ with the property

δϑ ∈ Hε,ξ ⇒ P{TH(Y, ϑ∗ + δϑ) � χ2q(0; 1− α)|Ha}
� P{TH(Y, ϑ∗) � χ2q(0; 1− α)|Ha} − ε

(for TH see Statement 4.2). Both these problems can be solved on the basis of the

following.

Let Y ∼ Nn(Xβ∗,
p∑

i=1
ϑ∗i Vi). Let the null hypothesis concerning β∗ be H0 : Hβ∗+

h = 0, where H is a q × k matrix such that r(H) = q; the alternative hypothesis is

of the form Ha : Hβ∗ + h �= 0. The well known lemma is valid.

Lemma 4.1. If H∗
β + h = 0, the statistic

TH(Y, ϑ∗) = [Hβ̂(Y, ϑ∗) + h]′(HC−1H ′)−1[Hβ̂(Y, ϑ∗) + h],

where C = X ′Σ−1(ϑ∗)X , possesses the central chi-square probability distribution
with q degrees of freedom.
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If Hβ∗ + h = ξ �= 0, then TH(Y, ϑ∗) possesses a noncentral chi-square probability

distribution with q degrees of freedom and the parameter of noncentrality

δ = ξ′(HC−1H ′)−1ξ.

All statements given in the following have been proved in [6].

Statement 4.2. Let

TH(Y, ϑ) = [Hβ̂(Y, ϑ) + h]′
(
H [X ′Σ−1(ϑ)X ]−1H ′

)−1
[Hβ̂(Y, ϑ) + h]

and

δTH = δϑ′∂TH(Y, ϑ∗)/∂ϑ.

Then

δTH = − 2
p∑

i=1

δϑi[Hβ̂(Y, ϑ∗) + h]′CHFHViΣ−1(ϑ∗)v

−2
p∑

i=1

δϑi[Hβ̂(Y, ϑ∗) + h]′CHFHViF
′
HCH [Hβ̂(Y, ϑ∗) + h]

= − 2δϑ′




[Hβ̂(Y, ϑ∗) + h]′CHFHV1Σ−1(ϑ∗)v

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[Hβ̂(Y, ϑ∗) + h]′CHFHVpΣ−1(ϑ∗)v




+



[Hβ̂(Y, ϑ∗) + h]′CHFHV1F

′
HCH [Hβ̂(Y, ϑ∗) + h]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[Hβ̂(Y, ϑ∗) + h]′CHFHVpFHCH [Hβ̂(Y, ϑ∗) + h]






where v = Y − Xβ̂(Y, ϑ∗), FH = HC−1X ′Σ−1(ϑ∗) and CH = (HC−1H ′)−1. The
mean value of the random variable δTH is

E(δTH |β∗, ϑ∗) = − [Tr(UHV1), . . . ,Tr(UHVp)]
′δϑ

− [ξ′Z1ξ, . . . , ξ′Zpξ]′δϑ

= − a′ξδϑ,

where

aξ = a0 + [ξ′Z1ξ, . . . , ξ′Zpξ]′

a0 = ϑ[Tr(UHV1), . . . ,Tr(UHVp)]′,

UH = F ′
HCHFH ,

Zi = CHFHViF
′
HCH , i = 1, . . . , p,
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and

ξ = Hβ∗ + h.

The variance of δTH is

Var (δTH |β∗, ϑ∗)

= 4
p∑

i=1

p∑

j=1

δϑiδϑj Tr
(
UHVi[MXΣ(ϑ∗)MX ]+Vj

)

+ 2
p∑

i=1

p∑

j=1

δϑiδϑj Tr(UHViUHVj)

+ 4
p∑

i=1

p∑

j=1

δϑiδϑjξ
′CHFHVi

(
UH + [MXΣ(ϑ∗)MX ]+

)
VjF

′
HCHξ

= δϑ′(A0 +Dξ)δϑ,

where

{A0}i,j = 2Tr(UHViUHVj) + 4Tr
(
UHVi[MXΣ(ϑ∗)MX ]+Vj

)
, i, j = 1, . . . , p,

and

{Dξ}i,j =

{
0, if ξ = 0

ξ′CHFHVi

(
UH + [MXΣ(ϑ∗)MX ]+

)
VjF

′
HCHξ, if ξ �= 0,

i, j = 1, . . . , p.

The idea of solving the problems (i) and (ii) consists, analogously to the preceding
case of the confidence region, in applying the Chebyshev inequality under the special

conditions of this section mentioned in Statement 4.2.

Statement 4.3.
(i) The boundary of the set Rε is

(4.1) Rε =

{
x : (x− x0)′(t2A0 − a0a

′
0)(x − x0) =

δ2εt2

t2 − a′0A
−
0 a0

}
,

where x0 = δεA
−
0 a0/(t2 − a′0A

−
0 a0) and P{χ2q � χ2q(0; 1− α)− ϑε} = α+ ε.

(ii) The boundary of the set Hε,ξ is

(4.2) H ε,ξ =

{
y : (y + y0)

′(t2ξAξ − aξa
′
ξ)(y + y0) =

δ2ε,ξt
2

t2 − a′ξA
−
ξ aξ

}
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where y0 = δε,ξA
−
ξ aξ/(t2 − a′ξA

−
ξ aξ), P{χ2q(ξ′[HC−1H ′]−1ξ) � χ2q(1 − α) + δε,ξ} =

p(ξ)− ε and p(ξ) = P{χ2q(ξ′[HC−1H ′]−1ξ) � χ2q(1− α)}, ξ ∈ �q .

�����	� 4.4. Let us return to Example 2.8. As far as the problem (i) is

concerned, under the condition that H = G, the regions K ε and Rε are identical
(compare (3.7) and (4.2)). Here α = 0.05, ε = 0.05 and t = 3, 4, 5 (Figs 3.1–3.6).

As far as (ii) is concerned, Figs 4.1–4.4 demonstrate the nonsensitiveness regions

H ε,ξ of the form (4.2) for α = 0.05, ε = 0.05 and t = 5, namely Figs 4.1 and 4.2
for the parameter β1 (i = 1) for designs k = 1 and k = 2 (the solid line corresponds

to the design k = 1 with the design matrix X1 =

(
1, 1, 1, 1

5, 10, −5, 0

)′
and the dot-

and-dash line to the design k = 2, where X2 =

(
1, 1, 1, 1
−5, 5, 0, 10

)′
) and Figs 4.3

and 4.4 for the parameter β2 (i = 2) for the designs k = 3 and k = 4 (the solid line

corresponds to the design k = 3 with the design matrix X3 =

(
1, 1, 1, 1

0, 5, −5, 10

)′

and the dot-and-dash line to the design k = 4, where X4 =

(
1, 1, 1, 1
−10, 10, 0, 5

)′
).

For the mentioned combinations of indices the parameter ξ of noncentrality of the

form
ξ =

j

3
ei

√
{Ck}i,i, j = 1, 2,

was considered (the variant j = 0, in accordance with the problem solved, is mean-
ingless), where

Ck = X ′
kΣ

−1(ϑ∗)Xk, k = 1, 2, 3, 4.

For the parameter δε,ξ for the given combinations of the indices i, j, k see Table 4.1.

i = 1 i = 2
k = 1 k = 2 k = 3 k = 4

j=1 3.62784 4.89392 4.68243 4.89487
j=2 1.24392 3.95692 2.90514 3.96069

Table 4.1
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Nonsensitiveness regions Hε,ξ
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