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Abstract. The method of quasilinearization is a procedure for obtaining approximate
solutions of differential equations. In this paper, this technique is applied to a differential-
algebraic problem. Under some natural assumptions, monotone sequences converge quadrat-
ically to a unique solution of our problem.
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Section 1

Consider the problem

(1)





x′(t) = f
(
t, x(t), y(t)

)
, t ∈ J = [0, b],

x(0) = k0,

y(t) = g
(
t, x(t), y(t)

)
, t ∈ J,

where f ∈ C(J × � × �,�), g ∈ C(J × � × �,�) and k0 ∈ � are given. Problem

(1) is called a differential-algebraic problem. A solution of (1) is a pair (x, y) ∈
C1(J,�) × C(J,�).

There are some methods which can be applied to construct approximate solutions
of such problems. Convergence of approximate iterations for (1) is proved, for exam-

ple, in papers [3], [6] (see also [1]). In [5], an approximate solution is constructed by
some numerical methods. Another useful method is based on monotone iterations.

The aim of this paper is to apply this procedure. Using the monotone iterative tech-
nique we can construct monotone sequences of approximate solutions that converge
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uniformly to the unique solution of (1). As we shall see, the convergence is quadratic,

which is useful in practice.

Section 2

Let x0, u0 ∈ C1(J,�), y0, v0 ∈ C(J,�) be such that x0(t) � u0(t), y0(t) � v0(t)

on J . Define the closed set

Ω = {(t, x, y) : t ∈ J, x0(t) � x � u0(t), y0(t) � y � v0(t)}.

Theorem 1. Let f, g ∈ C(Ω,�). Assume that fx, fy, gx, gy exist and

gy(t, u, v) < 1 on Ω. Then problem (1) has at most one solution.

�����. Assume that problem (1) has two distinct solutions (x, y) and (x, y).

Put p = x − x, q = y − y. Note that p(0) = 0. Using the mean value theorem we
obtain

p′(t) = f
(
t, x(t), y(t)

)
− f

(
t, x(t), y(t)

)

= f
(
t, x(t), y(t)

)
− f

(
t, x(t), y(t)

)
+ f

(
t, x(t), y(t)

)
− f

(
t, x(t), y(t)

)

= fx

(
t, ξ, y(t)

)
p(t) + fy

(
t, x(t), σ

)
q(t)

and

q(t) = g
(
t, x(t), y(t)

)
− g

(
t, x(t), y(t)

)

= g
(
t, x(t), y(t)

)
− g

(
t, x(t), y(t)

)
+ g

(
t, x(t), y(t)

)
− g

(
t, x(t), y(t)

)

= gx

(
t, ξ̄, y(t)

)
p(t) + gy

(
t, x(t), σ

)
q(t)

with ξ, ξ̄ between x and x, and σ, σ between y and y. Indeed,

q(t) =
gx

(
t, ξ̄, y(t)

)

1− gy

(
t, x(t), σ

)p(t),

and hence we have

p′(t) = p(t)k(t) for k(t) = fx

(
t, ξ, y(t)

)
+

fy

(
t, x(t), σ

)
gx

(
t, ξ̄, y(t)

)

1− gy

(
t, x(t), σ

) .

Solving the linear differential equation we get

p(t) = p(0)e

t∫
0

k(τ) dτ
, t ∈ J,

so p(t) = q(t) = 0, t ∈ J . This proves Theorem 1. �
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Section 3

Definition 1. A pair (x0, y0) ∈ C1(J,�) ×C(J,�) is said to be a lower solution

of problem (1) if

(2)





x′0(t) � f
(
t, x0(t), y0(t)

)
, t ∈ J,

x0(0) � k0,

y0(t) � g
(
t, x0(t), y0(t)

)
, t ∈ J

and a pair (u0, v0) is an upper solution of (1) if the inequalities are reversed.

Theorem 2. Assume that f, g ∈ C(Ω,�), and

1. (x0, y0) ∈ C1(J,�) × C(J,�) and (u0, v0) ∈ C1(J,�) × C(J,�) are lower and
upper solutions of problem (1), respectively, such that x0(t) � u0(t), y0(t) �
v0(t), t ∈ J ,

2. fxx, fxy, fyx, fyy, gxx, gxy, gyx, gyy exist, are continuous and

3. fxx(t, u, v) � 0, fxy(t, u, v) � 0, fyy(t, u, v) � 0, fy(t, u, v) � 0, gxx(t, u, v) � 0,
gxy(t, u, v) � 0, gyy(t, u, v) � 0, gx(t, u, v) � 0, gy(t, x, y) � B < 1 on Ω.

Then there exist monotone sequences (xn, yn), (un, vn) which converge uniformly

and monotonically on J to the unique solution of problem (1), and this convergence
is quadratic.

�����. For n = 0, 1, . . . and t ∈ J , let us define the following sequences:

x′n+1(t) = f
(
t, xn(t), yn(t)

)
+ fx

(
t, xn(t), yn(t)

)
[xn+1(t)− xn(t)]

+ fy

(
t, xn(t), yn(t)

)
[yn+1(t)− yn(t)], xn+1(0) = k0,

yn+1(t) = g
(
t, xn(t), yn(t)

)
+ gx

(
t, xn(t), yn(t)

)
[xn+1(t)− xn(t)]

+ gy

(
t, xn(t), yn(t)

)
[yn+1(t)− yn(t)],

and

u′n+1(t) = f
(
t, un(t), vn(t)

)
+ fx

(
t, xn(t), yn(t)

)
[un+1(t)− un(t)]

+ fy

(
t, xn(t), yn(t)

)
[vn+1(t)− vn(t)], un+1(0) = k0,

vn+1(t) = g
(
t, un(t), vn(t)

)
+ gx

(
t, xn(t), yn(t)

)
[un+1(t)− un(t)]

+ gy

(
t, xn(t), yn(t)

)
[vn+1(t)− vn(t)].

First we shall show that

x0(t) � x1(t) � u1(t) � u0(t),(3)

y0(t) � y1(t) � v1(t) � v0(t)(4)
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on J . Let p(t) = x0(t)− x1(t), q(t) = y0(t)− y1(t) on J . Note that

p′(t) = x′0(t)− x′1(t)

� f
(
t, x0(t), y0(t)

)
− f

(
t, x0(t), y0(t)

)

− fx

(
t, x0(t), y0(t)

)
[x1(t)− x0(t)]− fy

(
t, x0(t), y0(t)

)
[y1(t)− y0(t)]

= fx

(
t, x0(t), y0(t)

)
p(t) + fy

(
t, x0(t), y0(t)

)
q(t),

q(t) = y0(t)− y1(t)

� g
(
t, x0(t), y0(t)

)
− g

(
t, x0(t), y0(t)

)

− gx

(
t, x0(t), y0(t)

)
[x1(t)− x0(t)]− gy

(
t, x0(t), y0(t)

)
[y1(t)− y0(t)]

= gx

(
t, x0(t), y0(t)

)
p(t) + gy

(
t, x0(t), y0(t)

)
q(t)

since (x0, y0) is a lower solution of problem (1). Hence

q(t) �
gx

(
t, x0(t), y0(t)

)

1− gy

(
t, x0(t), y0(t)

)p(t), t ∈ J,

so
p′(t) � K(t)p(t), t ∈ J, p(0) � 0,

where

K(t) = fx

(
t, x0(t), y0(t)

)
+

fy

(
t, x0(t), y0(t)

)
gx

(
t, x0(t), y0(t)

)

1− gy

(
t, x0(t), y0(t)

) .

This yields the inequality

p(t) � p(0)e

t∫
0

K(τ) dτ
� 0, t ∈ J,

so x0(t) � x1(t) and y0(t) � y1(t) on J .
If we now put p(t) = u1(t)− u0(t), q(t) = v1(t)− v0(t), t ∈ J , then

p′(t) = u′1(t)− u′0(t)

� f
(
t, u0(t), v0(t)

)
+ fx

(
t, x0(t), y0(t)

)
[u1(t)− u0(t)]

+ fy

(
t, x0(t), y0(t)

)
[v1(t)− v0(t)]− f

(
t, u0(t), v0(t)

)

= fx

(
t, x0(t), y0(t)

)
p(t) + fy

(
t, x0(t), y0(t)

)
q(t), p(0) � 0,

and

q(t) = v1(t)− v0(t)

� g
(
t, u0(t), v0(t)

)
+ gx

(
t, x0(t), y0(t)

)
[u1(t)− u0(t)]

+ gy

(
t, x0(t), y0(t)

)
[v1(t)− v0(t)]− g

(
t, u0(t), v0(t)

)

= gx

(
t, x0(t), y0(t)

)
p(t) + gy

(
t, x0(t), y0(t)

)
q(t).
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Similarly as in the previous case, we immediately have p(t) � 0, q(t) � 0 on J , so

u1(t) � u0(t), v1(t) � v0(t), t ∈ J .
To show that x1(t) � u1(t), y1(t) � v1(t) on J we need some relations on f and g.

Observe that Taylor’s formula yields

f(t, u, α) = f(t, u, α)− f(t, v, α) + f(t, v, α)− f(t, v, β) + f(t, v, β)

= f(t, v, β) + fx(t, v, α)(u − v) +
1
2
fxx(t, ξ, α)(u − v)2

+ fy(t, v, β)(α − β) +
1
2
fyy(t, v, δ)(α − β)2

where ξ is between u and v, while δ is between α and β. Assume that u � v, α � β.

Since fxx � 0, fyy � 0, fxy � 0, we have

(5) f(t, u, α) � f(t, v, β) + fx(t, v, β)(u − v) + fy(t, v, β)(α − β).

In the same way, we can prove that

(6) g(t, u, α) � g(t, v, β) + gx(t, v, β)(u − v) + gy(t, v, β)(α − β)

provided u � v and α � β.

Now, put p(t) = x1(t)− u1(t), q(t) = y1(t)− v1(t). Note that p(0) = 0. Basing on
(5) and (6), we have

p′(t) = f
(
t, x0(t), y0(t)

)
+ fx

(
t, x0(t), y0(t)

)
[x1(t)− x0(t)]

+ fy

(
t, x0(t), y0(t)

)
[y1(t)− y0(t)]− f

(
t, u0(t), v0(t)

)

− fx

(
t, x0(t), y0(t)

)
[u1(t)− u0(t)]− fy

(
t, x0(t), y0(t)

)
[v1(t)− v0(t)]

� − fx

(
t, x0(t), y0(t)

)
[u0(t)− x0(t)]− fy

(
t, x0(t), y0(t)

)
[v0(t)− y0(t)]

+ fx

(
t, x0(t), y0(t)

)
[x1(t)− x0(t)− u1(t) + u0(t)]

+ fy

(
t, x0(t), y0(t)

)
[y1(t)− y0(t)− v1(t) + v0(t)]

= fx

(
t, x0(t), y0(t)

)
p(t) + fy

(
t, x0(t), y0(t)

)
q(t),

q(t) = g
(
t, x0(t), y0(t)

)
+ gx

(
t, x0(t), y0(t)

)
[x1(t)− x0(t)]

+ gy

(
t, x0(t), y0(t)

)
[y1(t)− y0(t)]− g

(
t, u0(t), v0(t)

)

− gx

(
t, x0(t), y0(t)

)
[u1(t)− u0(t)]− gy

(
t, x0(t), y0(t)

)
[v1(t)− v0(t)]

� − gx

(
t, x0(t), y0(t)

)
[u0(t)− x0(t)]− gy

(
t, x0(t), y0(t)

)
[v0(t)− y0(t)]

+ gx

(
t, x0(t), y0(t)

)
[x1(t)− x0(t)− u1(t) + u0(t)]

+ gy

(
t, x0(t), y0(t)

)
[y1(t)− y0(t)− v1(t) + v0(t)]

= gx

(
t, x0(t), y0(t)

)
p(t) + gy

(
t, x0(t), y0(t)

)
q(t).
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From the above, we have p(t) � 0, q(t) � 0 on J , so x1(t) � u1(t), y1(t) � v1(t),

t ∈ J . This proves that (3) and (4) are satisfied.

In the next step we have to show that (x1, y1) and (u1, v1) are lower and upper
solutions of problem (1), respectively. To show this we will use (5) and (6), obtaining

x′1(t) = f
(
t, x0(t), y0(t)

)
+ fx

(
t, x0(t), y0(t)

)
[x1(t)− x0(t)]

+ fy

(
t, x0(t), y0(t)

)
[y1(t)− y0(t)]

� f
(
t, x1(t), y1(t)

)
− fx

(
t, x0(t), y0(t)

)
[x1(t)− x0(t)]

− fy

(
t, x0(t), y0(t)

)
[y1(t)− y0(t)] + fx

(
t, x0(t), y0(t)

)
[x1(t)− x0(t)]

+ fy

(
t, x0(t), y0(t)

)
[y1(t)− y0(t)]

= f
(
t, x1(t), y1(t)

)
,

y1(t) = g
(
t, x0(t), y0(t)

)
+ gx

(
t, x0(t), y0(t)

)
[x1(t)− x0(t)]

+ gy

(
t, x0(t), y0(t)

)
[y1(t)− y0(t)]

� g(t, x1(t), y1(t)),

and

u′1(t) = f
(
t, u0(t), v0(t)

)
+ fx

(
t, x0(t), y0(t)

)
[u1(t)− u0(t)]

+ fy

(
t, x0(t), y0(t)

)
[v1(t)− v0(t)]

� f
(
t, u1(t), v1(t)

)
+ fx

(
t, u1(t), v1(t)

)
[u0(t)− u1(t)]

+ fy

(
t, u1(t), v1(t)

)
[v0(t)− v1(t)] + fx

(
t, x0(t), y0(t)

)
[u1(t)− u0(t)]

+ fy

(
t, x0(t), y0(t)

)
[v1(t)− v0(t)]

� f
(
t, u1(t), v1(t)

)
,

v1(t) = g
(
t, u0(t), v0(t)

)
+ gx

(
t, x0(t), y0(t)

)
[u1(t)− u0(t)]

+ gy

(
t, x0(t), y0(t)

)
[v1(t)− v0(t)]

� g
(
t, u1(t), v1(t)

)
,

since fx, fy, gx and gy are nondecreasing with respect to the last two variables. This
shows that (9) and (10) are satisfied.

Let us assume that

x0(t) � x1(t) � . . . � xk(t) � uk(t) � . . . � u1(t) � u0(t),

y0(t) � y1(t) � . . . � yk(t) � vk(t) � . . . � v1(t) � v0(t),

t ∈ J , and let (xk, yk), (uk, vk) be lower and upper solutions of problem (1), respec-
tively, for some k > 1.
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We shall prove that

(7)

{
xk(t) � xk+1(t) � uk+1(t) � uk(t), t ∈ J,

yk(t) � yk+1(t) � vk+1(t) � vk(t), t ∈ J.

As before, we set p(t) = xk(t)−xk+1(t), q(t) = yk(t)−yk+1(t), t ∈ J . We see that

p(0) = 0 and

p′(t) � f
(
t, xk(t), yk(t)

)
− f

(
t, xk(t), yk(t)

)
− fx

(
t, xk(t), yk(t)

)
[xk+1(t)− xk(t)]

− fy

(
t, xk(t), yk(t)

)
[yk+1(t)− yk(t)]

= fx(t, xk(t), yk(t))p(t) + fy

(
t, x0(t), y0(t)

)
q(t),

q(t) � g
(
t, xk(t), yk(t)

)
− g

(
t, xk(t), yk(t)

)
− gx

(
t, xk(t), yk(t)

)
[xk+1(t)− xk(t)]

− gy

(
t, xk(t), yk(t)

)
[yk+1(t) − yk(t)]

= gx

(
t, xk(t), yk(t)

)
p(t) + gy

(
t, xk(t), yk(t)

)
q(t).

Hence we have p(t) � 0 and q(t) � 0 on J , so xk(t) � xk+1(t), yk(t) � yk+1(t),
t ∈ J . Similarly, we can show that uk+1(t) � uk(t) and vk+1(t) � vk(t), t ∈ J . Now

let p(t) = xk+1(t)−uk+1(t), q(t) = yk+1(t)− vk+1(t), t ∈ J . Then in view of (5) and
(6) we get

p′(t) = f
(
t, xk(t), yk(t)

)
+ fx

(
t, xk(t), yk(t)

)
[xk+1(t)− xk(t)]

+ fy

(
t, xk(t), yk(t)

)
[yk+1(t)− yk(t)]− f

(
t, uk(t), vk(t)

)

− fx

(
t, xk(t), yk(t)

)
[uk+1(t)− uk(t)]− fy

(
t, xk(t), yk(t)

)
[vk+1(t)− vk(t)]

� fx

(
t, xk(t), yk(t)

)
p(t) + fy

(
t, xk(t), yk(t)

)
q(t),

and

q(t) = g
(
t, xk(t), yk(t)

)
+ gx

(
t, xk(t), yk(t)

)
[xk+1(t)− xk(t)]

+ gy

(
t, xk(t), yk(t)

)
[yk+1(t)− yk(t)]− g

(
t, uk(t), vk(t)

)

− gx

(
t, xk(t), yk(t)

)
[uk+1(t)− uk(t)]− gy

(
t, xk(t), yk(t)

)
[vk+1(t)− vk(t)]

� gx

(
t, xk(t), yk(t)

)
p(t) + gy

(
t, xk(t), yk(t)

)
q(t).

As a result we have

xk+1(t) � uk+1(t) and yk+1(t) � vk+1(t), t ∈ J

so (7) holds.

Basing on (5) and (6) we can show that (xk+1, yk+1), (uk+1, vk+1) are lower and
upper solutions of problem (1), respectively.
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Hence, by induction, we have

x0(t) � x1(t) � . . . � xn(t) � un(t) � . . . � u1(t) � u0(t),

y0(t) � y1(t) � . . . � yn(t) � vn(t) � . . . � v1(t) � v0(t),

t ∈ J , for all n > 1, and
(
xn(t), yn(t)

)
,
(
un(t), vn(t)

)
are lower and upper solutions

of problem (1), respectively.

Employing Dini’s theorem we can show that the sequences (xn, yn), (un, vn) con-
verge uniformly and monotonically to the corresponding solutions of problem (1).

Since problem (1) has at most one solution (x, y), so (xn, yn), (un, vn) converge to
the unique solution of (1).

We shall prove that the convergence of (xn, yn), (un, vn) to (x, y) is quadratic.

First, we put pn+1(t) = x(t) − xn+1(t) � 0, qn+1(t) = y(t) − yn+1(t) � 0, t ∈ J .
Note that pn+1(0) = 0. Then, by the mean value theorem and the monotonicity of

fx, fy, gx gy we have

p′n+1(t) = f
(
t, x(t), y(t)

)
− f

(
t, xn(t), yn(t)

)
− fx

(
t, xn(t), yn(t)

)
[xn+1(t)− xn(t)]

− fy

(
t, xn(t), yn(t)

)
[yn+1(t)− yn(t)]

= f
(
t, x(t), y(t)

)
− f

(
t, xn(t), y(t)

)
+ f

(
t, xn(t), y(t)

)
− f

(
t, xn(t), yn(t)

)

− fx

(
t, xn(t), yn(t)

)
[xn+1(t)− x(t) + x(t)− xn(t)]

− fy

(
t, xn(t), yn(t)

)
[yn+1(t)− y(t) + y(t)− yn(t)]

= fx

(
t, ξ1, y(t)

)
pn(t) + fy

(
t, xn(t), δ1

)
qn(t)

+ fx

(
t, xn(t), yn(t)

)
[pn+1(t)− pn(t)] + fy

(
t, xn(t), yn(t)

)
[qn+1(t)− qn(t)]

�
[
fx

(
t, x(t), y(t)

)
− fx

(
t, xn(t), y(t)

)

+ fx

(
t, xn(t), y(t)

)
− fx

(
t, xn(t), yn(t)

)]
pn(t)

+ fx

(
t, xn(t), yn(t)

)
pn+1(t) + fy

(
t, xn(t), yn(t)

)
qn+1(t)

=
[
fxx

(
t, ξ2, y(t)

)
pn(t) + fxy

(
t, xn(t), δ2

)
qn(t)

]
pn(t)

+ fx

(
t, xn(t), yn(t)

)
pn+1(t) + fy

(
t, xn(t), yn(t)

)
qn+1(t),

and

qn+1(t) = g
(
t, x(t), y(t)

)
− g

(
t, xn(t), y(t)

)
+ g

(
t, xn(t), y(t)

)
− g

(
t, xn(t), yn(t)

)

− gx

(
t, xn(t), yn(t)

)
[xn+1(t)− x(t) + x(t)− xn(t)]

− gy

(
t, xn(t), yn(t)

)
[yn+1(t)− y(t) + y(t)− yn(t)]

= gx

(
t, ξ3, y(t)

)
pn(t) + gy

(
t, xn(t), δ3

)
qn(t)

+ gx

(
t, xn(t), yn(t)

)
[pn+1(t)− pn(t)] + gy

(
t, xn(t), yn(t)

)
[qn+1(t)− qn(t)]

212



�
[
gx

(
t, x(t), y(t)

)
− gx

(
t, xn(t), y(t)

)
+ gx

(
t, xn(t), y(t)

)

− gx

(
t, xn(t), yn(t)

)]
pn(t) + gx

(
t, xn(t), yn(t)

)
pn+1(t)

+ gy

(
t, xn(t), yn(t)

)
qn+1(t) +

[
gy

(
t, xn(t), y(t)

)
− gy

(
t, xn(t), yn(t)

)]
qn(t)

=
[
gxx

(
t, ξ4, y(t)

)
pn(t) + gxy

(
t, xn(t), δ4

)
qn(t)

]
pn(t) + gyy

(
t, xn(t), δ5

)
q2n(t)

+ gy

(
t, xn(t), yn(t)

)
qn+1(t) + gx(t, xn(t), y(t))pn+1(t)

where xn(t) < ξ1, ξ2, ξ3, ξ4 < x(t), yn(t) < δ1, δ2, δ3, δ4, δ5 < y(t). Hence

qn+1(t) � B1p
2
n(t) +B2pn(t)qn(t) +B3q

2
n(t) +Bqn+1(t) +B4pn+1(t)

�
(
B1 +

1
2
B2

)
p2n(t) +

(
B3 +

1
2
B2

)
q2n(t) +Bqn+1(t) +B4pn+1(t),

so

(8) qn+1(t) �
B4
1−B

pn+1(t) + b1p
2
n(t) + b2q

2
n(t), t ∈ J,

since B < 1, where

|gxx(t, u, v)| � B1, |gxy(t, u, v)| � B2, |gyy(t, u, v)| � B3,

|gx(t, u, v)| � B4 on Ω,

b1 =
B1 + 12B2
1−B

, b2 =
B3 + 12B2
1−B

.

Moreover, we have

p′n+1(t) � A1p
2
n(t) +A2pn(t)qn(t) +A3pn+1(t) +A4qn+1(t)(9)

�
(
A1 +

1
2
A2

)
p2n(t) +

1
2
A2q

2
n(t) +A3pn+1(t) +A4qn+1(t)

where |fxx(t, u, v)| � A1, |fxy(t, u, v)| � A2, |fx(t, u, v)| � A3, |fy(t, u, v)| � A4

on Ω. Combining (8) and (9) we finally get

p′n+1(t) � a1pn+1(t) + a2p
2
n(t) + a3q

2
n(t), t ∈ J,

where

a1 = A3 +
B4A4
1−B

, a2 = A1 +
1
2
A2 +A4b1, a3 =

1
2
A2 +A4b2.

By Gronwall’s inequality, we see that

pn+1(t) �
t∫

0

[a2p2n(s) + a3q
2
n(s)]e

a1(t−s) ds

� [a2max
s

p2n(s) + a3max
s

q2n(s)]c, c = bea1b, t ∈ J.
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Thus

max
t∈J

|xn+1(t)− x(t)| � c2max
t∈J

|xn(t)− x(t)|2 + c3max
t∈J

|yn(t)− y(t)|2,

where ci = cai for i = 2, 3. Hence and by (8), we directly obtain

max
t∈J

|yn+1(t)− y(t)| � a2max
t∈J

|xn(t)− x(t)|2 + a3max
t∈J

|yn(t)− y(t)|2,

where

ai =
B4ci

1−B
+ bi−1, i = 2, 3.

In the same way we can show that the convergence of (un, vn) to (x, y) is quadratic,
so

max
t∈J

|un+1(t)− x(t)| � d1max
t∈J

|un(t)− x(t)|2 + d2max
t∈J

|vn(t)− y(t)|2

+ d3max
t∈J

|xn(t)− x(t)|2 + d4max
t∈J

|yn(t)− y(t)|2,

max
t∈J

|vn+1(t)− y(t)| � e1max
t∈J

|un(t)− x(t)|2 + e2max
t∈J

|vn(t)− y(t)|2

+ e3max
t∈J

|xn(t)− x(t)|2 + e4max
t∈J

|yn(t)− y(t)|2,

where |fyy(t, u, v)| � A5 on Ω,

d1 = c

[
A2 +

3
2
A1 +A4

B2 + 32B1
1−B

]
, d2 = c

[
A2 +

3
2
A5 +A4

B2 + 32B3
1−B

]
,

d3 =
1
2
c

[
A2 +A1 +A4

B2 +B1
1−B

]
, d4 =

1
2
c

[
A2 +A5 +A4

B2 +B3
1−B

]
,

and

e1 =
B2 + 32B1 + d1B4

1−B
, e2 =

B2 + 32B3 + d2B4

1−B
,

e3 =
1
2

B2 +B1 + d3B4
1−B

, e4 =
1
2

B2 +B3 + d4B4
1−B

.

�
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Authors’ addresses: Anita Dąbrowicz-Tla�lka, Faculty of Applied Physics and Mathemat-
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