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SUPERCONVERGENCE OF MIXED FINITE ELEMENT

SEMI-DISCRETIZATIONS OF TWO TIME-DEPENDENT PROBLEMS

Jan H. Brandts, Praha

(Received April 6, 1998)

Abstract. We will show that some of the superconvergence properties for the mixed finite
element method for elliptic problems are preserved in the mixed semi-discretizations for a
diffusion equation and for a Maxwell equation in two space dimensions. With the help of
mixed elliptic projection we will present estimates global and pointwise in time. The results
for the Maxwell equations form an extension of existing results. For both problems, our
results imply that post-processing and a posteriori error estimation for the error in the space
discretization can be performed in the same way as for the underlying elliptic problem.

Keywords: superconvergence, diffusion equation, Maxwell equations, mixed elliptic pro-
jection
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1. Introduction

The main goal of this paper is to transfer the superconvergence results in [1, 2, 4]

for the mixed finite element method for elliptic problems to some time-dependent
problems that have an elliptic differential operator in space. Consequently, the dis-

cretization error in space for those time-dependent problems can then be estimated
a posteriori in an asymptotically exact way, using the post-processing techniques for

their elliptic counterparts described in the papers mentioned above.
For the transfer of superconvergence results we will use mixed elliptic projection

of the exact solution, a technique similar to the one developed in the standard finite
element context in [8]. We will define this projection and discuss some preliminaries

in Section 2. Its use enables us to prove superconvergence for the semi-discrete ap-
proximations of the investigated time-dependent equations for those and only those

mixed finite elements for which the discretized stationary problem is superconver-
gent. This includes, for the approximation of the vector field, the two lowest order
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mixed elements on regular families of uniform triangulations (cf. [1, 2]) and all the

rectangular elements (cf. [4]). For the scalar function, this includes all order methods
on regular triangulations (cf. [3]).
Key point is the proof that the difference between the elliptic projections and

the semi-discrete approximations is of the same order as the superconvergence rate.
Then, by means of a simple triangle inequality, the superconvergence for the elliptic

projections (if present), easily transfers to the semi-discretisations. Vice versa, if the
elliptic projections are not superconvergent, then neither are the semi-discretizations.

In Section 3, we will consider a diffusion equation which will be semi-discretized in
space using mixed finite elements of Raviart-Thomas type. We prove that indeed, the

semi-discretizations are superclose to the elliptic projections of the exact solutions.
In Section 4 we study the semi-discretisation of a Maxwell model problem in the

plane using the Nédélec mixed elements (also called ‘edge elements’). This system
is suitable for mixed formulation and approximation and similar techniques as in

Section 3 are used to prove superconvergence. The conclusion will be that for this
problem too, superconvergence occurs exactly for those mixed elements for which the

underlying corresponding elliptic equation allows superconvergence. This leads to a
broad extension of the superconvergence results in [5, 6], where superconvergence is

proved only for the lowest order method on rectangular partitions.

2. Preliminaries

2.1. Sobolev spaces. Let Ω be a bounded convex polygonal domain in �2 . De-
note the usual Sobolev spaces of order k by Hk(Ω) and suppose them normed and

seminormed by ‖ · ‖k and | · |k. The differential operators

(1) div

(
q1

q2

)
=

∂

∂x
q1 +

∂

∂y
q2 and rot

(
q1

q2

)
=

∂

∂x
q2 −

∂

∂y
q1

give rise to the spaces H(div; Ω) and H(rot; Ω) of L2 vector fields of which weak di-
vergence and rotation respectively exist in L2(Ω). Their subspaces of fields having—
essentially—zero normal (tangential) component on ∂Ω we denote byH0(div; Ω) and
H0(rot; Ω). The operators grad and curl are such that

(2) div grad = − rotcurl = ∆.

2.2. Raviart-Thomas and Nédélec mixed finite element spaces. Here we
recall the Raviart-Thomas mixed finite spaces Γk

h relative to a family (Th)h of tri-

angulations of Ω. Instead of giving a formal definition (for which we refer to [7]) we
would rather restrict ourselves to stating some characterizing properties. By Pk(·)
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we mean the space of all polynomials of degree k and byW k
h the space of all piecewise

degree k polynomials over the given triangulation.
• Γk

h ⊂ H(div; Ω),
• [W k

h ]
2 ⊂ Γk

h ⊂ [W k+1
h ]2,

• div(Γk
h) =W k

h ,
• ∀qh ∈ Γk

h, ∀K ∈ Th,qTh ν ∈ Pk(∂K) and is continuous across ∂K.

By pointwise rotation over �/2 of the vector fields in Γk
h one obtains the rotation-

conforming Nédélec space Γk⊥
h . Furthermore, set

(3) Γk
0h = Γ

k
h ∩H0(div; Ω) and Γk⊥

0h = Γ
k⊥
h ∩H0(rot; Ω).

Pk
h : L2(Ω) → W k

h denotes the L2(Ω)-orthogonal projection on W k
h and is therefore

uniquely defined by

(4) ∀wh ∈ W k
h : (Pk

hw, wh) = (w, wh).

2.3. Time dependency. Since our analysis of time-dependent problems aims to
be pointwise in time as much as possible, we will usually write u(t) when we mean

the function x �→ u(x, t) for some fixed t ∈ T := [0, T ′]. For later use we define the
norms

(5) |||u|||k,l,t :=

(∫ t

0
‖u(s)‖l

k ds

) 1
l

, l = 1, 2.

The following useful equality holds for u smooth enough.

(6)

(
∂

∂t
u(t), u(t)

)
=
1
2

∂

∂t
‖u(t)‖20 = ‖u(t)‖0

∂

∂t
‖u(t)‖0,

which, by the Schwarz inequality, results in

(7)

∣∣∣∣
∂

∂t
‖u(t)‖0

∣∣∣∣ �
∥∥∥∥

∂

∂t
u(t)

∥∥∥∥
0

.

All-time favourite in the analysis of time dependent partial differential equations is

the Gronwall inequality, which we shall not use until Section 4. In this form, it is
taken from [8].

Lemma 2.1. [Gronwall inequality] Suppose f , g and h are piecewise continuous

and nonnegative. Then if for all t ∈ [0, T ]

(8) f(t) + h(t) � g(t) +
∫ t

0
f(s) ds,
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then

(9) f(t) + h(t) � etg(t).

2.4. Mixed elliptic projection. Let b : Ω→ � be a non-negative function and

A : Ω → GL(2) a function on Ω taking its values in the group GL(2) of invertible
2× 2 matrices, satisfying

(10) ∃β > 0: ∀q ∈ [L2(Ω)]2 : (A−1q,q) � β‖q‖20.

Given u ∈ Hk+2(Ω) for some non-negative integer k with trace g and given the vector
field p = −Agradu, one can consider them to form the solution of the following

Poisson problem (stated as a system of first order equations) with homogeneous
Dirichlet boundary conditions and right-hand side F := − div(A grad u) + bu.

(11) p = −Agradu, divp+ bu = F in Ω, u = g on ∂Ω.

Applying the mixed finite element method to this system in the usual way leads to
approximations uh ∈ W k

h for u and ph ∈ Γk
h for p, defined by

System 2.2. Find uh ∈ W k
h and ph ∈ Γk

h such that

∀qh ∈ Γk
h : (A

−1ph,qh)− (uh, divqh) =
〈
g,qTh ν

〉
∂Ω

,

∀wh ∈ W k
h : (divph, wh) + (buh, wh) = (F, wh).

Starting from given u and p we have constructed approximations uh and ph in
the mixed finite element spaces W k

h and Γ
k
h, respectively. This defines operators I

k
h

and Ikh as follows

(12)
Ikh : H

k+2(Ω)→ W k
h : u �→ Ikhu := uh,

Ikh : H(div; Ω)→ Γk
h : p �→ Ikhp := ph.

In the sequel we will refer to these operators as mixed elliptic projectors. Slight

changes in their definition would allow for other boundary conditions and for the
Nédélec spaces to be included. One of the most important property of mixed elliptic

projection is that it commutes with differentiation with respect to a parameter (in
our case, time).

Lemma 2.3. Let k be a non-negative integer and let u : Ω×T → � be such that

u(t) ∈ Hk+2(Ω) for all t ∈ T . Define g(t) := trace(u(t)) and f(t) := − div(A gradu).
Then the elliptic projections of the four functions below are well-defined and

(13)
∂

∂t
Ikhu(t) = Ikh

( ∂

∂t
u
)
(t) and

∂

∂t
Ikhp(t) = I

k
h

( ∂

∂t
p
)
(t).
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�����. One can check by differentiation of System 2.2 followed by changing

the order of differentiation and integration that the pair

(14)
( ∂

∂t
Ikhp(t),

∂

∂t
Ikhu(t)

)

satisfies System 2.2 with F and g replaced by ∂
∂tF , and

∂
∂tg, respectively. By unique-

ness of the solution, this proves the statement. �

2.5. Superconvergence of the elliptic projection. The elliptic projection,
being just a mixed finite element discretization of an elliptic equation, is known to

exhibit superconvergence in Ikhu. In fact, the following holds, under some assumptions
on the smoothness of the coefficients of A and on b, and using regular families of

triangulations (for the precise conditions we refer to [3])

(15) ‖Pk
hu− Ikhu‖0 � Chk+2‖u‖k+2.

Both Pk
hu and Ikhu converge to u with order hk+1 only, so in fact elliptic projection of

u is a higher order perturbation of L2 orthogonal projection on W k
h . This important

fact forms the basis for pointwise superconvergence in special points and also for
easy post-processability of Ikhu which in turn leads to a posteriori error estimation.

For the vector field elliptic projection Ikhp the same superconvergent bound holds
with respect to the so called Fortin-interpolation Πk

hp of p. Explicitly, for all rec-
tangular elements (cf. [4]), as well as for the two lowest order methods on uniform

triangular elements (cf. [1, 2]),

(16) ‖Πk
hp− Ikhp‖0 � Chk+2‖p‖k+2.

In these situations, post-processing mechanisms are available which could be used

for a posteriori error estimation. For the precise definition of Fortin interpolation we
also refer to the papers mentioned above.

In the following two sections, we will prove that the difference between the elliptic

projection of the exact solution of a time-dependent equation and the semi-discrete
approximation is also of order hk+2. This has as a consequence that for whenever

the elliptic projection superconverges in the sense of (15) or (16), then so do the
semi-discrete approximations by means of a simple triangle inequality.
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3. A diffusion equation

Consider the following mixed formulation of a diffusion equation with given Dirich-
let boundary conditions and initial condition.

p = −A gradu,
∂

∂t
u+ divp+ bu = f in Ω× T,(17)

u = g on ∂Ω× T, u(x, 0) = U0(x) on Ω.

Its semi-discrete formulation is as follows. The choice for the semi-discrete initial

condition is made further on.

System 3.1. For all t ∈ T , find uh(t) ∈ W k
h and ph(t) ∈ Γk

h such that

∀qh ∈ Γk
h : (A−1ph(t),qh)− (uh(t), div qh) =

〈
g(t),qTh ν

〉
∂Ω

,

∀wh ∈ W k
h : (div ph(t), wh) + (buh(t), wh) = (f − ∂

∂tuh(t), wh).

In the analysis of this discretisation, we subtract the System 2.2 from 3.1 and test

the resulting equations with the test functions

(18) Uh(t) := uh(t)− Ikhu(t) ∈ W k
h and Ph(t) := ph(t)− Ikhp(t) ∈ Γk

h.

Notice that these functions form the difference between elliptic projection and semi-
discrete approximations and that it is exactly this difference that we want to prove

supersmall. Some easy manipulations with the subtracted system lead to the equality

(A−1Ph(t),Ph(t)) +
1
2

∂

∂t
‖Uh(t)‖20 + (bUh(t), Uh(t)) =

(
∂

∂t
(Ikhu− u)(t), Uh(t)

)
.

The term in the right-hand side can be modified. By Lemma 2.3, we let ∂
∂t and Ik

h

commute, and project ∂
∂tu on W k

h . Then the Schwarz inequality yields

(A−1Ph(t),Ph(t)) +
1
2

∂

∂t
‖Uh(t)‖20 + (bUh(t), Uh(t))(19)

�
∥∥∥∥(Ikh − P k

h )
( ∂

∂t
u
)
(t)

∥∥∥∥
0

‖Uh(t)‖0

with, as an immediate consequence of the non-negativity of the first term and third
term,

(20)
∂

∂t
‖Uh(t)‖0 �

∥∥∥∥(Ikh − P k
h )
( ∂

∂t
u
)
(t)

∥∥∥∥
0

.
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Taking as initial condition for System 3.1, uh(x, 0) := IkhU0(x), integration of in-

equality (20) gives

(21) ‖Uh(t)‖0 �
∣∣∣∣
∣∣∣∣
∣∣∣∣(Ikh − P k

h )
( ∂

∂t
u
)∣∣∣∣
∣∣∣∣
∣∣∣∣
0,1,t

.

To obtain an estimate for Ph, we use the ellipticity of A−1 in (10) and integrate
(19) from zero to t using (21). Deleting the irrelevant positive terms obtained in the

left-hand side, we end up with

β |||Ph|||20,2,t �
∫ t

0

∥∥∥∥(Ikh − P k
h )
( ∂

∂s
u
)
(s)

∥∥∥∥
0

‖Uh(s)‖0 ds

�
∫ t

0

∥∥∥∥(Ikh − P k
h )
( ∂

∂s
u
)
(s)

∥∥∥∥
0

∣∣∣∣
∣∣∣∣
∣∣∣∣(Ikh − P k

h )
( ∂

∂s
u
)
(s)

∣∣∣∣
∣∣∣∣
∣∣∣∣
0,1,s

ds

� 1
2

∣∣∣∣
∣∣∣∣
∣∣∣∣(Ikh − P k

h )
( ∂

∂t
u
)∣∣∣∣
∣∣∣∣
∣∣∣∣
2

0,1,t

.

Our analysis results in the following theorem.

Theorem 3.2. The semi-discrete approximations (uh(t),ph(t)) of the problem
(17) are superclose to the elliptic projections of the exact solutions in the sense that

(22) |||Ph|||0,2,t + ‖Uh(t)‖0 � Chk+2

(∣∣∣∣
∣∣∣∣
∣∣∣∣
∂

∂t
u

∣∣∣∣
∣∣∣∣
∣∣∣∣
k+2,1,t

+ ‖u(t)‖k+2

)
.

Thus uh(t) and ph(t) superconverge if and only if the elliptic projections do so.

������ 3.3. The a priori estimates for the mixed method are only of (optimal)
order hk+1, so Theorem 3.2 is indeed a superconvergence result.

4. A Maxwell problem

Consider the following simple Maxwell problem in the plane. Since it is a second
order problem in time, the analysis is different than for the diffusion equation of the

previous section.

∂

∂t
E = curlH,

∂

∂t
H = − rotE in Ω× T(23)

(curlH)Tτ = 0 on ∂Ω× T, E(x, 0) = E0(x), H(x, 0) = H0(x).
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Notice that, when changing the order of time and space differentiations is allowed,

H satisfies a wave equation

(24)
∂2

∂t2
H = − rot(curlH) = ∆H in Ω× T,

with the following initial and boundary conditions

(curlH)T τ = 0 on ∂Ω,×T, H(x, 0) = H0(x),
∂

∂t
H(x, 0) = − rotE0(x).

The semi-discretization (System 4.1 below) has been thoroughly analysed in two as

well as three space dimensions in [5, 6]. It is formulated in terms of rotation and
curl, which explains the use of Nédélec instead of Raviart-Thomas spaces and also

the use a corresponding rotation and curl formulation of the elliptic projection given
in System 4.2.

System 4.1. For all t ∈ T , find Hh(t) ∈ W k
h and Eh(t) ∈ Γk⊥

0h such that

∀qh ∈ Γk⊥
0h : (

∂
∂tEh(t),qh) = (Hh(t), rotqh),

∀wh ∈ W k
h : (rotEh(t), wh) = ( ∂

∂tHh(t), wh).

The elliptic projection will this time be used with homogeneous Neumann bound-
ary conditions. The projectors for this Maxwell problem are given by

System 4.2. For all t ∈ T , find IkhH(t) ∈ W k
h and I

k
h

∂
∂tE(t) ∈ Γk⊥

0h such that

∀qh ∈ Γk⊥
0h : (I

k
h

∂
∂tE(t),qh) = (IkhH(t), rotqh),

∀wh ∈ W k
h : (rot I

k
h

∂
∂tE(t), wh) = ( ∂2

∂t2H(t), wh).

The result of Lemma 2.3 (with the corresponding minor modifications), still holds
for this new situation. Define

(25) Φh(t) = IkhH(t)−Hh(t) and Ψh(t) = Eh(t)− IkhE(t)

and take as initial conditions for the system 4.1

(26) Hh(0) = IkhH0 and Eh(0) = IkhE0.

Lemma 4.3. Conditions (26) for System 4.1 imply Φh(0) = Ψh(0) = 0 and

(27)
( ∂

∂t
Φh

)
(0) = (Ikh − Pk

h)
( ∂

∂t
H
)
(0) and

( ∂

∂t
Ψh

)
(0) = 0.
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�����. By the first equation of both System 4.1 and 4.2, both for t = 0, and

using the first of the initial conditions in (26) and Lemma 2.3,

( ∂

∂t
Eh

)
(0) = Ikh

( ∂

∂t
E
)
(0) =

( ∂

∂t
IkhE

)
(0), so

( ∂

∂t
Ψh

)
(0) = 0.

Recall that IkhE0(x) is the vector field solution of 4.2 with
∂2

∂t2H replaced by
∂
∂tH .

The second initial condition in (26) implies rotEh(0) = rot IkhE0(x), and by the
second equations of 4.1 and the second of System 4.2 with ∂2

∂t2H replaced by
∂
∂tH ,

this results in ( ∂

∂t
Hh

)
(0) = Pk

h

( ∂

∂t
H
)
(0).

This proves the first of the two statements in (27). �

Differentiate both equations in System 4.1 and the first of System 4.2 in time and
subtract system 4.1 from 4.2. Testing the subtracted system with

(28) wh =
∂

∂t
Φh(t) and qh =

∂

∂t
Ψh(t)

leads after some easy manipulations to the equality

(29)
1
2

∂

∂t

(∥∥∥ ∂

∂t
Φh(t)

∥∥∥
2

0
+
∥∥∥ ∂

∂t
Ψh(t)

∥∥∥
2

0

)
=
( ∂2

∂t2
(IkhH −H)(t),

∂

∂t
Φh(t)

)
.

So, integration of (29) from zero to t followed by applying the Schwarz inequality

and the inequality |2ab| � a2 + b2 results in

∥∥∥ ∂

∂t
Φh(t)

∥∥∥
2

0
+
∥∥∥ ∂

∂t
Ψh(t)

∥∥∥
2

0
= 2

∫ t

0

( ∂2

∂2s
(IkhH −H),

∂

∂s
Φh

)
(s) ds+

∥∥∥∥
( ∂

∂t
Φh

)
(0)

∥∥∥∥
2

0

�
∫ t

0

∥∥∥∥(Ikh − Pk
h)
( ∂2

∂2s
H
)
(s)

∥∥∥∥
2

0

ds+
∫ t

0

∥∥∥ ∂

∂s
Φh(s)

∥∥∥
2

0
ds+

∥∥∥∥
( ∂

∂t
Φh

)
(0)

∥∥∥∥
2

0

.

Applying the Gronwall inequality (Lemma 2.1) leads to

∥∥∥ ∂

∂t
Φh(t)

∥∥∥
2

0
+
∥∥∥ ∂

∂t
Ψh(t)

∥∥∥
2

0
� et

(∣∣∣∣
∣∣∣∣
∣∣∣∣(Ikh − Pk

h)
( ∂2

∂t2
H
)∣∣∣∣
∣∣∣∣
∣∣∣∣
2

0,2,t

+

∥∥∥∥
( ∂

∂t
Φh

)
(0)

∥∥∥∥
2

0

)
.

This is only an estimate for the first time derivatives of the functions of interest. To
obtain estimates for those functions themselves, we apply the inequality (a + b)2 �
2(a2 + b2) to the left-hand side and the inequality a2 + b2 � (|a|+ |b|)2 to the right-
hand side. Next, we take square roots on both sides. Then we apply (7) to the
left-hand side and end up with

∂

∂t
(‖Φh(t)‖0 + ‖Ψh(t)‖0) �

√
2et/2

(∣∣∣∣
∣∣∣∣
∣∣∣∣(Ikh − Pk

h)
( ∂2

∂t2
H
)∣∣∣∣
∣∣∣∣
∣∣∣∣
0,2,t

+

∥∥∥∥
( ∂

∂t
Φh

)
(0)

∥∥∥∥
0

)
.
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Integration from zero to t (by parts on the right-hand side) gives, taking into account

the semi-discrete initial conditions,

‖Φh(t)‖0 + ‖Ψh(t)‖0 + 2
√
2
∫ t

0
es/2 ∂

∂s

∣∣∣∣
∣∣∣∣
∣∣∣∣(Ikh − Pk

h)
( ∂2

∂2s
H
)∣∣∣∣
∣∣∣∣
∣∣∣∣
0,2,s

ds(30)

� 2
√
2es/2

(∣∣∣∣
∣∣∣∣
∣∣∣∣(Ikh − Pk

h)
( ∂2

∂2s
H
)∣∣∣∣
∣∣∣∣
∣∣∣∣
0,2,s

+
∥∥∥
( ∂

∂s
Φh

)
(0)
∥∥∥
0

)∣∣∣∣∣

t

0

.

Since the norm |||·|||0,2,s is monotonely increasing in s, the integral in the left-hand

side is non-negative, so we can leave it away. Substitution of the integration limits
zero and t in the right-hand side of (30) gives

‖Φh(t)‖0+‖Ψh(t)‖0 � 2
√
2et/2

∣∣∣∣
∣∣∣∣
∣∣∣∣(Ikh − Pk

h)
( ∂2

∂t2
H
)∣∣∣∣
∣∣∣∣
∣∣∣∣
0,2,t

+2
√
2(et/2−1)

∥∥∥
( ∂

∂t
Φh

)
(0)
∥∥∥
0
.

So, essentially, this bound grows in time like et/2, but is pointwise still a supercon-
vergence result in space. Summarizing, we can state the following theorem.

Theorem 4.4. The semi-discrete approximations (Hh(t),Eh(t)) of problem (23)

are superclose to the elliptic projections of the exact solutions in the sense that

‖Φh(t)‖0 � Ce
1
2 thk+2

(∣∣∣∣
∣∣∣∣
∣∣∣∣
∂2

∂t2
H

∣∣∣∣
∣∣∣∣
∣∣∣∣
k+2,2,t

+
∥∥∥
( ∂

∂t
H
)
(0)
∥∥∥

k+2
+ ‖H(t)‖k+2

)

and

‖Ψh(t)‖0 � Ce
1
2 thk+2

∣∣∣∣
∣∣∣∣
∣∣∣∣
∂2

∂t2
H

∣∣∣∣
∣∣∣∣
∣∣∣∣
k+2,2,t

+ C(e
1
2 t − 1)hk+2

∥∥∥
( ∂

∂t
H
)
(0)
∥∥∥

k+2

so that superconvergence in (Hh(t),Eh(t)) will occur if and only if the elliptic pro-

jections superconverge.

�����. Follows immediately from the results above, (15) and Lemma 4.3. �

������ 4.5. The a priori estimates for Hh(t) and Eh(t) are only of (optimal)
order hk+1, so the result of Theorem 4.4 is a superconvergence result.

Consequently, whenever the post-processing mechanisms developed for the elliptic

equation in [1, 2, 4] are successfully applicable, they are successfully applicable for
the time dependent Maxwell equations as well.
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