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STEADY VORTEX RINGS WITH SWIRL IN AN IDEAL FLUID:

ASYMPTOTICS FOR SOME SOLUTIONS IN EXTERIOR DOMAINS

Tadie, Copenhagen

(Received October 13, 1997)

Abstract. In this paper, the axisymmetric flow in an ideal fluid outside the infinite
cylinder (r � d) where (r, θ, z) denotes the cylindrical co-ordinates in �3 is considered. The
motion is with swirl (i.e. the θ-component of the velocity of the flow is non constant). The
(non-dimensional) equation governing the phenomenon is (Pd) displayed below. It is known
from e.g. [9] that for the problem without swirl (fq = 0 in (f)) in the whole space, as the
flux constant k tends to ∞,
1) dist(0z, ∂A) = O(k1/2); diamA = O(exp(−c0k

3/2));

2) (k1/2Ψ)k∈� converges to a vortex cylinder Um (see (1.2)).
We show that for the problem with swirl, as k↗∞, 1) holds; if m � q+2 then 2) holds

and if m > q+2 it holds with Uq+2 instead of Um. Moreover, these results are independent
of f0, fq and d > 0.

Keywords: vortex rings, potential theory, elliptic equations
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1. Introduction

Let (r, θ, z) denote the cylindrical coordinates in �3 . We consider an axisymmetric

(w.r.t. Oz) flow in an ideal fluid occupying the exterior domain

Ωd := {(r, θ, z) | r > d, θ = 0, z ∈ �}, d > 0.

The problem is then posed in the half plane Πd := {x = (r, z) | r > d, z ∈ �}.
It si known (see e.g. [1]) that if q = (u, S, v) denotes the velocity of the flow

and ω = (w1, ω, w2) = curlq its vorticity, then w1 = −Sz; ω = uz − vr; w2 =
−(1/r){rS}r.
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The mass conservation (divq = 0) implies that there is a stream function Ψ such
that u = −Ψz/r, v = Ψr/r whence ω = {Ψrr −Ψr/r +Ψzz}/r.
From Bernoulli’s equation |q|2/2+p/� = H(Ψ) where p and � denote the pressure

and the density and H a scalar function, the dynamical equation q×ω−qt = gradH ,
rS and ω/r are constant on each stream line and for rS = C(Ψ) we have ω/r ≡
LΨ := r−2{Ψrr −Ψr/r +Ψz} = r−2C(Ψ)C′(Ψ)−H ′(Ψ).

So, as seen in [1], the non-dimensional equations (see [9]) governing the flow are

(Pd)





Lψ :=
1
r2

{
∂2r −

1
r
∂r + ∂2z

}
ψ = −λf(r,Ψ) in Πd

ψ|r=0 = 0; ψ and |∇ψ| ↘ 0 as |x| =
√
r2 + z2 ↗∞ in Πd

where the stream functions are related by ψ(x) := Ψ(x) + r2/2 + k, the vorticity

function f is here defined for some m, q � 0 and f0, fq � 0 by

(f) f(r, t) := fq
{t+}q
r2

+ f0 {t+}m

where t+ := max{t, 0} and fq = 0 for the problem without swirl. The parameter
λ > 0 is a Lagrangian multiplier, determined a posteriori. The parameter k > 0
denotes the flux constant, measuring the flux of the fluid between the boundary

r = d and the boundary of the ring ∂A where

(A) A := {x ∈ Πd | Ψ(x) > 0}

denotes the cross-section of the ring. The problem is then to find solutions ψ ∈
C1(Πd) and the corresponding A for (Pd).
We are concerned with the variational solutions of the type found in [3], i.e. local

maximizers of the functional

(Z) Z(u) :=
∫

Πd

F (r, U) dτ ; dτ := r dr dz; F (r, T ) :=
∫ T

0
f(r, s) ds

on the sphere S1(Πd) := {u ∈ Hd := H(Πd) | ‖u‖2 = 1} where U(x) := u(x)−r2/2−k
and Hd denotes the completion of C∞0 (Πd) in the norm

(1.1a) ‖u‖ ≡ ‖u‖Hd
:=

(∫

Πd

u2r + u
2
z

r2
dτ

)1/2
.

Note that for u ∈ C∞0 (Πd), ‖u‖ =
(
−

∫
Πd
uLu dτ

)1/2
and Hd is a Hilbert space with

the scalar product

(1.1b) 〈u, v〉Hd
:=

∫

Πd

1
r2
{urvr + uzvz} dτ.
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The problem without swirl for which Z is replaced by

(J) Jm(u) := f0

∫

Π

{U+}m+1
m+ 1

dτ

in Π := Π0 has variational solutions ψ such that ([3])

a) ψ ∈ C2(Π) if m > 0 and ψ ∈ C2(Π \ ∂A)⋂C1(Π) for m = 0;
b) ψ is an even function of z and ψz < 0 if z > 0;

c) for k > 0, A has a finite number of simply connected components ([9]) and is
simply connected if m � 1.
For the asymptotics of these solutions ([9]), for large values of k,
d) |a2−(2/3)k| = O(k−1/2 log k)a := (r1+r2)/2 where r1 := inf{r > 0 | (r, 0) ∈ A}

(r2 := sup{r > 0 | (r, 0) ∈ A};
e) for ε > 0 such that diamA = 2aε and c0 = 8�(2/3)3/2, ε � C exp{−c0k3/2},

λ � Ck(m−2)/2 exp{2c0k3/2} and |Ψ|C(A) = O(k−1/2); let

(1.Π) Π̂ := {ζ = (ξ, η) | ξ > −1/ε, η ∈ �}

denote the image of Π in the transformation

(1.ζ) r = a(1 + εξ), z = aεη

and for u defined in Π let û(ζ) := u(a(1+εξ), aεη); when k ↗∞ the functions k1/2Ψ
converge in C1(Π) to a function Um such that Ûm is radial; namely

(1.2) Ûm(σ) =

√
6

4��2m
Qm(�m σ)

where Qm is the unique solution of

(1.Q) Q′′ +Q′/σ = −Qm+ , σ > 0; Q(0) = 1; Q′(0) = 0

and �m is its unique positive zero ([8]). In this context the function U will be called

a vortex cylinder.
In the sequel, for any function ϕ, Φ(x) := {ϕ(x)− r2/2− k} and diverse constants

C will denote generic constants.
By the maximum principle all solutions ψ are positive in their respective domains.

The main results that we obtain are:
1) The variational solutions of (Pd) satisfy a)–e) where for i) in a), Πd replaces

Π, mq > 0 and mq = 0 replace respectively m > 0 and m = 0;
ii) the estimates in d)–e) are independent of d.
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2) Independently of d, f0 and fq, the functions k1/2Ψ̂d converge to Ûm if m � q+2

and to Ûq+2 if m > q + 2.
3) For large k we deduce variational solutions of the problem in Π from those of

{(Pd)}d∈(0,1], and they have the same estimates.

2. Existence of solutions

2.1. Preliminaries. For b > 0, let D ≡ Db denote a regular convex domain

(∂Db ∈ Cl; l � 2) in Πd such that the rectangle (d, d+ b)× (−2b, 2b) is contained in
D. Define the spaces Lp(D) := {u | |u|p;D :=

(∫
D
|u|p dτ

)1/p
< ∞} and denote by

H(D) the completion of C∞0 (D) in the norm ‖u‖D :=
(∫
D
{(u2r+u2z)/r2} dτ

)1/2
.We

have the imbeddings ([3])

(2.1) H(D) ⊂W 1
2 (D) ⊂ Lp(D); p � 1

where the second imbedding is compact. In fact, if u ∈ H(D) has its support in

R := (r0 − α, r0)× (−2β, 2β) then

(2.2) |u|p,R � Cpr
(2+p)/2p
0 (2αβ)1/p‖u‖R; p � 1.

From the Sobolev inequality ([2])

(2.3) ∀u ∈ H(Π) ∀p � 2,
∫

Π

|u|p
r2+p/2

dr dz � (Ap‖u‖Π)p

where Ap depends only on p, we have the following lemma:

Lemma 2.1. Let u ∈ H(Π) be such that A(u) := {x ∈ Π | U(x) := u(x) − k −
r2/2 > 0} has a non void interior. Then ∀p � 1 and l > 0 with µ := 8p− 6,

∀u ∈ H(Π)
∫

Π

(U l+
r2

)p
dτ � kµ/2Aµµ(|U |2pl)pl ‖u‖µ/2;(2.4a)

∀u ∈ H(Db)
∫

Db

(U l
r2

)p
� (C2pl)plb(1+pl)/2(diamDb)pl‖u‖plDb.(2.4b)

Also for p � 2,

(2.4c)
∫

A(u)

1
r2p
dτ � k3−2p

(
A4p−6‖u‖

)4p−6
,

where Aµ and Cl are from (2.3) and |. |l := |. |l;Π.
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�����. As u > k on A(u), by the Hölder inequality we have

∫

A(u)
r−2pUpl dτ � (|U |2pl)plkµ/2

(∫

A(u)
uµ/r2+µ/2 dr dz

)1/2

and (2.4a) follows. The other assertions follow from (2.2) and (2.4a). �

Maps between H(Π) and the space V5: Π becomes a meridional half-plane in

�
N , N � 3, if we define z = xN ; r =

√
x21 + x

2
2 + . . .+ x

2
N−1.

Let VN denote the completion of

C∞0,c(�
N ) := {ϕ ∈ C∞0 (�N ) | u depends only on (r, z)}

in the norm ‖ϕ‖VN :=
(∫
Π(ϕ

2
r + ϕ

2
z)r

N−2 dr dz
)1/2

.

From [2], the map ϕ → ϕ; ϕ(x) := r−(N−1)/2ϕ(x) is a homeomorphism from H(Π)

to VN with

(2.5) ‖ϕ‖2VN
= ‖ϕ‖2H(Π) +

(N − 1)(N − 5)
4

∫

Π
|ϕ|2r−3 dr dz.

Thus for N = 5 the map is an isometry between H(Π) and V5.

2.2. Solutions in bounded Db ⊂ Πd. As d > 0, L is uniformly elliptic in Πd
and ∀u ∈ Hd with Zα(u) := (1/α2)Jq(u) + Jm(u), we have

(2.6) Z2b(u) � Z(u) � Zd(u).

Theorem 2.2. ∀k, b > 0, the problem

(Db) Lψ = −λf(r,Ψ) in Db; ψ|∂Db = 0

has a solution ψ which is a maximizer of Z on S1(Db). For some ν ∈ (0, 1], if mq > 0
there is

(2.7) ψ ∈ C2,ν(Db) (∈ C1,ν(Db)
⋂
C2,ν(Db \ ∂A) if mq = 0)

such that ψ(x) = r2ψ(x). Moreover, ψ is an even function in z with ψz < 0 for z > 0
in Db.

�����. From (2.4) and (2.6), as Jm is in H(D) (see [3]), Z is bounded on

S1(Db) and continuous w.r.t. the weak convergences of H(Db) (hence w.r.t. the
strong convergences in Lp(Db), p � 1). Thus there is ψ ≡ ψb ∈ S1(Db) such that
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i) Z(ψ) = max
S1(Db)

Z(u);

ii) Z has a Frechet derivative Z ′ defined by

〈Z ′(u), ϕ〉H(Db) :=
∫

Db

ϕf(r, U) dτ ∀ϕ ∈ H(Db);

iii) ψ is a critical point of Z whence there is λ > 0 such that

∀ϕ ∈ H(Db) 〈ψ, ϕ〉H(Db) = λ
∫

Db

ϕf(r,Ψ)dτ

and ψ is a weak solution of (Db) with

(2.8) λ ≡ λb =

(∫

Db

ψbf(r,Ψb) dτ

)−1
� {Z(u)}−1 ∀u ∈ H(Db).

By taking large p in (2.4), the elliptic theory implies that ψb ∈ C1,ν(Db) for any
ν ∈ (0, 1]. Let ϕ := ψb, the image of ψb in the isometry in (2.5); then

(D5) �5ϕ := ϕrr +
3ϕr
r
+ ϕzz = −λf(r,Ψb) in Db5; ϕ|∂Db5 = 0

and ϕ satisfies (2.7). The proof is completed by the fact that the equation in (D5)
is even in z (see [4]). �

2.3. Solutions in Πd for a fixed k > 0. For a b > 0 and bi := ib, i ∈ �,
let Di := Dbi and let (ψi, λi) be the corresponding solutions of (Di) where ψi is

extended by 0 outside Di. From (2.8),

(2.9) ∀i > 1, λi � {Z(ψ1)}−1.

Lemma 2.3. There is a bounded domain Ωk ⊂ Πd such that

(2.10) Ai := A(ψi) ⊂ Ωk ∀i ∈ �.

Consequently, Z is uniformly bounded and continuous on S1(Πd).

�����. Let D be any of the Di, (ψ, λ) the corresponding solution and A :=
A(ψ). Let r2 := sup{r > 0 | (r, 0) ∈ A}. The Green function G of L in D sat-
isfies for S2 := (r − r2)2 + z2 with x = (r, z), x2 = (r2, 0) and σ := 4

√
rr2/s

the inequality (16/
√
rr2)G(x2, x) � sinh−1(1/σ) = log{1/σ +

√
1 + 1/σ2} (see [6])
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whence for a small α > 0 and Aα := {x ∈ A ; s < αr2} we have r22/2 + k = ψ(x2) �
(r2/2�)λ

∫
Aα log 1/s f(r,Ψ)dτ + (r2λ/2�k) log(24r2/α)

∫
A ψf(r,Ψ)dτ whence

(2.11) k + r22/2 � C r2
r2
2�k

{log(24r2/α)}+ λαrm
′

2

for some m′ := m′(q,m). From (2.9), λ is bounded and so is r2; in fact if we suppose
that r2 is very big, then for α > 0 such that 1/r2 < λαrm

′
2 < 1, (2.11) implies that

r2 � {log r2 + logλ}. From [3], it is known that if (r, z) ∈ A then |z| < k−1. The
existence of Ωk is obtained.

Let ϕ ∈ S1(Πd)
⋂
C∞0 (Πd); there is l ∈ � such that ϕ ∈ S1(Dl) whence from (2.1),

(2.4) and (2.9),

(2.11′) Z(ϕ) � Z(ψl) � C(Ωk).

The uniform continuity then follows as in the case of Jm in [3]. �

Theorem 2.4. (Pd) has a solution ψ which is a maximizer of Z on S1(Πd) such
that

1) there is ϕ ∈ C2,ν(Πd) if mq > 0 and ϕ ∈ C1,ν(Πd)
⋂
C2,ν(Πd \∂A(ϕ)) if mq = 0

such that ψ(x) = r2ϕ(x) in Πd; ψ is an even function of z and ψz < 0 if z > 0;
2) the cross-section A is simply connected if m, q � 1 and has a finite number of

components otherwise.

�����. As ∀i H(Di) ⊂ H(Di+1) ⊂ H(Πd),

(2.12) lim
i↗∞

Z(ψi) = max
S1(Πd)

Z(u) := σd;

so the uniform continuity and boundedness of Z on S1 implies that there is a sub-
sequence (ψ′i) which converges weakly to a ψ ∈ H(Πd) with ‖ψ‖H(Πd) � 1. If we
suppose that ψ /∈ S1 then u := ψ/‖ψ‖ ∈ S1 with Z(u) > σd which is absurd. As (ψ′l)
converges strongly in Lp(Ωk) ∀p � 1, (λ′l) converges to a λ > 0 and ψ is a weak
solution of (Pd) with λ :=

(∫
Πd
ψf(r,Ψ)dτ

)−1
. The proof is completed by similar

arguments as for the last theorem.

2) As the domain is away from r = 0, if m, q � 1 then a slight extension of the
results in [3] and [5] shows that A is simply connected.

Assume only that m, q � 0.
If A has an infinite number of disjoint connected components then for some θ > 0,

Aθ := A
⋂{z = −θ} and A0 := A

⋂{z = 0} have an infinite number of components
(ti, ti+1) and (ri, ri+1) with ti < ri < ri+1 < ti+1 ∀i ∈ �. As Ωk is bounded, the

sequences (ti) and (ri) converge to the same limit. We then have a contradiction as
∀i, Ψ(ri, 0) = 0 and Ψ(ti, 0) = −θ ([9]). �
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2.4. Estimates for ψ in Πd for large k > 0. Let (ψ, λ) ≡ (ψk, λk) denote the
solution in Πd corresponding to k > 0.

Lemma 2.5. For any d > 0 with c0 := 8�(2/3)3/2, as k ↗∞, we have

(2.13) λ � Ck(m−2)/2 exp{2c0k3/2}.

�����. Let v(x) := ψ0(r − d, z) where ψ0 denotes the solution of the problem
without swirl with m = 0 (see [9]). We have v ∈ S1(Πd) and for large k, Jm(v) �
Ck(2−m)/2) exp(−2c0k3/2) (see [9]).
The estimate then derives from the fact that λ � {Z(v)}−1 � {Jm(v)}−1. �

Define r1 := inf{r > 0; (r, 0) ∈ A} (r2 := sup{r > 0; (r, 0) ∈ A}).

Theorem 2.6. For any d > 0, as k ↗∞,
∣∣∣r2i −

2
3
k
∣∣∣ = O(k−1/2 log k);(2.14)

diamA � Ck1/2 exp{−c0k3/2};(2.15)

|ψ|C(A) = O(k);(2.16)

λk|f(. ,Ψ)|C(A)|A|τ = λk|f(. ,Ψ)|C(A)
∫

A

dτ = O(1);(2.17)

|Ψ|C(A) � Ck−1/2.(2.18)

�����. As the Green function P of L in Πd has the same estimates as that in

D, (2.11) and (2.13) imply that for large k, r2i /2+k � Cri{k1/2+log r2} after taking
a suitable value for α (note that (2.11) shows also that λk cannot be bounded as

k ↗∞). The last estimate implies that ri = O(k1/2) and (2.16) is similarly obtained
as the estimate holds for any x = (r, z) ∈ A. The capacity theory ([7]) shows that

for large k, as (r2 − r1)/r1 is bounded and A is moving away from z = 0 as k ↗∞,
if diamA = 2εr0 where r0 := (r1 + r2)/2, then we have the estimate

ε � C exp{−c0k3/2}.

In fact, the capacity of a closed subset E of Π relative to the operator L is defined
as the quantity

CapL(E) := inf

{
−

∫

Π\E
uLu dτ | u ∈ C∞0 (Π), u|E � 1

}

= inf{‖u‖2 | u ∈ H(Π); u|E � 1}. ([7])
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For E := [a(1− ε), a(1 + ε)]× {z = 0}, if ε > 0 is small enough, then

CapL(E) = 2�
(
log(16/e2ε)

)−1{1 +O(ε log 1/ε)}.

(Theorem 3 of [7].)

Thus we have 2�
(
r1 log(16e−2/ε)

)−1
= CapLA � (r21/2 + k)−2 whence ε �

16e−2 exp{−2�k3/2s−1/2(s2/2+1)2} with r21 � sk for large k. y(s) := 2�s−1/2(s2/2+

1)2 has its minimum c0 = 8�(2/3)3/2 at s0 = 2/3. As y′′(s0) > 0, if r21 � (s0 + τ2)k
for large k, (2.13) and (2.17) imply that km

′
exp(−τ2k3/2) = O(1) and this leads to

(2.14). (2.17) follows from the fact that λk
∫
A f(r,Ψ)dτ = O(1) for large k.

As ψ ∈ S1(Π) and for large k we have |A(ψ)|τ :=
∫
A(ψ) dτ � |A(ψ0)|τ where

ψ0 denotes the solution for the problem without swirl with m = 0, for large k we

obtain (|A(ψ)|τ )−1J0(ψ) � (|A(ψ0)|τ )−1J0(ψ0) � |Ψ0|C(A(ψ0)) = Ck−1/2 and (2.18)
follows. �

Theorem 2.7. Suppose that for large k, |Ψ|C(A) = O(k−α) for some α > 0 and
define

(2.19) g(Ψ) :=





f0Ψm+ if m < q + 2;

f ′qΨ
q+1/α
+ := (2fq/3)Ψ

q+1/α
+ if m > q + 2;

fq0Ψ
m
+ := ((2fq/3) + f0)Ψ

m
+ if m = q + 2.

Then as k ↗∞, ψ becomes the solution for the problem without swirl

(2.20) Lψ = −λg(Ψ) in Πd.

�����. From (2.14), for large k, in A we have f(r,Ψ) � (2fq/3)Ψq+1/α +
f0Ψm � k−(1+αq){2fq/3 + f0kα(q−m)+1}, hence f(r,Ψ) � g(Ψ) in A for large k. As

‖ψ‖2H(Πd)
= λ

∫
A ψf(r,Ψ)dτ , we then have limk↗∞

{
〈ψ, ψ〉H(Πd)

− λ
∫
A ψg(Ψ) dτ

}
= 0

and (2.20) follows. �
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3. Estimates in the stretched plane Π̂d

Define ∀k > 0 a ≡ a(k) > 0 such that

(3.1) ∇Ψ(a, 0) = 0 and Ψ(a, 0) = max
x∈A
Ψ(x).

Let Π̂d be the image of Πd in the transformation (1.ζ) where ε satisfies diamA = 2aε.

D̂ will denote the image of anyD ⊂ Πd. Define u(ζ) := u(a(1+εξ), aεη) for u defined
in Πd and f̂(U) := f(a(1 + εξ), U(ζ)). For large k,

(3.2a) Â ⊂ B1 := {ζ | |ζ|2 = ξ2 + η2 < 1} and diam Â = 2.

For x, x0 ∈ Π with x = (r, z) and x0 = (r0, z0), the Green function of L in Π is

P (x, x0) =
rr0
2�

∫
�

0

cos θ dθ
{r2 + r20 − 2rr0 cos θ + (z − z0)2}1/2

([3], [6]). So, provided that ε|ζ0|, ε|ζ| ∈ (0, 1), the Green function P of L in Π̂ satisfies
for P (ζ, ζ0) := P ((a(1 + εξ), aεη), (a(1 + εξ0), aεη0)) ([6], [9])

(3.2b) P (ζ, ζ0) =
a

2�

{
log

8e−2

ε|ζ − ζ0|
+R1(ζ, ζ0) log

8
ε|ζ − ζ0|

+R2(ζ, ζ0)
}

where for |α| ∈ �, |DαRi| = O(ε). Under those conditions we have the following

estimates for large k:

P (ζ0, ζ) =
a

2�
log

8e−2

ε|ζ − ζ0|
+O

(
ε log

1
ε

)
(3.3)

= Ck2 +
a

2�
log

1
|ζ − ζ0|

+O
(
ε log

1
ε

)
.(3.4a)

If ζ′ ∈ Â, we get for large k and |∇ζ′P (ζ, ζ′)| :=
√
P 2ξ′ + P

2
η′

(3.4b) |∇ζ′P (ζ, ζ′)| � const a
{
ε log

1
ε
+

1
|ζ − ζ′| + ε log

e

|ζ − ζ′|
}
.

Lemma 3.1. For large k,

Ψ(ζ0) =
λa4ε2

2�

∫

Â

f̂(Ψ) log
1

|ζ − ζ0|
dξ dη +O

(
ε log

1
ε

)
(3.5a)

= O(k−1/2) in Â,(3.5b)

and
∣∣|ψ|C(A) − 4k/3

∣∣ = O(k−1/2).(3.6)
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�����. From (3.4), for large k, with δ := ε log 1/ε and ζ0 ∈ Â, we have

ψ(ζ0) = Ck + (λa4ε2/2�)
∫
Â
log(1/|ζ − ζ0|) f̂(Ψ)(1 + εξ) dξ dη + O(δ). From (2.17),

for large k, we have λa5ε2|f̂(Ψ)|Â = O(1) hence the integral term above is O(k−1/2).
The fact that |ψ|C(A) = O(k) then leads to (3.5a). The formula (3.6) follows from

(2.14) and (3.5b). �

For any k > 0, define uk := k1/2Ψ. In Π̂d

(3.7) ∀k > 0 ∇uk(0) = 0 and |uk|C(Â) = O(1) for large k.

As ∀k > 0 λ
∫
A ψf(r,Ψ)dτ = 1, by (2.19), (3.5b) and (3.6) each of the quantities

(3.8)





4
3
λa2ε2k(2−m)/2f0uk(0)m|Â| if m < q + 2,

4
3
λa3ε2k−q/2f ′quk(0)

q+2|Â| if m > q + 2,

and
4
3
fq0λa

3ε2k(2−m)/2uk(0)m|Â| if m = q + 2

converges to 1 as k↗∞.

Theorem 3.2. Let µ ∈ (0, 1]; then (uk)k∈� converges to u, such that
1) u ∈ C2,µ(Π̂d) if mq > 0 and u ∈ C1,µ(Π̂d)

⋂
C2,µ(Π̂ \ ∂Â(u)) if mq = 0;

2) u is radial and independent of d, f0 and fq. In fact, for σ := |ζ| we have

(3.9) u(σ) =





√
6

4��2m
Qm(�mσ) if m � q + 2

√
6

4��2q+2
Qq+2(�q+2σ) if m > q + 2

where Ql and �l are defined in (1.Q).

�����. Let B be a (bounded) ball centered at the origin in Π̂d and let k be
large. From the equation LΨ = −λf(r,Ψ), with Ak := A(ψ) we obtain (∂2ξ−ε∂ξ/(1+
εξ) + ∂2η)uk = −λa4ε2k1/2(1 + εξ)2f̂(Ψ) in Âk.
From (2.17) and (3.8), the second member of this equation is bounded uniformly

on Âk and the elliptic theory implies that ‖uk‖W 2
p (B) is uniformly bounded as easy

calculations show that |uk(ζ)| � C|ζ| for ζ �∈ Âk.
In fact, from (3.4b), as ε2a5λ|f̂(Ψ)|C(Â) = O(1), we obtain

|∇ψ(ζ)| � const ε2a4λ|f̂(Ψ)|C(Â)

×
{
ε log(1/ε) +

∫

Â

(1/|ζ − ζ′|) dξ′ dη′ + ε
∫

Â

log(e/|ζ − ζ′|) dξ′ dη′
}

� (const/a){ε log(1/ε) +O(1 + ε)} = O(k−1/2).
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For ζ′′ ∈ ∂Â satisfying dist(ζ, ∂Â) = |ζ − ζ′′|, as uk(ζ′′) = 0, we conclude |uk(ζ)| =
|uk(ζ) − uk(ζ′′)| � |∇uk‖ζ − ζ′′| � |∇uk‖ζ| � const|ζ| as |∇uk| � constk1/2|∇ψ| +
O(k3/2ε). The existence of u ∈ C1,ν(B) as the limit of a subsequence of (uk) follows
from the Sobolev imbedding theorems. The regularity of u follows from the elliptic

theory.
Let m < q + 2. From (2.19) and (3.5), for large k and δ := ε log(1/ε), we have

uk(ζ) � (1/2�)(
√
2/3)λa3ε2k(2−m)/2f0

∫
Â
umk log(1/(|ζ′ − ζ|) dξ′ dη′ + O(δ). So, as

from (3.8) lim
k↗∞

(
√
2/3)λa3ε2k(2−m)/2f0 =

√
6/(4|Â(u)|u(0)m) := νm, u is a fixed

point of N where

(3.10) ∀ζ ∈ Π̂d Nϕ(ζ) =
νm
2�

∫

Â(u)
ϕm+ log

1
|ζ′ − ζ| dξ

′ dη′.

Then from [8], u is radial and νm =
√
6/(4�u(0)m). For σ := |ζ|, u′′+u′/σ = −νmum+ ,

σ > 0; u′(0) = 0, u(0) := u0 for some u0 > 0.
With t := {νmum−10 }1/2σ and W (t) =: u(σ)/u0, we have W ′′ +W ′/t = −Wm

+ ;

W (0) = 1, W ′(0) = 0 whence u(σ) = u0Qm({νmum−10 }1/2σ). u(1) = 0 =⇒√
6/(4�u0) = �2m and

(3.11) u(0) =

√
6

4��2m
.

Because u(0) is independent of the choice of the subsequence, (uk) converges to u.
The cases when m � q + 2 follow by the same arguments. �

4. Existence of variational solutions in Π for large k

and their estimates

Lemma 4.1. Let µ ∈ (0, 1]; there is K > 0 such that for k > K

(4.1) Lψ = −λf(r,Ψ) in Π

with ψ ∈ H(Π) has a solution ψ ∈ C2,µ(Π) if mq > 0 (∈ C1,µ(Π)⋂C2,µ(Π \ ∂A(ψ))
if mq = 0) which is a maximizer of Z on S1(Π).

�����. Theorem 2.6 implies that there is K > 0 such that ∀d ∈ (0, 1] and
k > K we have r1 := inf{r > 0 | (r, 0) ∈ A(ψd)} > 1.
Consider a decreasing sequence (di)i∈� in (0, 1] such that di ↘ 0 and a fixed k > K.

The proof is similar to that of Theorem 2.4 as ∀i ∈ �, S1(Πdi) ⊂ S1(Πdi+1) ⊂ S1(Π).
�
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Theorem 4.2. Theorems 2.6, 2.7 and 3.2 hold for the variational solutions

{ψk}k>K of the problems in Π.

�����. This follows from the facts that the Green function of L in Π has the

same upper bounds as that in Πd and the estimates (3.3)–(3.4) hold for it as well.
It has to be noted that Π̂d � Π̂ for large k. �

To my uncles G. Tatuam, P. Wabo and JB. Topa Chatue, in memoriam.
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