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Abstract. The Kiessl model of moisture and heat transfer in generally nonhomogeneous
porous materials is analyzed. A weak formulation of the problem of propagation of the state
parameters of this model, which are so-called moisture potential and temperature, is derived.
An application of the method of discretization in time leads to a system of boundary-value
problems for coupled pairs of nonlinear second order ODE’s. Some existence and regularity
results for these problems are proved and an efficient numerical approach based on a certain
special linearization scheme and the Petrov-Galerkin method is suggested.
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1. Introduction

The ceramic materials and most building materials have a part of their volumes

filled with small pores connected by narrow channels. This pore structure is able to
absorb, save, transport and discharge water both in the liquid and in the gas form.

The amount of moisture in the pore structure, which is closely related to temperature,
is essential for the durability of materials and stability of building constructions.

Hence there is an extensive need for modelling of the process of moisture and heat
transfer in porous materials. Because of this requirement, several mathematical

models of this process have been developed. The first successful attempts appeared
in Philip, de Vries [13] and Glaser [9] in the late fifties; more historical information

can be found in [5] and [7]. In this article we pay attention to the model derived
by Kiessl [11] in 1983, which has found a common acknowledgement for its ability

to model the process in a broad class of cases. Nevertheless, we believe that it is
possible to propose a more general, clear and physically better motivated model of
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moisture and heat transfer in porous materials; a preliminary version of such a model

has been presented in [6].
The Kiessl model takes into account shapes and sizes of pores, simultaneous pres-

ence of moisture in various phases and interaction of the transport of heat with

various kinds of the transport of moisture like capillary convection, diffusion, surface
diffusion and effusion. It works with the following two state parameters: The mois-

ture potential Φ = Φ(x, t) [–] (x characterizes the location in the material body, t the
actual time) and the temperature τ = τ(x, t) [◦C]. The basic equations of evolution

are consequences of the physical laws of mass and energy preservation. The aim of
our study is to derive a proper mathematical formulation of the problem, to obtain

some existence and regularity results and to suggest a numerical approach for the
construction of an accurate approximate solution.

2. Derivation of the Kiessl model

We restrict ourselves to a brief sketch of the physical background only. A complete

derivation of this model can be found in [5].
For certain positive constants l and T , we consider x ∈ Ω = (0, l) and t ∈ I =

(0, T ). We make use of the physical quantities

τ [◦C]

u [−]
ϕ [−]
M [kg/m3]
H [J/m3]

temperature,

relative part of water and (melted) ice in the porous material,
relative humidity of the air in pores,

amount of liquid and ice in 1 m3 of the porous material,
amount of (inner) energy in 1 m3 of the porous material

and of the known constants

P [−]
�a [kg/m3]

ca [J]

material porosity,
density and

specific heat

of water for a = W , of ice for a = E and of the porous material in the case a =M .
Moreover, the analysis of phase changes of water deals with the following constants:

L1,3 [J/kg] specific heat of ice sublimation,

L2,3 [J/kg] specific heat of water evaporation,
L1,2 [J/kg] specific heat of ice melting.

Using the diffusion coefficients

Du = �W εκ(τ)κ(u), Dϕ = �W εϕ(τ)kdϕ(u), Dτ = �W ετ (τ)kdτ (u), λ = λ(τ, u),
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where the material characteristics εκ(τ), εϕ(τ), ετ (τ), κ(u), kdϕ(u), kdτ (u) and

λ(τ, u) have been established experimentally (graphs of some examples of these func-
tions are reproduced in [5]), the following quantities can be introduced:

Du∂u/∂x [kg/(m2s)] intensity of capillary flow of moisture,
Dϕ∂ϕ/∂x [kg/(m2s)] intensity of flow of vapour at the gradient of relative

humidity,
Dτ∂τ/∂x [kg/(m2s)] intensity of flow of vapour at the gradient of temperature,

λ∂τ/∂x [J/(m2s)] intensity of flow of heat.

Now we are ready to formulate the laws of preservation of mass

(1)
∂M

∂t
− ∂

∂x

(
Du

∂u

∂x
+Dϕ

∂ϕ

∂x
+Dτ

∂τ

∂x

)
= 0

and of energy

(2)
∂H

∂t
− ∂

∂x

(
λ

∂τ

∂x

)
= L.,3(τ)

[
�W

∂u

∂t
− ∂

∂x

(
Du

∂u

∂x

)]
.

Here

L.,3(τ) = (1− χ(τ))L1,3 + χ(τ)L2,3

and χ(τ) [–] is the relative part of water mass in total water and ice mass. This
relation can be represented by some smoothening of the Heaviside function. We

approximate the partial pressure cS(τ) [kg/m3] of saturated vapour in the air by a
certain exponential function (see e.g. [5]) with a high accuracy. By means of the

notations
χ̂(τ) = (1 − χ(τ))(�W /�E − 1)

and

C(τ) = (1− χ(τ))cEτ + χ(τ)(cW τ + L1,2),

we can express the amounts M and H in the forms

(3) M = �W u+ cS(τ)ϕ (P − u− χ̂(τ)u)

and

(4) H = �McMτ + �W uC(τ).

The moisture potential Φ has been defined in [11] by the formula

Φ =

{
ϕ for ϕ � 0.9,
1.7 + 0.1 log r for 0.9 < ϕ,
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where the quantity r [m] characterizes the mean value of pore diameters. The mois-

ture potential is connected with u via a so-called sorption isotherm u = f(Φ) which
has to be found experimentally for each sort of material.
In the following considerations, we transform the laws of preservation (1) and (2)

to a pair of evolution equations for the unknown state variables τ and Φ.
If we insert the composite functions

g(Φ) = ϕ(f(Φ)), Kdϕ(Φ) = kdϕ(f(Φ)),

S(Φ) = κ(f(Φ)), Kdτ (Φ) = kdτ (f(Φ)),

Λ(τ, Φ) = λ(τ, f(Φ))

into (3) and (4), then we obtain the expressions

M(τ, Φ) = �W G2(τ, Φ)

with

G2(τ, Φ) = f(Φ) +G(τ, Φ),

G(τ, Φ) = �−1W cS(τ)g(Φ)[P − (1 + χ̂(τ))f(Φ)]

and

H(τ, Φ) = �McMτ + �W C(τ)f(Φ).

Inserting the above formula for M into the law (1) and dividing by �W , we obtain
the equation

∂

∂t
G2(τ, Φ)(5)

=
∂

∂x

(
εκ(τ)S(Φ)f

′(Φ)
∂Φ

∂x
+ εϕ(τ)Kdϕ(Φ)g

′(Φ)
∂Φ

∂x
+ ετ (τ)Kdτ (Φ)

∂τ

∂x

)
.

If we substitute the above expression of H into (2) and divide by

R(τ) = �W L.,3(τ),

we obtain the equation

R−1(τ)
∂

∂t
G2(τ, Φ)−

∂

∂t
f(Φ)

= R−1(τ)
∂

∂x

(
Λ(τ, Φ)

∂τ

∂x

)
− ∂

∂x

(
εκ(τ)S(Φ)f

′(Φ)
∂Φ

∂x

)
,
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whose physical unit [s−1] is the same as that of the equation (5). Hence we can sum

up the last two equations with the result

R−1(τ)
∂

∂t
H(τ, Φ) +

∂

∂t
G(τ, Φ)(6)

= R−1(τ)
∂

∂x

(
Λ(τ, Φ)

∂τ

∂x

)
+

∂

∂x

(
εϕ(τ)Kdϕ(Φ)g

′(Φ)
∂Φ

∂x
+ ετ (τ)Kdτ (Φ)

∂τ

∂x

)
.

An application of the notations

P 21 (τ, Φ) = εϕ(τ)Kdϕ(Φ)g′(Φ), P 11 (τ, Φ) = P 12 (τ, Φ) +R−1(τ)Λ(τ, Φ),

P 12 (τ, Φ) = ετ (τ)Kdτ (Φ), P 22 (τ, Φ) = P 21 (τ, Φ) + εκ(τ)S(Φ)f ′(Φ)

and Q(τ, Φ) = R−2(τ) R′(τ)Λ(τ, Φ)

simplifies the equation (5) to the following moisture equation

(7)
∂

∂t
G2(τ, Φ)−

∂

∂x

(
P 12 (τ, Φ)

∂τ

∂x
+ P 22 (τ, Φ)

∂Φ

∂x

)
= 0.

To make the passage to the variational formulation easy, we modify the right-hand
side of (6) by means of the obvious identity

1
L.,3(τ)

∂

∂x

(
Λ(τ, Φ)

∂τ

∂x

)
=

∂

∂x

[
1

L.,3(τ)

(
Λ(τ, Φ)

∂τ

∂x

)]
+

L′.,3(τ)

L2.,3(τ)
Λ(τ, Φ)

(
∂τ

∂x

)2
.

This modification leads to the temperature equation

R−1(τ)
∂

∂t
H(τ, Φ) +

∂

∂t
G(τ, Φ)− ∂

∂x

(
P 11 (τ, Φ)

∂τ

∂x
+ P 21 (τ, Φ)

∂Φ

∂x

)
(8)

−Q(τ, Φ)

(
∂τ

∂x

)2
= 0.

For given functions τ0(x), Φ0(x), g1(x, t, τ, Φ) and g2(x, t, τ, Φ), the state parameters

Φ and τ have to satisfy the initial conditions

(9) τ(x, 0) = τ0(x), Φ(x, 0) = Φ0(x)

for all x ∈ Ω and the boundary conditions

(10) P 1j (τ, Φ)
dτ
dn
+ P 2j (τ, Φ)

dΦ
dn
= gj(x, t, τ, Φ)

for all j ∈ {1, 2}, t ∈ I, x = 0 and x = l. Here
d.
dn
means ∂./∂x for x = l and

−∂./∂x for x = 0.
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3. Formulation of the problem and discretization in time

Let us accept the following assumptions on physical characteristics:

1. The constants �M , cM , �W , cW , �E , cE , L1,2 and P are positive and satisfy
�E < �W , cE < cW .

2. The functions f , g, L.,3 (and R, consequently) belong to C1(�) ∩ L∞(�),
0 � f � P , f = 0 on (−∞, 0) and f is nondecreasing for positive arguments,
0 � g � 1, g = 0 on (−∞,−b] and g is increasing on (−b, b) for some b � 1,
g(0) is positive and sufficiently small, g(b) = 1.

3. The functions Λ, ετ , εϕ, εκ, K dϕ, K dτ , S belong to C0,1(�)∩L∞ (�), cs � 0,
τcs(τ) → 0 for τ → −∞ and there exist real numbers c′, c′′ satisfying 0 <

c′ � L.,3, Λ, R, R′ � c′′.

In what follows, the Einstein summation is used.

The problem is to find a pair of functions (τ, Φ) which satisfies the system of
evolution equations (7), (8) for all x ∈ Ω and t ∈ I together with the initial and

boundary conditions (9) and (10). We assume that τ0, Φ0 ∈ C1,γ(Ω), γ ∈ (0, 1] and

|τ0(x)| � a, |Φ0(x)| � b′ ∀x ∈ Ω

for some a > 0 and for 0 < b′ < b (b appears in the above assumptions).

Let 0 = t0 < t1 < . . . < tr = T be an equidistant mesh with step 0 < k � 1.
We take a fixed integer i such that 0 � i < r and abbreviate ζ(., ti) by ζi(.) for any

function ζ.

For this fixed i, we assume that that the functions τi(x) and Φi(x) are known.
In the following, the problem of existence (Sect. 4) and numerical approximation

(Sect. 5) of the functions τ(x, ti+1), Φ(x, ti+1) will be investigated. For simplicity,
we use the notation

τ(x) = τ(x, ti+1), Φ(x) = Φ(x, ti+1).

Suitable numerical integration of the equations (8), (7) from t = ti to t = ti+1
leads to the following nonlinear differential equations

H(τ, Φ)−H(τi, Φi)
R(τi)

+G(τ, Φ) −G(τi, Φi)(11)

− k

(
d
dx

(
P 11i(x)τ

′ (x) + P 21i(x)Φ
′ (x)

)
+Qi(x)τ

′
i (x) τ

′ (x)

)
= 0,

G2(τ, Φ)−G2(τi, Φi)− k
d
dx

(
P 12i(x)τ

′ (x) + P 22i(x)Φ
′ (x)

)
= 0.(12)
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Let us put Ri(x) = R(τi), G1(x, τ, Φ) = H(τ, Φ)/Ri(x) + G(τ, Φ), A1i (x) =

Qi(x)τ ′i (x). We can see that for i = 0, 1, . . . , r − 1, the equations (11), (12) and the
boundary conditions (10) form the following boundary-value problem (13–15) for a
coupled pair of nonlinear ODE’s:

−k
d
dx

(
P 11i(x)τ

′ (x) + P 21i(x)Φ
′ (x)

)
− kA1i (x)τ

′ (x) +G1(x, τ, Φ) = G1i (x) ,(13)

−k
d
dx

(
P 12i(x)τ

′ (x) + P 22i(x)Φ
′ (x)

)
+G2(τ, Φ) = G2i (x) ,(14)

P 11i(x)
dτ
dn
+ P 21i(x)

dΦ
dn
= g1i(x), P 12i(x)

dτ
dn
+ P 22i(x)

dΦ
dn
= g2i(x)(15)

for t ∈ I, x = 0 and x = l.

4. Weak solution of the problem (13–15)

We say that the pair (τ, Φ) of functions from H1(Ω) is a weak solution of the
problem (13–15), whenever

k

∫

Ω

[(
P 11iτ

′ + P 21iΦ
′) ϕ′1 +

(
P 12iτ

′ + P 22iΦ
′) ϕ′2

]
dx− k

∫

Ω
A1i τ

′ϕ1 dx(16)

+
∫

Ω
(G1(x, τ, Φ)ϕ1 +G2(τ, Φ)ϕ2) dx− k

∫

∂Ω
(g1iϕ1 + g2iϕ2) dHn−1

=
∫

Ω
(G1iϕ1 +G2iϕ2) dx

for all ϕ1, ϕ2 ∈ H1(Ω). For the sake of simplicity we put u = (u1, u2) = (τ, Φ),

ϕ = (ϕ1, ϕ2), V = H1(Ω,�2 ) and V ∗ =
(
H1(Ω,�2 )

)∗
. The space V ∗ is dual to V

and we denote by 〈., .〉 the related duality. Now we can define an operator T : V → V ∗

and a functional F ∈ V ∗ by

〈Tu, ϕ〉 = k

∫

Ω

[(
P 11iτ

′ + P 21iΦ
′) ϕ′1 +

(
P 12iτ

′ + P 22iΦ
′) ϕ′2

]
dx(17)

− k

∫

Ω
A1i τ

′ϕ1 dx+
∫

Ω
(G1(x, τ, Φ)ϕ1 +G2(τ, Φ)ϕ2) dx

and

(18) 〈F, ϕ〉 =
∫

Ω
(G1iϕ1 +G2iϕ2) dx+ k

∫

∂Ω
(g1iϕ1 + g2iϕ2) dH

n−1

for all ϕ ∈ V . Here the symbol Hn−1 denotes the Hausdorff measure of dimension
n−1. A vector-valued function u is a weak solution of our problem (13–15) whenever

it is a solution of the operator equation

Tu = F.
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Let us verify the following properties for i = 0, 1, . . . , r (it is necessary to remember

that |τi(x)| � a and |Φi(x)| � b′):

Smoothness conditions

(19)

τi(x), Φi(x) ∈ C1,γ
(
Ω

)
=⇒ P l

ji(x), A
1
i (x), Gji(x), gji(x) ∈ C0,γ

(
Ω

)
∀ j, l = 1, 2,

for γ ∈ (0, 1].
�����. See [1], p. 186. �

Growth conditions

(20)
∣∣P 1ji(x)p1

∣∣ ,
∣∣P 2ji(x)p2

∣∣ ,
∣∣A1i (x)p1

∣∣ , |G1(x, u)| , |N(u)|
� c0 (1 + |u|+ |p|) ∀x ∈ Ω, ∀u, p ∈ �2 , j = 1, 2, c0 > 0.

�����. These conditions are easy consequences of the properties of functions
formulated at the beginning of Section 3. �

Ellipticity condition

(21) P l
ki(x)pkpl � c1 |p|2 ∀x ∈ Ω, ∀p ∈ �2 , c1 > 0.

�����. The ellipticity condition is equivalent to the following two conditions:
P 11i(x) > 0 and det

(
P l

ki(x)
)

> 0, for all x ∈ Ω. It follows from the above assumptions
that

P 11i(x) = ετi(x)K dτi(x) +R−1
i (x)Λi(x) > 0,

since ετi(x)K dτi(x) � 0 and R−1
i (x)Λi(x) > 0 on Ω. Similarly, we can see that

det
(
P l

ki(x)
)
= εϕi(x)K dϕi(x)R

−1
i (x)Λi(x)g′i(x)

+
[
ετi(x)K dτi(x) +R−1

i (x)Λi(x)
]
εκi(x)Si(x)f ′i(x) > 0

because the first term is positiv and the second term is nonnegativ on Ω. �

Coercivity condition

(22) kP l
ki(x)pkpl − kA1i (x)u1p1

+G1(x, u)u1 +N(u)u2 � kc2 |p|2 − c3 ∀x ∈ Ω, ∀u, p ∈ �2 , c2, c3 > 0.

�����. It follows from the ellipticity condition (21) that kP l
ki(x)pkpl � kc1 |p|2.

Putting mi = sup
x∈Ω

∣∣A1i (x)
∣∣, we obtain

−kA1i (x)u1p1 � −k
∣∣A1i (x)

∣∣
2

(
u21 + p21

)
� −kmi

2

(
u21 + p21

)
.
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Further,

kP l
ki(x)pkpl − kA1i (x) u1p1 +G1(x, u)u1 +N(u)u2

� kc1 |p|2 −
kmi

2
p21 +

(
�McM

Ri(x)
− kmi

2

)
u21

+
1

�W

(
P − 1

�E
f(u2) (�W + (�W − �E)χ(u1))

)
g(u2)cs(u1)u1

+

[
f(u2) +

1
�W

(
P − 1

�E
f(u2) (�W + (�W − �E)χ(u1))

)
g(u2)cs(u1)

]
u2

� k
(
c1 −

mi

2

)
|p|2 +

(
�McM

Ri(x)
− kmi

2

)
u21 − c3

� kc2 |p|2 − c3,

where c2 = c1 −mi/2 > 0 and �McM/Ri(x)− kmi/2 � 0. �

Pseudomonotony condition

(23) P l
ki(x)pkpl > 0 ∀x ∈ Ω, ∀p ∈ �2 , p 	= 0.

�����. This is a consequence of the ellipticity condition (21). �

Theorem 1. There exists a solution u ∈ H1(Ω,�2 ) of the equation Tu = F .

�����. According to [12], p. 60, this statement is a consequence of the condi-
tions (19), (20), (22) and (23). �

The system (13–15) is a special case of the problem

(S) −Dα

(
Aαβ

ij (x)Dβuj
)
= −Dαaα

i (x, u) + ai(x, u, Du), i = 1, . . .N

in Ω ⊂ �
n with a sufficiently smooth boundary ∂Ω and with the nonlinear Neumann

boundary condition

(BC) Aαβ
ij (x)να(x)Dβuj = gi(x, u) + aβ

i (x, u)νβ(x), x ∈ ∂Ω, i = 1, . . . N,

where α, β = 1, . . . , n, i, j = 1, . . . , N , n � 1, N � 1 and aα
i (x, u), ai(x, u, p),

gi(x, u) are the Caratheodory functions, i.e. they are measurable with respect to x

and continuous with respect to u, p. Further, Aαβ
ij (x) ∈ C0,γ

(
Ω

)
, γ ∈ (0, 1] and the

following Legendre-Hadamard condition

(L-H) Aαβ
ij (x)ξαξβηiηj � ν0 |ξ|2 |η|2 ∀x ∈ Ω, ∀ξ ∈ �n , ∀η ∈ �N ; ν0 > 0

is satisfied in our case.
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������. The condition (L-H) follows from the standard condition of ellipticity.

The opposite implication is not true.

Theorem 2. Let Ω be a bounded subset of � and u ∈ H1
(
Ω,�N

)
be a weak

solution of the nonlinear system (S) with the boundary condition (BC) under the

hypotheses (L-H). Let

|aα
i (x, u)| � fα

i (x) + |u|q(∗)

and

|ai(x, u, p)| � fi(x) + c
(
|u|q + |p|3

)
(∗∗)

for almost every x ∈ Ω, all u ∈ �
N , p ∈ �

N and suppose that gi(x, u) ∈
C0,1

(
Ω× �

N
)
, fα

i (x) ∈ L2,1+2γ (Ω), fi(x) ∈ L1,γ (Ω) and q is arbitrary. Then

u ∈ C1,γ
(
Ω,�N

)
and

‖u‖C1,γ(Ω,�N) � C
(
ν0, N, q, diamΩ, ‖fα

i ‖L2,1+2γ (Ω) , ‖fi‖L1,γ(Ω)

)
.

�����. See [2], p. 111, and [8]. �

������. For the definition and properties of the Morrey-Campanato spaces
L2,1+2γ (Ω) and L1,γ (Ω) see [12], pp. 35–38.

Now we can formulate our main result:

Theorem 3. For every τi, Φi ∈ C1,γ
(
Ω

)
satisfying |τi(x)| � a, |Φi(x)| � b′, there

exists a weak solution u of the system (13–15) such that u = (τ, Φ) ∈ C1,γ
(
Ω

)
×

C1,γ
(
Ω

)
.

�����. The existence follows from Theorem 1. Conditions (∗), (∗∗) are simple
consequences of (20) and, therefore, regularity follows from Theorem 2. �
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5. Numerical solution of the problem (13–15)

The nonlinear problem (13–15) has been solved numerically by the following iter-
ation scheme: Let us denote

λj
i0 =

∂Gj

∂τ
(τi, Φi), �j

i0 =
∂Gj

∂Φ
(τi, Φi)

for j = 1, 2, choose a fixed integer L > 1 and put

λ
j

is =





Gj(τs
h, Φi)−Gj(τi, Φi)

τs
h − τi

for τs
h 	= τi,

λj
i0 for τs

h = τi,

λj
is =





λ
j

is for s � L,

λj
i,s−1 for L < s, |λj

i,s−1| < |λj

is|,

λ
j

is for L < s, |λj

is| � |λj
i,s−1|,

�j
is =





Gj(τi, Φ
s
h)−Gj(τi, Φi)
Φs

h − Φi
for Φs

h 	= Φi,

�j
i0 for Φs

h = Φi,

�j
is =





�j
is for s � L,

�j
i,s−1 for L < s, |�j

i,s−1| < |�j
is|,

�j
is for L < s, |�j

is| � |�j
i,s−1|,

for s = 1, 2, . . . consecutively. Here the functions τs
h, Φ

s
h (s = 1, 2, . . .) are approxi-

mations of the exact solutions of the following linear differential problem (24–26):

λ1i,s−1(τ
s − τi) + �1i,s−1(Φ

s − Φi)(24)

− k
[ d
dx
(P 11i(τ

s)′ (x) + P 21i(Φ
s)′ (x)) +A1i (x)(τ

s)′ (x)
]
= 0,

λ2i,s−1(τ
s − τi) + �2i,s−1(Φ

s − Φi)− k
d
dx
(P 12i(τ

s)′ (x) + P 22i(Φ
s)′ (x)) = 0,(25)

P 1ji

dτs

dn
+ P 2ji

dΦs

dn
= gji, j = 1, 2.(26)

We put τ = τs
h and Φ = Φs

h whenever |λj
is − λj

i,s−1| < kd and |�j
is − �j

i,s−1| < kd

for j = 1, 2 and a fixed d ∈ (0, 1〉. A scheme of this kind has been used by J.Kačur
in [10].

Our numerical solution of the problem (24–26) is based on the following weak
formulation: Find the functions τs, Φs in H1 (Ω) such that

a1(τs, v) + a2(Φs, v) = f(v),(27)

b1(τs, v) + b2(Φs, v) = g(v)(28)
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hold for all v ∈ H1 (Ω). Here

a1(τ, v) =
∫ l

0

[
kP 11iτ

′ v′ − kA1i τ
′v + λ1i,s−1τv

]
dx,

a2(Φ, v) =
∫ l

0

[
kP 21iΦ

′ v′ + �1i,s−1Φv
]
dx,

f(v) =
∫ l

0
(λ1i,s−1τi + �1i,s−1Φi)v dx+ k

[
g1i(l)v(l) + g1i(0)v(0)

]
,

b1(τ, v) =
∫ l

0

[
kP 12iτ

′ v′ + λ2i,s−1τv
]
dx,

b2(Φ, v) =
∫ l

0

[
kP 22iΦ

′ v′ + �2i,s−1Φv
]
dx,

g(v) =
∫ l

0
(λ2i,s−1τi + �2i,s−1Φi)v dx+ k[g2i(l)v(l) + g2i(0)v(0)].

Since the linear problem (24–26) consists of two equations in which absolute values of
the coefficients λj

i,s−1, �
j
i,s−1 (j = 1, 2) are essentially larger than the absolute values

of the other coefficients, standard Galerkin discretization of this problem leads to
a system of equations with a non-monotone matrix. That is why an oscillating

approximate solution appears typically. For this reason, problem (27), (28) has been
solved approximately by the following iteration scheme:

Let us take a mesh 0 = x0 < x1 < . . . < xn = l on the interval 〈0, l〉 such that
each point, in which two different materials meet, is a node. Let 0 = y0 < y1 < . . . <

y2n = l be such a mesh that y2j = xj for j = 0, . . . , n and y2j−1 = (xj−1 + xj)/2
for j = 1, . . . , n. Let w0, . . . , wn and z0, . . . , z2n be the standard base functions with

small supports in the space of linear splines related to the nodes x0, . . . , xn and
y0, . . . , y2n respectively. The problem is to compute approximations τs

h , Φ
s
h of τ

s, Φs

in the forms

τs
h = τ0w0 + . . .+ τnwn, Φs

h = Φ0w0 + . . .+ Φnwn.

We compute the vector (τ0, Φ0, . . . , τn, Φn) related to time (i + 1)h (i can be an
arbitrary integer) using the corresponding values from time ih by the following iter-

ation scheme:
Step 1. Take small positive numbers ετ , εΦ and find

τ (0) = τ
(0)
0 w0 + . . .+ τ (0)n wn

as a solution of the system of equations

(29) a1(τ (0), Ta(wj)) = f(Ta(wj))− a2(Φi, Ta(wj))

14



for j = 0, 1, . . . , n. The test functions

Ta(wj) = αjz2j−1 + βjz2j + γjz2j+1 for j = 0, 1, . . . , n (α0 = 0 = γn)

are constructed in a way described in [3], Sect. 4, with the aim to make the matrix

of (29) monotone. Further, find

Φ(0) = Φ
(0)
0 w0 + . . .+ Φ(0)n wn

as a solution of the system of equations

(30) b2(Φ(0), Tb(wj)) = g(Tb(wj))− b1(τ (0), Tb(wj))

for j = 0, 1, . . . , n. Here the test functions

Tb(wj) = αjz2j−1 + βjz2j + γjz2j+1 for j = 0, 1, . . . , n (α0 = 0 = γn)

are constructed as in [3], Sect. 3, with the aim to make the matrix of (30) monotone.
Step 2. For k = 1, 2, . . ., compute

τ (k) = τ
(k)
0 w0 + . . .+ τ (k)n wn and Φ(k) = Φ

(k)
0 w0 + . . .+ Φ(k)n wn

as a solution of the system of equations

a1(τ
(k), Ta(wj)) = f(Ta(wj))− a2(Φ

(k−1), Ta(wj)) (j = 0, . . . , n)

and

b2(Φ(k), Tb(wj)) = g(Tb(wj))− b1(τ (k), Tb(wj)) (j = 0, . . . , n)

consecutively with the test functions Ta(wj) and Tb(wj) constructed as in Step 1.

Step 3. Repeat Step 2 as long as

max
0�j�n

∣∣∣τ (k)j − τ
(k−1)
j

∣∣∣ � ετ and max
0�j�n

∣∣∣Φ(k)j − Φ
(k−1)
j

∣∣∣ � εΦ.

If this condition is satisfied, then put

τj = τ
(k)
j and Φj = Φ

(k)
j for j = 0, 1, . . . , n.

In [3], the stability and accuracy of the Petrov-Galerkin method used above has
been studied.
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Figure 1. Distribution of moisture and temperature, October 17, 12:00.

	
�����. By means of the method described above, the transport of heat
and moisture across a vertical wall from lightconcrete (0.36 [m]) with plasters from

mortar (each 0.02 [m]) has been modeled in the time-period of 180 days—from July 21
to January 17. The intervals [0, 0.02] and [0.38, 0.40] are divided with step 0.01 and

the interval [0.02, 0.38] is divided with step 0.02. The interior surface corresponds
to x = 0 and the exterior one corresponds to x = 0.4. Constant temperature 20◦C of

the air in the interior and certain typical temperatures of the air in the exterior have
been assumed. The influence of sunshine on the exterior surface, which is oriented to

the south, has been taken into account. For illustration, the distribution of moisture
and temperature at the noon of October 17 is presented.
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