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Abstract. The paper gives a new characterization of eigenprojections, which is then
used to obtain a spectral decomposition for the power bounded and exponentially bounded
matrices. The applications include series and integral representations of the Drazin inverse,
and investigation of the asymptotic behaviour of the solutions of singular and singularly
perturbed differential equations. An example is given of localized travelling waves for a
system of conservation laws.
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1. Preliminaries

For any matrix A ∈ �
p×p we denote its nullspace, range, spectrum and spectral

radius by N(A), R(A), σ(A) and r(A), respectively. The set of all eigenvalues of
A with |λ| = r(A) is called the peripheral spectrum of A, written σper(A). We

define the index of A, written ind(A), to be the least nonnegative integer q for which
N(Aq) = N(Aq+1). Let µ be a complex number with ind(µI −A) = q; then

(1.1) �
p = N((µI −A)q)⊕R((µI −A)q)

(see [2, Chapter 7]). In particular, µ is an eigenvalue of A (of index q) if and only if

q > 0. Conversely, ind(A− µI) is the smallest nonnegative integer q for which (1.1)
holds.

A matrix B is a Drazin inverse of a matrix A ∈ �
p×p if

(1.2) BA = AB, B2A = B, Aq+1B = Aq for some q � 0.

Both authors were partially supported by the Grant Agency of the Czech Republic, Grant
No. 201/98/1450.
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We write AD := B for the Drazin inverse of A. The condition Aq+1B = Aq can be

replaced by requiring that A−A2B is nilpotent. The smallest nonnegative integer q

for which (1.2) holds is equal to the index of A (see [2]). The order of nilpotency of
A−A2B is then also equal to the index of A. Every matrix A has a unique Drazin

inverse AD; if A is nonsingular, then AD = A−1.

Throughout the paper, x �→ ‖x‖ denotes a vector norm on �
p , and A �→ ‖A‖

a matrix norm on �
p×p consistent with the selected vector norm in the sense of

Householder [3, Section 2.2]; we recall that

‖Ax‖ � ‖A‖‖x‖ for all A ∈ �
p×p and all x ∈ �

p .

If S is a set of complex numbers, ReS denotes the set of all real numbers Reλ,
where λ ∈ S. In this paper we use the abbreviation ReS < α to mean that Reλ < α

for all λ ∈ S.

A matrix A satisfying Re σ(A) < 0 is called stable.

We recall the necessary and sufficient conditions for An → 0 as n → ∞ (respec-
tively exp(tA)→ 0 as t →∞).

Lemma 1.1. [5, 6] Let A ∈ �
p×p .

(i) An → 0 as n →∞ if and only if r(A) < 1.

(ii) exp(tA)→ 0 as t →∞ if and only if A is stable.

The following known result is needed later in the paper; we include a proof for

completeness.

Lemma 1.2. SupposeM, N ∈ �
p×p are commuting matrices withM nonsingular

and N nilpotent. Then the matrix M +N is nonsingular.

�����. Since MN = NM , we have also M−1N = NM−1. The matrix M−1N

is nilpotent since (M−1N)k = M−kNk for all integers k. Hence σ(M−1N) = {0},
and M +N = M(I +M−1N) is nonsingular being the product of two nonsingular

matrices. �

2. Resolutions of I and eigenprojections

We introduce the concept of a resolution of the unit matrix that is crucial for the

spectral decompositions discussed in this paper followed by a theorem that sets out
the basic facts about such resolutions.
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Definition 2.1. Let m � 2 be an integer. An m-tuple (E1, . . . , Em) of p × p

matrices is called a resolution of I if

Ek �= 0 for all k, EjEk = δjkEj , E1 + . . .+ Em = I.

Theorem 2.2. Let (E1, . . . , Em) be a resolution of I and let A1, . . . , Am be ma-

trices that commute with each Ei. The matrix A = A1E1 + . . . + AmEm has the

following properties.

(i) If each Ak is nonsingular, then so is A, and A−1 = A−11 E1 + . . .+A−1m Em.

(ii) σ(A) ⊂ σ(A1) ∪ . . . ∪ σ(Am).

(iii) If f is a function holomorphic in an open set Ω ⊃ σ(A1) ∪ . . . ∪ σ(Am), then

(2.1) f(A) =
m∑

k=1

f(Ak)Ek.

�����. Write Σ = σ(A1) ∪ . . . ∪ σ(Am).

(i) follows by a direct verification.

(ii) We observe that, for every complex λ, λI − A =
m∑

k=1
(λI − Ak)Ek. If each

λI − Ak is nonsingular, then so is λI − A by the preceding result. This proves the

spectral inclusion.

(iii) By the preceding argument, (λI−A)−1 =
m∑

k=1
(λI−Ak)−1Ek whenever λ /∈ Σ.

Integrating over a cycle γ consisting of a finite sum of Jordan contours surrounding
Σ in Ω, we get

f(A) =
1
2�i

∫

γ

f(λ)(λI −A)−1 dλ =
m∑

k=1

(
1
2�i

∫

γ

f(λ)(λI −Ak)−1 dλ

)
Ek

=
m∑

k=1

f(Ak)Ek.

�

We define the eigenprojection of A at a point µ to be the idempotent matrix E

with R(E) = N((µI −A)q) and N(E) = R((µI − A)q), where q = ind(A − µI) (see
(1.1)). We note that µ is an eigenvalue of A if and only if E �= 0.
There is a close relation between the eigenprojection E of A at 0 and the Drazin

inverse AD (see, for instance, [7, 8]):

(2.2) E = I −ADA
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and

(2.3) AD = (A+ ξE)−1(I − E) for any ξ �= 0.

The following theorem gives a new characterization of eigenprojections; condition
(iii) requires the verification of nonsingularity of A + ξE for only one value of ξ, a

fact that can be often established directly.

Theorem 2.3. Characterization of eigenprojections Let E be an idem-

potent matrix commuting with A. The following conditions are equivalent.

(i) E is the eigenprojection of A at 0.

(ii) A+ λE is nonsingular for all λ �= 0.
(iii) AqE = 0 for some nonnegative integer q, and A + ξE is nonsingular for some

ξ �= 0. (In this case ind(A) � q.)

�����. (i)=⇒(ii). This was proved in Rothblum [8, Theorem 4.2].
(ii) =⇒ (iii). For any λ �= 0,

λI − AE = (λE −A)E + λ(I − E).

Then λI−AE is nonsingular by Theorem 2.2 (i) for every λ �= 0. Hence σ(AE) = {0},
and AqE = (AE)q = 0 for some q > 0.

(iii)=⇒(i). If q = 0, then A is nonsingular, and E = 0 is the eigenprojection
of A at 0. Let q �= 0. Then (AkE)q = (AqE)k = 0 for any k > 0, the matrix

B =
q−1∑
k=1

(
q
k

)
Akξq−kE is nilpotent, and

Aq + ξqE = (A+ ξE)q −B.

(A + ξE)q − B is nonsingular by Lemma 1.2, and hence so is Aq + ξqE. Set S =

(Aq + ξqE)−1. From ξqES + SAq = I = AqS + ξqSE it follows that

N(Aq) ⊂ R(E), N(E) ⊂ R(Aq).

From AqE = 0 = EAq we obtain

R(E) ⊂ N(Aq), R(Aq) ⊂ N(E).

So R(E) = N(Aq) and N(E) = R(Aq), and the result follows. �
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3. Power bounded matrices

Many properties of power bounded matrices are well known and can be found in
standard matrix texts (e.g. [6]).

Definition 3.1. A matrix A ∈ �
p×p is said to be power bounded if the elements

of the matrix powers An = [a(n)ij ] are bounded for n ∈ �. We say that A is convergent
if the limit P = lim

n→∞
An exists, and zero convergent if it is convergent with the limit

P = 0.

We note that by Lemma 1.1, A is zero convergent if and only if r(A) < 1. The

following theorem essentially says that a power bounded matrix is a zero convergent
matrix plus a linear combination of mutually orthogonal idempotent matrices.

Theorem 3.2. Spectral decomposition for power bounded matrices A
matrix A ∈ �

p×p is power bounded if and only if either r(A) < 1 or

(3.1) A = µ1E1 + . . .+ µsEs + C,

where |µk| = 1 for k = 1, . . . , s, and

(3.2) EjEk = δjkEj , EkC = CEk = 0, r(C) < 1.

The decomposition (3.1) satisfying (3.2) is unique, and for each k, Ek is the eigen-

projection of A at µk.

�����. Suppose that A is power bounded. It is then known [6] that the spectrum
of A lies in the closed unit disc, and that the eigenvalues on the unit circle are of index
1. For the sake of completeness we give an alternative proof which is of independent

interest, emphasizing the spectral approach adopted in [5].
For any eigenvalue λ of A, |λn| � ‖An‖ for all n, so that |λ| � 1, and r(A) � 1.

If r(A) < 1, we are finished. Suppose that µ is an eigenvalue of A with |µ| = 1. Let
(A− µI)2x = 0 for some x �= 0. Then

Anx = (µI + (A− µI))nx = µnx+ nµn−1(A− µI)x;

since ‖Anx‖ is bounded and |µ| = 1, we have (A − µI)x = 0. This shows that

ind(A − µI) = 1 for any µ ∈ σper(A). Let µ1, . . . , µs be the eigenvalues of A with
|µk| = 1, and E1, . . . , Es the corresponding eigenprojections. From ind(A−µkI) = 1

we get (A− µkI)Ek = 0 for all k = 1, . . . , s. Set

C = A−
s∑

i=1

µiEi.
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Then CEk = AEk − µkEk = (A− µkI)Ek = 0. Write E = E1 + . . .+Es. Then E is

idempotent, and EkE = Ek for all k. For any complex λ we have

(3.3) λI − C = (λI − C)E + (λI − C)(I − E) = λE + (λI −A)(I − E).

If λ /∈ σ(A) ∪ {0}, then λI − C is nonsingular by Theorem 2.2. Hence

(3.4) σ(C) ⊂ σ(A) ∪ {0},

and r(C) � 1. For any k = 1, . . . , s, (3.3) gives

µkI − C = µkE + (µkI −A+ Ek)(I − E);

since µkI −A+Ek is nonsingular by Theorem 2.3, µkI −C is nonsingular by Theo-
rem 2.2. Hence r(C) < 1, and (3.1), (3.2) are proved.

Conversely, if (3.1), (3.2) hold, then

An = µn
1E1 + . . .+ µn

s Es + Cn;

since |µk| = 1 and C is power bounded, so is A.

To complete the proof, we have to show that, for each k, Ek is the eigenprojection

of A at µk. From (3.1), (3.2) we obtain (A− µkI)Ek = CEk = 0 and

A− µkI + Ek =
s∑

i�=k

(µi − µk)Ei + Ek + (C − µkI)(I − E).

Consequently A−µkI +Ek is nonsingular by Theorem 2.2 (i), and the result follows

by Theorem 2.3 (iii). �

The following theorem describes how the functions of a power bounded matrix can

be calculated in terms of the spectral decomposition given in Theorem 3.2.

Theorem 3.3. Let A be a power bounded matrix with the spectral decomposition
given by (3.1) and (3.2). If f is a complex valued function holomorphic in an open
neighbourhood Ω of the set σ(A) ∪ {0}, then we have

(3.5) f(A) =
s∑

k=1

f(µk)Ek + f(C)Es+1 =
s∑

k=1

(f(µk)− f(0))Ek + f(C),

where Es+1 = I − (E1 + . . .+ Es).
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�����. Note that (E1, . . . , Es+1) is a resolution of I, and C = CEs+1. Since

A = µ1E1 + . . .+ µsEs + CEs+1,

Theorem 2.2 (ii) implies that σ(µ1I) ∪ . . . ∪ σ(µsI) ∪ σ(C) ⊂ σ(A) ∪ {0} by (3.4).
The first equality in (3.5) follows from Theorem 2.2 (iii).

The proof will be finished when we show that f(C)E = f(0)E, where E = E1 +
. . .+ Es. Indeed, for any λ /∈ σ(A) ∪ {0}, (λI − C)E = λE, so that (λI − C)−1E =

λ−1E. For any cycle ω surrounding σ(A) ∪ {0} in Ω,

f(C)E =
1
2�i

∫

ω

f(λ)(λI − C)−1E dλ =
1
2�i

∫

ω

f(λ)λ−1E dλ = f(0)E.

�

We give an application to a discrete system evolution described by the matrix
equations

(3.6) xn+1 = Axn, n = 0, 1, 2, . . . ,

where x0 is a given initial vector (see [6]). The spectral decomposition for power

bounded matrices that we derived earlier enables us to give a description of the
system evolution.

Theorem 3.4. Let A be a power bounded matrix with the spectral decomposition
given by (3.1) and (3.2). Then the state of the system (3.6) after n stages is given

by

(3.7) xn = Anx0 = µn
1E1x0 + . . .+ µn

s Esx0 + Cnx0.

�����. Follows from Theorems 3.2 and 3.3. �

We note that, for all sufficiently large n,

(3.8) xn ≈ µn
1E1x0 + . . .+ µn

s Esx0,

where |µk| = 1. In particular, if x0 is in the range of the projection E = E1+. . .+Es,
then (3.8) holds with equality for all n.

A systematic study of a class of matrices generalizing power bounded matrices is
presented in Rothblum [9]. This class consists of matrices of spectral radius 1 whose

peripheral eigenvalues have arbitrary index; the boundedness and convergence of
powers is studied in the sense of Cesàro averaging convergence. Some of the results

of [9] can be given alternative proofs using the spectral decomposition of Theorem
3.2.
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4. Convergent matrices

Convergent matrices are power bounded, and hence they conform to the spectral
descriptions of Theorem 3.2. Specializing, we get the following result:

Theorem 4.1. A matrix A is convergent if and only if

(4.1) A = E + C,

where

(4.2) E2 = E, CE = EC = 0, C is zero convergent.

The limit of (An) is E, the eigenprojection of A at 1.

Corollary 4.2. [6] A matrix A is convergent if and only if r(A) � 1, and in the
case that r(A) = 1, σper(A) = {1} and ind(I −A) = 1.

If a matrix C is zero convergent, then

(4.3)
∞∑

n=0

Cn = (I − C)−1.

We use the spectral decomposition to derive a representation of the Drazin inverse
for a matrix I −A when A is convergent.

Theorem 4.3. If a matrix A is convergent with An → E, then

(4.4) (I −A)D =
∞∑

n=0

An(I − E).

�����. Since A is convergent, it has the decomposition (4.1) and (4.2). Then

∞∑

n=0

An(I − E) = I − E +
∞∑

n=1

(E + Cn)(I − E)

=
∞∑

n=0

Cn(I − E) = (I − C)−1(I − E)

= (I −A+ E)−1(I − E) = (I −A)D

by (4.3) and (2.3); the representation (4.4) is thus proved. �
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������ 4.4. Observe that the series
∞∑

n=1
An(I −A) may converge, even when

the series
∞∑

n=1
An does not.

������ 4.5. Expansion (4.4) is a special case of the result obtained by Roth-

blum in [9, Corollary 4.4 (4)], which gives (4.4) for matrices A satisfying r(A) � 1
and ind(A− I) � m, in terms of Cesàro (C, m) averaging convergence.

5. Exponentially bounded matrices

Many properties of exponentially bounded matrices can be found in texts on linear

algebra (for instance [6]).

Definition 5.1. A matrix A ∈ �
p×p is said to be exponentially bounded if the

elements of exp(tA) are bounded for t � 0. We say that A is exponentially convergent
if the limit lim

t→∞
exp(tA) = P exists; A is exponentially zero convergent if the limit

P is zero.

We note that by Lemma 1.1, A is exponentially zero convergent if and only if it is
stable (that is, Reσ(A) < 0). The next theorem says that an exponentially bounded

matrix is essentially a stable matrix plus a linear combination of mutually orthogonal
idempotent matrices.

Theorem 5.2. Spectral decomposition for exponentially bounded ma-
trices. A matrix A ∈ �

p×p is exponentially bounded if and only if either A is stable

or

(5.1) A = (µ1 + 1)E1 + . . .+ (µs + 1)Es + C,

where Reµk = 0 and

(5.2) EjEk = δjkEj , EkC = CEk = −Ek, Reσ(C) < 0.

The decomposition (5.1) and (5.2) is unique and, for each k, Ek is the eigenprojection

of A at µk.

�����. If A be exponentially bounded, it is known that the spectrum of A lies
in the closed left half plane; the eigenvalues that lie on the imaginary axis have index

1 (see [6]). We prefer to give a proof based on the spectral approach of [5], which we
believe is of independent interest.
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For any eigenvalue λ of A,

etReλ = |etλ| � ‖exp(tA)‖ � M for all t � 0;

so Reλ � 0. Let µ be an eigenvalue of A with Reµ = 0 and let (A − µI)2x = 0.
Then

exp(tA)x = exp(tµI + t(A− µI))x = eµt exp(t(A− µI))x

= eµt(x+ t(A− µI)x);

since ‖exp(tA)‖ is bounded and |eµt| = 1, (A− µI)x = 0, and ind(A− µI) = 1. Let
µ1, . . . , µs be the eigenvalues of A with Reµk = 0, and E1, . . . , Es the corresponding

eigenprojections. From ind(A−µkI) = 1 we get (A−µkI)Ek = 0 for all k = 1, . . . , s.
Set

C = A−
s∑

i=1

(µi + 1)Ei.

Then CEk = AEk−(µk+1)Ek = (A−µkI)Ek−Ek = −Ek. Write E = E1+. . .+Es.
Then E is idempotent, and EkE = Ek for all k. For any complex λ we have

(5.3) λI − C = (λI − C)E + (λI − C)(I − E) = (λ+ 1)E + (λI −A)(I − E).

If λ /∈ σ(A) ∪ {−1}, then λI − C is nonsingular by Theorem 2.2, and

(5.4) σ(C) ⊂ σ(A) ∪ {−1}.

This shows that Re σ(C) � 0.
For any k = 1, . . . , s, (5.3) gives

µkI − C = (µk + 1)E + (µkI −A+ Ek)(I − E);

since µkI −A+Ek is nonsingular by Theorem 2.3, µkI −C is nonsingular by Theo-

rem 2.2. Hence Re σ(C) < 0, and (5.1), (5.2) are proved.
Conversely, assume that (5.1), (5.2) hold. Anticipating the part of the next theo-

rem based only on (5.1), (5.2), we write Es+1 = I−E and observe that (E1, . . . , Es+1)
is a resolution of I. Then

exp(tA) =
s∑

k=1

etµkEk + exp(tC)Es+1

(see (5.5)), which implies that A is exponentially bounded.
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Finally, we show that each Ek is the eigenprojection of A at µk. By (5.1), (5.2),

A− µkI + Ek =
s∑

i�=k

(µi − µk)Ei + Ek + (C − µkI)Es+1.

Consequently A−µkI +Ek is nonsingular by Theorem 2.2 (i), and the result follows

by Theorem 2.3 (iii). �

The following example shows that (5.1) cannot be replaced by a ‘natural’ decom-
position A = µ1E1 + . . .+ µsEs + C0.

	
����� 5.3. Let

A =



i 0 0
0 −3i 0

0 0 −2


 = i



1 0 0
0 0 0

0 0 0


− 3i



0 0 0
0 1 0

0 0 0


+



0 0 0
0 0 0

0 0 −2




= iE1 − 3iE2 + C0.

Then A is exponentially bounded, E1, E2 are the eigenprojections at i, −3i, respec-
tively, but C0 is not stable. In contrast,

A = (i + 1)



1 0 0
0 0 0

0 0 0


+ (−3i + 1)



0 0 0
0 1 0

0 0 0


+



−1 0 0
0 −1 0

0 0 −2




= (i + 1)E1 + (−3i + 1)E2 + C

yields C stable.

We can calculate functions of an exponentially bounded matrix A in terms of the

spectral decomposition of Theorem 3.2. This is described in the following theorem.

Theorem 5.4. Let A be an exponentially bounded matrix with the spectral de-

composition given by (5.1) and (5.2). If f is a complex valued function holomorphic
in an open neighbourhood ∆ of the set σ(A) ∪ {−1}, then

(5.5) f(A) =
s∑

k=1

f(µk)Ek + f(C)Es+1 =
s∑

k=1

(f(µk)− f(−1))Ek + f(C),

where Es+1 = I − (E1 + . . .+ Es).
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�����. Note that (E1, . . . , Es+1) is a resolution of I, and CEs+1 = C+I−Es+1.

Since

A =
s∑

k=1

(µk + 1)Ek + C =
s∑

k=1

µkEk + CEs+1,

we apply Theorem 2.2 (ii) and (5.4) to conclude that σ(µ1I)∪ . . .∪σ(µsI)∪σ(C) ⊂
σ(A) ∪ {−1}. The first equality in (5.5) follows from Theorem 2.2 (iii).
Set E = E1+ . . .+Es. If λ /∈ σ(A)∪{−1}, then (λI−C)E = λE−CE = (λ+1)E,

and (λI − C)−1E = (λ + 1)−1E. If γ is a cycle that surrounds σ(A) ∪ {−1} in ∆,
then

f(C)E =
1
2�i

∫

γ

f(λ)(λI − C)−1E dλ =
1
2�i

∫

γ

f(λ)(λ+ 1)−1E dλ = f(−1)E.

From this we deduce the second half of (5.5). �

We consider an application to a continuous system evolution [6] governed by the
differential equation

(5.6) ẋ(t) = Ax(t), x(0) = x0,

where x0 is an initial vector.

Theorem 5.5. Let A be an exponentially bounded matrix with the spectral de-

composition given by (5.1) and (5.2). Then the solution x(t) to the continuous system

evolution (5.6) is given by

(5.7) x(t) = exp(tA)x0 = etµ1E1x0 + . . .+ etµsEsx0 + exp(tC)(I − E)x0,

where E = E1 + . . .+ Es.

�����. Follows from Theorems 5.2 and 5.4. �

We note that, for any sufficiently large n,

(5.8) x(t) ≈ etµ1E1x0 + . . .+ etµsEsx0,

where Reµk = 0. For any x0 in the range of the projection E, (5.8) holds with
equality for all n.
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6. Exponentially convergent matrices

If the limit lim
t→∞

exp(tA) exists, then A is exponentially bounded, and we can apply

Theorem 5.2. In particular, we have the following result.

Theorem 6.1. A matrix is exponentially convergent if and only if

(6.1) A = E + C,

where

(6.2) E2 = E, CE = EC = −E, C is stable.

The matrix lim
t→∞

exp(tA) = E is the eigenprojection of A at 0.

We say that a matrix A is semistable if Reσ(A) � 0, and in the case that the
spectrum meets the imaginary axis, the intersection is {0}, with 0 an eigenvalue of
index 1.

Corollary 6.2. [6] A matrix A is exponentially convergent if and only if it is

semistable.

If a matrix C is stable, then exp(tC)→ 0 as t →∞ (Lemma 1.1). Hence

C

∫ ∞

0
exp(tC) dt =

∫ ∞

0

(
d
dt
exp(tC)

)
dt = −I,

and we obtain a representation for the inverse of C,

(6.3) C−1 = −
∫ ∞

0
exp(tC) dt.

As an application of the spectral decomposition we derive a representation for the

Drazin inverse AD of a semistable matrix A; this representation is instrumental in
the investigation of the asymptotic behaviour of solutions to differential equations

presented in the next section.

Theorem 6.3. If a matrix A is exponentially convergent with lim
t→∞

exp(tA) = E,

then

(6.4) AD = −
∫ ∞

0
exp(tA)(I − E) dt.
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�����. Let A = C + E be the decomposition of Theorem 6.1. By (5.5),

exp(tA)(I − E) = exp(tC)(I − E).

Then

∫ ∞

0
exp(tA)(I − E) dt =

(∫ ∞

0
exp(tC) dt

)
(I − E) = −C−1(I − E)

= −(A− E)−1(I − E) = −AD

by (6.3) and (2.3). �

������ 6.4. Note that, for A semistable, the integral
∫∞
0 exp(tA)(I − E) dt

exists, but
∫∞
0 exp(tA) dt may not.

7. Applications to differential equations

In this section we give applications of the preceding results to the asymptotic

behaviour of the solutions of differential equations. For a systematic treatment of
singular and singularly perturbed differential equations see Campbell [1]. As before,

x �→ ‖x‖ is a vector norm on � p , and A �→ ‖A‖ a matrix norm on � p×p consistent
with the selected vector norm (in the sense of Householder).

The following well known estimate may be obtained by expressing the matrix

exponential as a contour integral: If Reσ(A) < 0, then there is a positively oriented
Jordan contour ω in the left half plane containing σ(A) in its interior. Then Reλ �
−µ for some µ > 0 and all λ ∈ ω, and

‖exp(tA)‖ =
∥∥∥∥
1
2�i

∫

ω

etλ(λI −A)−1 dλ

∥∥∥∥

� sup
λ∈ω

∥∥(λI −A)−1
∥∥ �(ω)
2�
sup
λ∈ω
etReλ � Me−µt.

This yields the following.

Lemma 7.1. If C ∈ �
p×p is stable, then there are constants M > 0, µ > 0 such

that

(7.1) ‖exp(tC)‖ � Me−µt for all t � 0.

For semistable matrices we have the following result.
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Lemma 7.2. If A ∈ �
p×p is semistable and E is the eigenprojection of A at 0,

then there are constants N > 0, ν > 0 such that

(7.2) ‖exp(tA)− E‖ � Ne−νt for all t � 0.

�����. For A semistable, (5.5) reduces to

f(A) = f(0)E + f(C)(I − E).

In particular, exp(tA) = E + exp(tC)(I − E), and the result follows from (7.1). For
future reference we also note that

(7.3) exp(tA)E = E for all t � 0.

�

Theorem 7.3. Let A be a semistable matrix with the eigenprojection E at 0.

Let a function f : [0,∞) → �
p be bounded, Lebesgue measurable, let Ef(t) be

Lebesgue integrable, and let lim
t→∞

f(t) = w exist. Then the solution u(t) of the

differential problem
du
dt
= Au(t) + f(t), u(0) = x,

satisfies

lim
t→∞

u(t) = Ex−ADw +
∫ ∞

0
Ef(s) ds.

�����. The solution to the differential problem is given by

u(t) = exp(tA)x +
∫ t

0
exp((t− s)A)f(s) ds.

The second integral can be transformed to

∫ t

0
exp((t− s)A)f(s) ds =

∫ t

0
exp((t− s)A)Ef(s) ds+

∫ t

0
exp((t− s)A)(I − E)f(s) ds

=
∫ t

0
Ef(s) ds+

∫ t

0
exp((t− s)A)(I − E)f(s) ds

= I1(t) + I2(t)

using (7.3). The integral I1(t) converges to
∫∞
0 Ef(s) ds as t → ∞, while I2(t) can

be expressed as

I2(t) =
∫ t

0
[exp((t− s)A)− E] (f(s)− w) ds+

∫ t

0
exp(τA)(I − E)w dτ
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using (7.3) and a substitution. Since

‖exp((t− s)A) − E‖ � Ne−ν(t−s) for all t � 0

by (7.2), the first summand, J(t), in I2(t) will converge to 0 as t → ∞: Let η > 0

and choose T > 0 so that ‖f(s)− w‖ < 1
2ην/M for all s � T . Then, for all t � T ,

‖J(t)‖ �
∫ t

0
Ne−ν(t−s)‖f(s)− w‖ ds

=
∫ T

0
Ne−ν(t−s)2‖f‖∞ ds+

∫ t

T

Ne−ν(t−s)‖f(s)− w‖ ds

� 2N‖f‖∞ν−1e−ν(t−T ) + 12η for all t � T.

Choosing t sufficiently large to make the first term less than η/2, we get ‖J(t)‖ < η

for all sufficiently large t. Consequently lim
t→∞

J(t) = 0 as required.

Combining all preceding results we get

lim
t→∞

u(t) = lim
t→∞

exp(tA) + lim
t→∞

I1(t) + lim
t→∞

I2(t)

= Ex+
∫ ∞

0
Ef(s) ds+

∫ ∞

0
exp(τA)(I − E)w dτ

= Ex+
∫ ∞

0
Ef(s) ds−ADw

by (6.4). �

Next we turn our attention to a singularly perturbed differential equation involving

a positive parameter ε, and investigate when the solution has a limit as ε → 0+.

Theorem 7.4. Let A be a semistable matrix with the eigenprojection E, and let

a function f : [0,∞) → �
p be bounded and continuous. Then the solution uε(t) of

the singularly perturbed problem

(7.4) ε
duε(t)
dt

= Auε(t) + f(t), uε(0) = x, ε > 0,

has a limit u(t) as ε → 0+ if and only if Ef(t) = 0 for all t � 0. In this case

(7.5) u(t) = Ex−ADf(t).

�����. Problem (7.4) can be rewritten as

(7.6)
duε

dt
= Aεuε(t) + fε(t), uε(0) = x,
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where Aε = ee−1A and fε(t) = ee−1f(t). The solution to (7.6) (and to (7.4)) is

given by

(7.7) uε(t) = exp(tAε)x+
∫ t

0
exp((t− s)Aε)fε(s) ds.

We pick t > 0 and keep it fixed throughout the proof. Since lim
τ→∞

exp(τA) = E, we

have lim
ε→0+

exp(tAε)x = lim
ε→0+

exp(ee−1tA)x = Ex. The second integral in (7.7) can

be expressed as the sum

(7.8) ε−1
∫ t

0
Ef(s) ds+ ε−1

∫ t

0
exp((t− s)Aε)(I − E)f(s) ds.

Then lim
ε→0+

ε−1
∫ t

0 Ef(s) ds exists if and only if
∫ t

0 Ef(s) ds = 0; this is true for all

t � 0 if and only if Ef(t) = for all t � 0. The second integral in (7.8) can be written
as the sum J(ε, t) +K(ε, t), where

J(ε, t) = ε−1
∫ t

0
exp((t− s)ε−1A)(I − E)f(t) ds,

K(ε, t) = ε−1
∫ t

0

[
exp((t− s)ε−1A)− E

]
(f(s)− f(t)) ds.

Then

lim
ε→0+

J(ε, t) = lim
ε→0+

∫ t/ε

0
exp(σA)(I − E)f(t) dσ

=
∫ ∞

0
exp(σA)(I − E)f(t) dσ = −ADf(t)

by (6.4). As is the proof of the preceding theorem we split the domain of integration

and estimate the integrand using the inequality ‖exp(tAε)− E)‖ � Ne−νt/ε for all
t � 0:

‖K(ε, t)‖ � ε−1
∫ t

0
Ne−ν(t−s)/ε‖f(s)− f(t)‖ ds

= ε−1
∫ T

0
Ne−ν(s−t)/ε2‖f‖∞ ds+ ε−1

∫ t

T

Ne−ν(s−t)/ε‖f(s)− f(t)‖ ds

� 2Nν−1‖f‖∞e−ν(t−T )/ε +Nν−1 sup
T�s�t

‖f(s)− f(t)‖.

Given η > 0, choose first T close enough to t so that the second term is less that 12η
by the continuity of f , and then ε small enough so that the first term is less than

305



1
2η. Then limε→0+

K(ε, t) = 0 (for any t � 0). Combining all the preceding results, we
conclude that

u(t) = lim
ε→0+

uε(t) = Ex−ADf(t) for all t � 0

if and only if Ef(t) = 0 for all t � 0. �

������ 7.5. Since AE = 0 for a semistable matrix A, we can easily verify

that the limit u(t) = lim
ε→0+

uε(t) satisfies

Au(t) + f(t) = 0, u(0) = Ex−ADf(0).

	
����� 7.6. (system of conservation laws with a moving source) It is well
known that systems of conservation laws have broad applications in fluid mechanics

and other applied areas. Assume that we are given a system of conservation laws
with a moving source

(7.9) ut + F (u)x = g(ct− x), x � 0, t > 0,

where u(x, t) = (u1(x, t), . . . , un(x, t)), is to be found, F (u) = (F1(u), . . . , Fn(u)) is
a given smooth vector function and c is the velocity of the source. As pointed out

in [4] and the references given there, this problem is of physical interest (gas flow
through a nozzle, MHD shock tube, etc.). Given a constant state v0 ∈ �

n we can

consider a localized linear version of (7.9)

(7.10) ut + F ′(v0)ux = g(ct− x),

where A := F ′(v0) is the Jacobian of F at u0. It is natural to consider travelling

waves for (7.10) with the speed c, that is, u(x, t) in the form

(7.11) u(x, t) := u(ct− x).

Also, let us make the following assumption about the matrix A:

(7.12)
c is a simple pole of A,

each eigenvalue λ �= c of A satisfies Reλ > c

(note that the resonance case is included).

In addition to (7.10) we investigate the system

(7.13) ut +Aux − εuxx = g(ct− x), t > 0, x � 0
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with artificial viscous term −εuxx, where ε is a positive constant. Viscous profiles

are of special interest in the theory of conservation laws as regular approximations
of discontinuous solutions. Inserting (7.11) into (7.13) we obtain

(7.14) εu′′ε + (A− cI)u′ε = −g(y),

where v′ means the derivative of v with respect to y = ct − x; observe that y � 0.
We assume that the following conditions on g : [0,∞)→ �

n are satisfied:

Ag(y) = cg(y) for all y � 0, and(7.15)

the function y �→
∫ y

0
g(σ) dσ is bounded.(7.16)

Consider for (7.14) profiles satisfying the boundary conditions

(7.17) uε(0) = u0, u′ε(0) = 0

with a given constant vector u0. Write B = cI −A for brevity. Integration of (7.14)
with regard to (7.17) yields

(7.18) εu′ε = Buε −Bu0 −
∫ y

0
g(σ) dσ.

Put f(y) := −Bu0 −
∫ y

0 g(σ) dσ. Then f is a continuous and bounded function on

[0,∞). Equation (7.18) then becomes

(7.19) εu′ε = Buε + f(y), uε(0) = u0.

The assumption (7.12) on A ensures that B is semistable. Let E be the eigenprojec-
tion of B. Then

(7.20) Ef(y) = −EBu0 −
∫ y

0
Eg(σ) dσ = 0;

this is true since Bu0 ∈ R(B) and R(B) = N(E), and since (7.15) implies that
g(σ) ∈ N(B) for all σ � 0. Equation (7.20) together with (7.16) guarantees that the
conditions of Theorem 7.4 are satisfied, and that

lim
ε→0+

uε(y) = Eu0 +BDBu0 +
∫ y

0
BDg(σ) dσ = u0 +

∫ y

0
(cI −A)Dg(σ) dσ

since E = I −BDB.
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