Applications of Mathematics

Anita Dąbrowicz-Tlałka; Tadeusz Jankowski

On a differential-algebraic problem

Applications of Mathematics, Vol. 45 (2000), No. 3, 205-215
Persistent URL: http://dml.cz/dmlcz/134435

Terms of use:

© Institute of Mathematics AS CR, 2000

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON A DIFFERENTIAL-ALGEBRAIC PROBLEM

Anita Dąbrowicz-Tla£ka and Tadeusz Jankowski, Gdańsk

(Received June 10, 1998)

Abstract. The method of quasilinearization is a procedure for obtaining approximate solutions of differential equations. In this paper, this technique is applied to a differentialalgebraic problem. Under some natural assumptions, monotone sequences converge quadratically to a unique solution of our problem.

Keywords: differential-algebraic problem, monotone sequences, quadratic convergence
MSC 2000: 34A45, 34B99

SEction 1

Consider the problem

$$
\left\{\begin{array}{l}
x^{\prime}(t)=f(t, x(t), y(t)), \quad t \in J=[0, b], \tag{1}\\
x(0)=k_{0}, \\
y(t)=g(t, x(t), y(t)), \quad t \in J,
\end{array}\right.
$$

where $f \in C(J \times \mathbb{R} \times \mathbb{R}, \mathbb{R}), g \in C(J \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$ and $k_{0} \in \mathbb{R}$ are given. Problem (1) is called a differential-algebraic problem. A solution of (1) is a pair $(x, y) \in$ $C^{1}(J, \mathbb{R}) \times C(J, \mathbb{R})$.

There are some methods which can be applied to construct approximate solutions of such problems. Convergence of approximate iterations for (1) is proved, for example, in papers [3], [6] (see also [1]). In [5], an approximate solution is constructed by some numerical methods. Another useful method is based on monotone iterations. The aim of this paper is to apply this procedure. Using the monotone iterative technique we can construct monotone sequences of approximate solutions that converge
uniformly to the unique solution of (1). As we shall see, the convergence is quadratic, which is useful in practice.

SEction 2

Let $x_{0}, u_{0} \in C^{1}(J, \mathbb{R}), y_{0}, v_{0} \in C(J, \mathbb{R})$ be such that $x_{0}(t) \leqslant u_{0}(t), y_{0}(t) \leqslant v_{0}(t)$ on J. Define the closed set

$$
\Omega=\left\{(t, x, y): t \in J, \quad x_{0}(t) \leqslant x \leqslant u_{0}(t), \quad y_{0}(t) \leqslant y \leqslant v_{0}(t)\right\} .
$$

Theorem 1. Let $f, g \in C(\Omega, \mathbb{R})$. Assume that $f_{x}, f_{y}, g_{x}, g_{y}$ exist and $g_{y}(t, u, v)<1$ on Ω. Then problem (1) has at most one solution.

Proof. Assume that problem (1) has two distinct solutions (\bar{x}, \bar{y}) and $(\bar{x}, \overline{\bar{y}})$. Put $p=\bar{x}-\overline{\bar{x}}, q=\bar{y}-\overline{\bar{y}}$. Note that $p(0)=0$. Using the mean value theorem we obtain

$$
\begin{aligned}
p^{\prime}(t) & =f(t, \bar{x}(t), \bar{y}(t))-f(t, \overline{\bar{x}}(t), \overline{\bar{y}}(t)) \\
& =f(t, \bar{x}(t), \bar{y}(t))-f(t, \overline{\bar{x}}(t), \bar{y}(t))+f(t, \overline{\bar{x}}(t), \bar{y}(t))-f(t, \overline{\bar{x}}(t), \overline{\bar{y}}(t)) \\
& =f_{x}(t, \xi, \bar{y}(t)) p(t)+f_{y}(t, \overline{\bar{x}}(t), \sigma) q(t)
\end{aligned}
$$

and

$$
\begin{aligned}
q(t) & =g(t, \bar{x}(t), \bar{y}(t))-g(t, \overline{\bar{x}}(t), \overline{\bar{y}}(t)) \\
& =g(t, \bar{x}(t), \bar{y}(t))-g(t, \overline{\bar{x}}(t), \bar{y}(t))+g(t, \overline{\bar{x}}(t), \bar{y}(t))-g(t, \overline{\bar{x}}(t), \overline{\bar{y}}(t)) \\
& =g_{x}(t, \bar{\xi}, \bar{y}(t)) p(t)+g_{y}(t, \overline{\bar{x}}(t), \bar{\sigma}) q(t)
\end{aligned}
$$

with $\xi, \bar{\xi}$ between \bar{x} and $\overline{\bar{x}}$, and $\sigma, \bar{\sigma}$ between \bar{y} and $\overline{\bar{y}}$. Indeed,

$$
q(t)=\frac{g_{x}(t, \bar{\xi}, \bar{y}(t))}{1-g_{y}(t, \overline{\bar{x}}(t), \bar{\sigma})} p(t)
$$

and hence we have

$$
p^{\prime}(t)=p(t) k(t) \quad \text { for } \quad k(t)=f_{x}(t, \xi, \bar{y}(t))+\frac{f_{y}(t, \overline{\bar{x}}(t), \sigma) g_{x}(t, \bar{\xi}, \bar{y}(t))}{1-g_{y}(t, \overline{\bar{x}}(t), \bar{\sigma})}
$$

Solving the linear differential equation we get

$$
p(t)=p(0) \mathrm{e}^{\int_{0}^{t} k(\tau) \mathrm{d} \tau}, \quad t \in J,
$$

so $p(t)=q(t)=0, t \in J$. This proves Theorem 1 .

Section 3

Definition 1. A pair $\left(x_{0}, y_{0}\right) \in C^{1}(J, \mathbb{R}) \times C(J, \mathbb{R})$ is said to be a lower solution of problem (1) if

$$
\begin{cases}x_{0}^{\prime}(t) \leqslant f\left(t, x_{0}(t), y_{0}(t)\right), \quad t \in J \tag{2}\\ x_{0}(0) \leqslant k_{0} \\ y_{0}(t) \leqslant g\left(t, x_{0}(t), y_{0}(t)\right), \quad t \in J\end{cases}
$$

and a pair $\left(u_{0}, v_{0}\right)$ is an upper solution of (1) if the inequalities are reversed.
Theorem 2. Assume that $f, g \in C(\Omega, \mathbb{R})$, and

1. $\left(x_{0}, y_{0}\right) \in C^{1}(J, \mathbb{R}) \times C(J, \mathbb{R})$ and $\left(u_{0}, v_{0}\right) \in C^{1}(J, \mathbb{R}) \times C(J, \mathbb{R})$ are lower and upper solutions of problem (1), respectively, such that $x_{0}(t) \leqslant u_{0}(t), y_{0}(t) \leqslant$ $v_{0}(t), t \in J$,
2. $f_{x x}, f_{x y}, f_{y x}, f_{y y}, g_{x x}, g_{x y}, g_{y x}, g_{y y}$ exist, are continuous and
3. $f_{x x}(t, u, v) \geqslant 0, f_{x y}(t, u, v) \geqslant 0, f_{y y}(t, u, v) \geqslant 0, f_{y}(t, u, v) \geqslant 0, g_{x x}(t, u, v) \geqslant 0$, $g_{x y}(t, u, v) \geqslant 0, g_{y y}(t, u, v) \geqslant 0, g_{x}(t, u, v) \geqslant 0, g_{y}(t, x, y) \leqslant B<1$ on Ω.
Then there exist monotone sequences $\left(x_{n}, y_{n}\right),\left(u_{n}, v_{n}\right)$ which converge uniformly and monotonically on J to the unique solution of problem (1), and this convergence is quadratic.

Proof. For $n=0,1, \ldots$ and $t \in J$, let us define the following sequences:

$$
\begin{aligned}
x_{n+1}^{\prime}(t)= & f\left(t, x_{n}(t), y_{n}(t)\right)+f_{x}\left(t, x_{n}(t), y_{n}(t)\right)\left[x_{n+1}(t)-x_{n}(t)\right] \\
& +f_{y}\left(t, x_{n}(t), y_{n}(t)\right)\left[y_{n+1}(t)-y_{n}(t)\right], \quad x_{n+1}(0)=k_{0}, \\
y_{n+1}(t)= & g\left(t, x_{n}(t), y_{n}(t)\right)+g_{x}\left(t, x_{n}(t), y_{n}(t)\right)\left[x_{n+1}(t)-x_{n}(t)\right] \\
& +g_{y}\left(t, x_{n}(t), y_{n}(t)\right)\left[y_{n+1}(t)-y_{n}(t)\right],
\end{aligned}
$$

and

$$
\begin{aligned}
u_{n+1}^{\prime}(t)= & f\left(t, u_{n}(t), v_{n}(t)\right)+f_{x}\left(t, x_{n}(t), y_{n}(t)\right)\left[u_{n+1}(t)-u_{n}(t)\right] \\
& +f_{y}\left(t, x_{n}(t), y_{n}(t)\right)\left[v_{n+1}(t)-v_{n}(t)\right], \quad u_{n+1}(0)=k_{0} \\
v_{n+1}(t)= & g\left(t, u_{n}(t), v_{n}(t)\right)+g_{x}\left(t, x_{n}(t), y_{n}(t)\right)\left[u_{n+1}(t)-u_{n}(t)\right] \\
& +g_{y}\left(t, x_{n}(t), y_{n}(t)\right)\left[v_{n+1}(t)-v_{n}(t)\right] .
\end{aligned}
$$

First we shall show that

$$
\begin{align*}
& x_{0}(t) \leqslant x_{1}(t) \leqslant u_{1}(t) \leqslant u_{0}(t), \tag{3}\\
& y_{0}(t) \leqslant y_{1}(t) \leqslant v_{1}(t) \leqslant v_{0}(t) \tag{4}
\end{align*}
$$

on J. Let $p(t)=x_{0}(t)-x_{1}(t), q(t)=y_{0}(t)-y_{1}(t)$ on J. Note that

$$
\begin{aligned}
p^{\prime}(t)= & x_{0}^{\prime}(t)-x_{1}^{\prime}(t) \\
\leqslant & f\left(t, x_{0}(t), y_{0}(t)\right)-f\left(t, x_{0}(t), y_{0}(t)\right) \\
& -f_{x}\left(t, x_{0}(t), y_{0}(t)\right)\left[x_{1}(t)-x_{0}(t)\right]-f_{y}\left(t, x_{0}(t), y_{0}(t)\right)\left[y_{1}(t)-y_{0}(t)\right] \\
= & f_{x}\left(t, x_{0}(t), y_{0}(t)\right) p(t)+f_{y}\left(t, x_{0}(t), y_{0}(t)\right) q(t) \\
q(t)= & y_{0}(t)-y_{1}(t) \\
\leqslant & g\left(t, x_{0}(t), y_{0}(t)\right)-g\left(t, x_{0}(t), y_{0}(t)\right) \\
& -g_{x}\left(t, x_{0}(t), y_{0}(t)\right)\left[x_{1}(t)-x_{0}(t)\right]-g_{y}\left(t, x_{0}(t), y_{0}(t)\right)\left[y_{1}(t)-y_{0}(t)\right] \\
= & g_{x}\left(t, x_{0}(t), y_{0}(t)\right) p(t)+g_{y}\left(t, x_{0}(t), y_{0}(t)\right) q(t)
\end{aligned}
$$

since $\left(x_{0}, y_{0}\right)$ is a lower solution of problem (1). Hence

$$
q(t) \leqslant \frac{g_{x}\left(t, x_{0}(t), y_{0}(t)\right)}{1-g_{y}\left(t, x_{0}(t), y_{0}(t)\right)} p(t), \quad t \in J,
$$

so

$$
p^{\prime}(t) \leqslant K(t) p(t), \quad t \in J, \quad p(0) \leqslant 0
$$

where

$$
K(t)=f_{x}\left(t, x_{0}(t), y_{0}(t)\right)+\frac{f_{y}\left(t, x_{0}(t), y_{0}(t)\right) g_{x}\left(t, x_{0}(t), y_{0}(t)\right)}{1-g_{y}\left(t, x_{0}(t), y_{0}(t)\right)} .
$$

This yields the inequality

$$
p(t) \leqslant p(0) \mathrm{e}^{\int_{0}^{t} K(\tau) \mathrm{d} \tau} \leqslant 0, \quad t \in J,
$$

so $x_{0}(t) \leqslant x_{1}(t)$ and $y_{0}(t) \leqslant y_{1}(t)$ on J.
If we now put $p(t)=u_{1}(t)-u_{0}(t), q(t)=v_{1}(t)-v_{0}(t), t \in J$, then

$$
\begin{aligned}
p^{\prime}(t)= & u_{1}^{\prime}(t)-u_{0}^{\prime}(t) \\
\leqslant & f\left(t, u_{0}(t), v_{0}(t)\right)+f_{x}\left(t, x_{0}(t), y_{0}(t)\right)\left[u_{1}(t)-u_{0}(t)\right] \\
& +f_{y}\left(t, x_{0}(t), y_{0}(t)\right)\left[v_{1}(t)-v_{0}(t)\right]-f\left(t, u_{0}(t), v_{0}(t)\right) \\
= & f_{x}\left(t, x_{0}(t), y_{0}(t)\right) p(t)+f_{y}\left(t, x_{0}(t), y_{0}(t)\right) q(t), \quad p(0) \leqslant 0,
\end{aligned}
$$

and

$$
\begin{aligned}
q(t)= & v_{1}(t)-v_{0}(t) \\
\leqslant & g\left(t, u_{0}(t), v_{0}(t)\right)+g_{x}\left(t, x_{0}(t), y_{0}(t)\right)\left[u_{1}(t)-u_{0}(t)\right] \\
& +g_{y}\left(t, x_{0}(t), y_{0}(t)\right)\left[v_{1}(t)-v_{0}(t)\right]-g\left(t, u_{0}(t), v_{0}(t)\right) \\
= & g_{x}\left(t, x_{0}(t), y_{0}(t)\right) p(t)+g_{y}\left(t, x_{0}(t), y_{0}(t)\right) q(t) .
\end{aligned}
$$

Similarly as in the previous case, we immediately have $p(t) \leqslant 0, q(t) \leqslant 0$ on J, so $u_{1}(t) \leqslant u_{0}(t), v_{1}(t) \leqslant v_{0}(t), t \in J$.

To show that $x_{1}(t) \leqslant u_{1}(t), y_{1}(t) \leqslant v_{1}(t)$ on J we need some relations on f and g. Observe that Taylor's formula yields

$$
\begin{aligned}
f(t, u, \alpha)= & f(t, u, \alpha)-f(t, v, \alpha)+f(t, v, \alpha)-f(t, v, \beta)+f(t, v, \beta) \\
= & f(t, v, \beta)+f_{x}(t, v, \alpha)(u-v)+\frac{1}{2} f_{x x}(t, \xi, \alpha)(u-v)^{2} \\
& +f_{y}(t, v, \beta)(\alpha-\beta)+\frac{1}{2} f_{y y}(t, v, \delta)(\alpha-\beta)^{2}
\end{aligned}
$$

where ξ is between u and v, while δ is between α and β. Assume that $u \geqslant v, \alpha \geqslant \beta$. Since $f_{x x} \geqslant 0, f_{y y} \geqslant 0, f_{x y} \geqslant 0$, we have

$$
\begin{equation*}
f(t, u, \alpha) \geqslant f(t, v, \beta)+f_{x}(t, v, \beta)(u-v)+f_{y}(t, v, \beta)(\alpha-\beta) . \tag{5}
\end{equation*}
$$

In the same way, we can prove that

$$
\begin{equation*}
g(t, u, \alpha) \geqslant g(t, v, \beta)+g_{x}(t, v, \beta)(u-v)+g_{y}(t, v, \beta)(\alpha-\beta) \tag{6}
\end{equation*}
$$

provided $u \geqslant v$ and $\alpha \geqslant \beta$.
Now, put $p(t)=x_{1}(t)-u_{1}(t), q(t)=y_{1}(t)-v_{1}(t)$. Note that $p(0)=0$. Basing on (5) and (6), we have

$$
\begin{aligned}
p^{\prime}(t)= & f\left(t, x_{0}(t), y_{0}(t)\right)+f_{x}\left(t, x_{0}(t), y_{0}(t)\right)\left[x_{1}(t)-x_{0}(t)\right] \\
& +f_{y}\left(t, x_{0}(t), y_{0}(t)\right)\left[y_{1}(t)-y_{0}(t)\right]-f\left(t, u_{0}(t), v_{0}(t)\right) \\
& -f_{x}\left(t, x_{0}(t), y_{0}(t)\right)\left[u_{1}(t)-u_{0}(t)\right]-f_{y}\left(t, x_{0}(t), y_{0}(t)\right)\left[v_{1}(t)-v_{0}(t)\right] \\
\leqslant & -f_{x}\left(t, x_{0}(t), y_{0}(t)\right)\left[u_{0}(t)-x_{0}(t)\right]-f_{y}\left(t, x_{0}(t), y_{0}(t)\right)\left[v_{0}(t)-y_{0}(t)\right] \\
& +f_{x}\left(t, x_{0}(t), y_{0}(t)\right)\left[x_{1}(t)-x_{0}(t)-u_{1}(t)+u_{0}(t)\right] \\
& +f_{y}\left(t, x_{0}(t), y_{0}(t)\right)\left[y_{1}(t)-y_{0}(t)-v_{1}(t)+v_{0}(t)\right] \\
= & f_{x}\left(t, x_{0}(t), y_{0}(t)\right) p(t)+f_{y}\left(t, x_{0}(t), y_{0}(t)\right) q(t), \\
q(t)= & g\left(t, x_{0}(t), y_{0}(t)\right)+g_{x}\left(t, x_{0}(t), y_{0}(t)\right)\left[x_{1}(t)-x_{0}(t)\right] \\
& +g_{y}\left(t, x_{0}(t), y_{0}(t)\right)\left[y_{1}(t)-y_{0}(t)\right]-g\left(t, u_{0}(t), v_{0}(t)\right) \\
& -g_{x}\left(t, x_{0}(t), y_{0}(t)\right)\left[u_{1}(t)-u_{0}(t)\right]-g_{y}\left(t, x_{0}(t), y_{0}(t)\right)\left[v_{1}(t)-v_{0}(t)\right] \\
\leqslant & -g_{x}\left(t, x_{0}(t), y_{0}(t)\right)\left[u_{0}(t)-x_{0}(t)\right]-g_{y}\left(t, x_{0}(t), y_{0}(t)\right)\left[v_{0}(t)-y_{0}(t)\right] \\
& +g_{x}\left(t, x_{0}(t), y_{0}(t)\right)\left[x_{1}(t)-x_{0}(t)-u_{1}(t)+u_{0}(t)\right] \\
& +g_{y}\left(t, x_{0}(t), y_{0}(t)\right)\left[y_{1}(t)-y_{0}(t)-v_{1}(t)+v_{0}(t)\right] \\
= & g_{x}\left(t, x_{0}(t), y_{0}(t)\right) p(t)+g_{y}\left(t, x_{0}(t), y_{0}(t)\right) q(t) .
\end{aligned}
$$

From the above, we have $p(t) \leqslant 0, q(t) \leqslant 0$ on J, so $x_{1}(t) \leqslant u_{1}(t), y_{1}(t) \leqslant v_{1}(t)$, $t \in J$. This proves that (3) and (4) are satisfied.

In the next step we have to show that $\left(x_{1}, y_{1}\right)$ and $\left(u_{1}, v_{1}\right)$ are lower and upper solutions of problem (1), respectively. To show this we will use (5) and (6), obtaining

$$
\begin{aligned}
x_{1}^{\prime}(t)= & f\left(t, x_{0}(t), y_{0}(t)\right)+f_{x}\left(t, x_{0}(t), y_{0}(t)\right)\left[x_{1}(t)-x_{0}(t)\right] \\
& +f_{y}\left(t, x_{0}(t), y_{0}(t)\right)\left[y_{1}(t)-y_{0}(t)\right] \\
\leqslant & f\left(t, x_{1}(t), y_{1}(t)\right)-f_{x}\left(t, x_{0}(t), y_{0}(t)\right)\left[x_{1}(t)-x_{0}(t)\right] \\
& -f_{y}\left(t, x_{0}(t), y_{0}(t)\right)\left[y_{1}(t)-y_{0}(t)\right]+f_{x}\left(t, x_{0}(t), y_{0}(t)\right)\left[x_{1}(t)-x_{0}(t)\right] \\
& +f_{y}\left(t, x_{0}(t), y_{0}(t)\right)\left[y_{1}(t)-y_{0}(t)\right] \\
= & f\left(t, x_{1}(t), y_{1}(t)\right) \\
y_{1}(t)= & g\left(t, x_{0}(t), y_{0}(t)\right)+g_{x}\left(t, x_{0}(t), y_{0}(t)\right)\left[x_{1}(t)-x_{0}(t)\right] \\
& +g_{y}\left(t, x_{0}(t), y_{0}(t)\right)\left[y_{1}(t)-y_{0}(t)\right] \\
\leqslant & g\left(t, x_{1}(t), y_{1}(t)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
u_{1}^{\prime}(t)= & f\left(t, u_{0}(t), v_{0}(t)\right)+f_{x}\left(t, x_{0}(t), y_{0}(t)\right)\left[u_{1}(t)-u_{0}(t)\right] \\
& +f_{y}\left(t, x_{0}(t), y_{0}(t)\right)\left[v_{1}(t)-v_{0}(t)\right] \\
\geqslant & f\left(t, u_{1}(t), v_{1}(t)\right)+f_{x}\left(t, u_{1}(t), v_{1}(t)\right)\left[u_{0}(t)-u_{1}(t)\right] \\
& +f_{y}\left(t, u_{1}(t), v_{1}(t)\right)\left[v_{0}(t)-v_{1}(t)\right]+f_{x}\left(t, x_{0}(t), y_{0}(t)\right)\left[u_{1}(t)-u_{0}(t)\right] \\
& +f_{y}\left(t, x_{0}(t), y_{0}(t)\right)\left[v_{1}(t)-v_{0}(t)\right] \\
\geqslant & f\left(t, u_{1}(t), v_{1}(t)\right) \\
v_{1}(t)= & g\left(t, u_{0}(t), v_{0}(t)\right)+g_{x}\left(t, x_{0}(t), y_{0}(t)\right)\left[u_{1}(t)-u_{0}(t)\right] \\
& +g_{y}\left(t, x_{0}(t), y_{0}(t)\right)\left[v_{1}(t)-v_{0}(t)\right] \\
\geqslant & g\left(t, u_{1}(t), v_{1}(t)\right)
\end{aligned}
$$

since f_{x}, f_{y}, g_{x} and g_{y} are nondecreasing with respect to the last two variables. This shows that (9) and (10) are satisfied.

Let us assume that

$$
\begin{gathered}
x_{0}(t) \leqslant x_{1}(t) \leqslant \ldots \leqslant x_{k}(t) \leqslant u_{k}(t) \leqslant \ldots \leqslant u_{1}(t) \leqslant u_{0}(t), \\
y_{0}(t) \leqslant y_{1}(t) \leqslant \ldots \leqslant y_{k}(t) \leqslant v_{k}(t) \leqslant \ldots \leqslant v_{1}(t) \leqslant v_{0}(t)
\end{gathered}
$$

$t \in J$, and let $\left(x_{k}, y_{k}\right),\left(u_{k}, v_{k}\right)$ be lower and upper solutions of problem (1), respectively, for some $k>1$.

We shall prove that

$$
\left\{\begin{array}{l}
x_{k}(t) \leqslant x_{k+1}(t) \leqslant u_{k+1}(t) \leqslant u_{k}(t), \quad t \in J, \tag{7}\\
y_{k}(t) \leqslant y_{k+1}(t) \leqslant v_{k+1}(t) \leqslant v_{k}(t), \quad t \in J
\end{array}\right.
$$

As before, we set $p(t)=x_{k}(t)-x_{k+1}(t), q(t)=y_{k}(t)-y_{k+1}(t), t \in J$. We see that $p(0)=0$ and

$$
\begin{aligned}
p^{\prime}(t) \leqslant & f\left(t, x_{k}(t), y_{k}(t)\right)-f\left(t, x_{k}(t), y_{k}(t)\right)-f_{x}\left(t, x_{k}(t), y_{k}(t)\right)\left[x_{k+1}(t)-x_{k}(t)\right] \\
& -f_{y}\left(t, x_{k}(t), y_{k}(t)\right)\left[y_{k+1}(t)-y_{k}(t)\right] \\
= & f_{x}\left(t, x_{k}(t), y_{k}(t)\right) p(t)+f_{y}\left(t, x_{0}(t), y_{0}(t)\right) q(t), \\
q(t) \leqslant & g\left(t, x_{k}(t), y_{k}(t)\right)-g\left(t, x_{k}(t), y_{k}(t)\right)-g_{x}\left(t, x_{k}(t), y_{k}(t)\right)\left[x_{k+1}(t)-x_{k}(t)\right] \\
& -g_{y}\left(t, x_{k}(t), y_{k}(t)\right)\left[y_{k+1}(t)-y_{k}(t)\right] \\
= & g_{x}\left(t, x_{k}(t), y_{k}(t)\right) p(t)+g_{y}\left(t, x_{k}(t), y_{k}(t)\right) q(t) .
\end{aligned}
$$

Hence we have $p(t) \leqslant 0$ and $q(t) \leqslant 0$ on J, so $x_{k}(t) \leqslant x_{k+1}(t), y_{k}(t) \leqslant y_{k+1}(t)$, $t \in J$. Similarly, we can show that $u_{k+1}(t) \leqslant u_{k}(t)$ and $v_{k+1}(t) \leqslant v_{k}(t), t \in J$. Now let $p(t)=x_{k+1}(t)-u_{k+1}(t), q(t)=y_{k+1}(t)-v_{k+1}(t), t \in J$. Then in view of (5) and (6) we get

$$
\begin{aligned}
p^{\prime}(t)= & f\left(t, x_{k}(t), y_{k}(t)\right)+f_{x}\left(t, x_{k}(t), y_{k}(t)\right)\left[x_{k+1}(t)-x_{k}(t)\right] \\
& +f_{y}\left(t, x_{k}(t), y_{k}(t)\right)\left[y_{k+1}(t)-y_{k}(t)\right]-f\left(t, u_{k}(t), v_{k}(t)\right) \\
& -f_{x}\left(t, x_{k}(t), y_{k}(t)\right)\left[u_{k+1}(t)-u_{k}(t)\right]-f_{y}\left(t, x_{k}(t), y_{k}(t)\right)\left[v_{k+1}(t)-v_{k}(t)\right] \\
\leqslant & f_{x}\left(t, x_{k}(t), y_{k}(t)\right) p(t)+f_{y}\left(t, x_{k}(t), y_{k}(t)\right) q(t),
\end{aligned}
$$

and

$$
\begin{aligned}
q(t)= & g\left(t, x_{k}(t), y_{k}(t)\right)+g_{x}\left(t, x_{k}(t), y_{k}(t)\right)\left[x_{k+1}(t)-x_{k}(t)\right] \\
& +g_{y}\left(t, x_{k}(t), y_{k}(t)\right)\left[y_{k+1}(t)-y_{k}(t)\right]-g\left(t, u_{k}(t), v_{k}(t)\right) \\
& -g_{x}\left(t, x_{k}(t), y_{k}(t)\right)\left[u_{k+1}(t)-u_{k}(t)\right]-g_{y}\left(t, x_{k}(t), y_{k}(t)\right)\left[v_{k+1}(t)-v_{k}(t)\right] \\
\leqslant & g_{x}\left(t, x_{k}(t), y_{k}(t)\right) p(t)+g_{y}\left(t, x_{k}(t), y_{k}(t)\right) q(t) .
\end{aligned}
$$

As a result we have

$$
x_{k+1}(t) \leqslant u_{k+1}(t) \quad \text { and } \quad y_{k+1}(t) \leqslant v_{k+1}(t), \quad t \in J
$$

so (7) holds.
Basing on (5) and (6) we can show that $\left(x_{k+1}, y_{k+1}\right),\left(u_{k+1}, v_{k+1}\right)$ are lower and upper solutions of problem (1), respectively.

Hence, by induction, we have

$$
\begin{gathered}
x_{0}(t) \leqslant x_{1}(t) \leqslant \ldots \leqslant x_{n}(t) \leqslant u_{n}(t) \leqslant \ldots \leqslant u_{1}(t) \leqslant u_{0}(t), \\
y_{0}(t) \leqslant y_{1}(t) \leqslant \ldots \leqslant y_{n}(t) \leqslant v_{n}(t) \leqslant \ldots \leqslant v_{1}(t) \leqslant v_{0}(t)
\end{gathered}
$$

$t \in J$, for all $n>1$, and $\left(x_{n}(t), y_{n}(t)\right),\left(u_{n}(t), v_{n}(t)\right)$ are lower and upper solutions of problem (1), respectively.

Employing Dini's theorem we can show that the sequences $\left(x_{n}, y_{n}\right),\left(u_{n}, v_{n}\right)$ converge uniformly and monotonically to the corresponding solutions of problem (1). Since problem (1) has at most one solution (x, y), so $\left(x_{n}, y_{n}\right),\left(u_{n}, v_{n}\right)$ converge to the unique solution of (1).

We shall prove that the convergence of $\left(x_{n}, y_{n}\right),\left(u_{n}, v_{n}\right)$ to (x, y) is quadratic. First, we put $p_{n+1}(t)=x(t)-x_{n+1}(t) \geqslant 0, q_{n+1}(t)=y(t)-y_{n+1}(t) \geqslant 0, t \in J$. Note that $p_{n+1}(0)=0$. Then, by the mean value theorem and the monotonicity of $f_{x}, f_{y}, g_{x} g_{y}$ we have

$$
\begin{aligned}
p_{n+1}^{\prime}(t)= & f(t, x(t), y(t))-f\left(t, x_{n}(t), y_{n}(t)\right)-f_{x}\left(t, x_{n}(t), y_{n}(t)\right)\left[x_{n+1}(t)-x_{n}(t)\right] \\
& -f_{y}\left(t, x_{n}(t), y_{n}(t)\right)\left[y_{n+1}(t)-y_{n}(t)\right] \\
= & f(t, x(t), y(t))-f\left(t, x_{n}(t), y(t)\right)+f\left(t, x_{n}(t), y(t)\right)-f\left(t, x_{n}(t), y_{n}(t)\right) \\
& -f_{x}\left(t, x_{n}(t), y_{n}(t)\right)\left[x_{n+1}(t)-x(t)+x(t)-x_{n}(t)\right] \\
& -f_{y}\left(t, x_{n}(t), y_{n}(t)\right)\left[y_{n+1}(t)-y(t)+y(t)-y_{n}(t)\right] \\
= & f_{x}\left(t, \xi_{1}, y(t)\right) p_{n}(t)+f_{y}\left(t, x_{n}(t), \delta_{1}\right) q_{n}(t) \\
& +f_{x}\left(t, x_{n}(t), y_{n}(t)\right)\left[p_{n+1}(t)-p_{n}(t)\right]+f_{y}\left(t, x_{n}(t), y_{n}(t)\right)\left[q_{n+1}(t)-q_{n}(t)\right] \\
\leqslant & {\left[f_{x}(t, x(t), y(t))-f_{x}\left(t, x_{n}(t), y(t)\right)\right.} \\
& \left.+f_{x}\left(t, x_{n}(t), y(t)\right)-f_{x}\left(t, x_{n}(t), y_{n}(t)\right)\right] p_{n}(t) \\
& +f_{x}\left(t, x_{n}(t), y_{n}(t)\right) p_{n+1}(t)+f_{y}\left(t, x_{n}(t), y_{n}(t)\right) q_{n+1}(t) \\
= & {\left[f_{x x}\left(t, \xi_{2}, y(t)\right) p_{n}(t)+f_{x y}\left(t, x_{n}(t), \delta_{2}\right) q_{n}(t)\right] p_{n}(t) } \\
& +f_{x}\left(t, x_{n}(t), y_{n}(t)\right) p_{n+1}(t)+f_{y}\left(t, x_{n}(t), y_{n}(t)\right) q_{n+1}(t),
\end{aligned}
$$

and

$$
\begin{aligned}
q_{n+1}(t)= & g(t, x(t), y(t))-g\left(t, x_{n}(t), y(t)\right)+g\left(t, x_{n}(t), y(t)\right)-g\left(t, x_{n}(t), y_{n}(t)\right) \\
& -g_{x}\left(t, x_{n}(t), y_{n}(t)\right)\left[x_{n+1}(t)-x(t)+x(t)-x_{n}(t)\right] \\
& -g_{y}\left(t, x_{n}(t), y_{n}(t)\right)\left[y_{n+1}(t)-y(t)+y(t)-y_{n}(t)\right] \\
= & g_{x}\left(t, \xi_{3}, y(t)\right) p_{n}(t)+g_{y}\left(t, x_{n}(t), \delta_{3}\right) q_{n}(t) \\
& +g_{x}\left(t, x_{n}(t), y_{n}(t)\right)\left[p_{n+1}(t)-p_{n}(t)\right]+g_{y}\left(t, x_{n}(t), y_{n}(t)\right)\left[q_{n+1}(t)-q_{n}(t)\right]
\end{aligned}
$$

$$
\begin{aligned}
\leqslant & {\left[g_{x}(t, x(t), y(t))-g_{x}\left(t, x_{n}(t), y(t)\right)+g_{x}\left(t, x_{n}(t), y(t)\right)\right.} \\
& \left.-g_{x}\left(t, x_{n}(t), y_{n}(t)\right)\right] p_{n}(t)+g_{x}\left(t, x_{n}(t), y_{n}(t)\right) p_{n+1}(t) \\
& +g_{y}\left(t, x_{n}(t), y_{n}(t)\right) q_{n+1}(t)+\left[g_{y}\left(t, x_{n}(t), y(t)\right)-g_{y}\left(t, x_{n}(t), y_{n}(t)\right)\right] q_{n}(t) \\
= & {\left[g_{x x}\left(t, \xi_{4}, y(t)\right) p_{n}(t)+g_{x y}\left(t, x_{n}(t), \delta_{4}\right) q_{n}(t)\right] p_{n}(t)+g_{y y}\left(t, x_{n}(t), \delta_{5}\right) q_{n}^{2}(t) } \\
& +g_{y}\left(t, x_{n}(t), y_{n}(t)\right) q_{n+1}(t)+g_{x}\left(t, x_{n}(t), y(t)\right) p_{n+1}(t)
\end{aligned}
$$

where $x_{n}(t)<\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}<x(t), y_{n}(t)<\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \delta_{5}<y(t)$. Hence

$$
\begin{aligned}
q_{n+1}(t) & \leqslant B_{1} p_{n}^{2}(t)+B_{2} p_{n}(t) q_{n}(t)+B_{3} q_{n}^{2}(t)+B q_{n+1}(t)+B_{4} p_{n+1}(t) \\
& \leqslant\left(B_{1}+\frac{1}{2} B_{2}\right) p_{n}^{2}(t)+\left(B_{3}+\frac{1}{2} B_{2}\right) q_{n}^{2}(t)+B q_{n+1}(t)+B_{4} p_{n+1}(t)
\end{aligned}
$$

so

$$
\begin{equation*}
q_{n+1}(t) \leqslant \frac{B_{4}}{1-B} p_{n+1}(t)+b_{1} p_{n}^{2}(t)+b_{2} q_{n}^{2}(t), \quad t \in J \tag{8}
\end{equation*}
$$

since $B<1$, where

$$
\begin{gathered}
\left|g_{x x}(t, u, v)\right| \leqslant B_{1}, \quad\left|g_{x y}(t, u, v)\right| \leqslant B_{2}, \quad\left|g_{y y}(t, u, v)\right| \leqslant B_{3} \\
\left|g_{x}(t, u, v)\right| \leqslant B_{4} \text { on } \Omega \\
b_{1}=\frac{B_{1}+\frac{1}{2} B_{2}}{1-B}, \quad b_{2}=\frac{B_{3}+\frac{1}{2} B_{2}}{1-B}
\end{gathered}
$$

Moreover, we have

$$
\begin{align*}
p_{n+1}^{\prime}(t) & \leqslant A_{1} p_{n}^{2}(t)+A_{2} p_{n}(t) q_{n}(t)+A_{3} p_{n+1}(t)+A_{4} q_{n+1}(t) \tag{9}\\
& \leqslant\left(A_{1}+\frac{1}{2} A_{2}\right) p_{n}^{2}(t)+\frac{1}{2} A_{2} q_{n}^{2}(t)+A_{3} p_{n+1}(t)+A_{4} q_{n+1}(t)
\end{align*}
$$

where $\left|f_{x x}(t, u, v)\right| \leqslant A_{1},\left|f_{x y}(t, u, v)\right| \leqslant A_{2},\left|f_{x}(t, u, v)\right| \leqslant A_{3},\left|f_{y}(t, u, v)\right| \leqslant A_{4}$ on Ω. Combining (8) and (9) we finally get

$$
p_{n+1}^{\prime}(t) \leqslant a_{1} p_{n+1}(t)+a_{2} p_{n}^{2}(t)+a_{3} q_{n}^{2}(t), \quad t \in J,
$$

where

$$
a_{1}=A_{3}+\frac{B_{4} A_{4}}{1-B}, \quad a_{2}=A_{1}+\frac{1}{2} A_{2}+A_{4} b_{1}, \quad a_{3}=\frac{1}{2} A_{2}+A_{4} b_{2} .
$$

By Gronwall's inequality, we see that

$$
\begin{aligned}
p_{n+1}(t) & \leqslant \int_{0}^{t}\left[a_{2} p_{n}^{2}(s)+a_{3} q_{n}^{2}(s)\right] \mathrm{e}^{a_{1}(t-s)} \mathrm{d} s \\
& \leqslant\left[a_{2} \max _{s} p_{n}^{2}(s)+a_{3} \max _{s} q_{n}^{2}(s)\right] c, \quad c=b \mathrm{e}^{a_{1} b}, \quad t \in J .
\end{aligned}
$$

Thus

$$
\max _{t \in J}\left|x_{n+1}(t)-x(t)\right| \leqslant c_{2} \max _{t \in J}\left|x_{n}(t)-x(t)\right|^{2}+c_{3} \max _{t \in J}\left|y_{n}(t)-y(t)\right|^{2},
$$

where $c_{i}=c a_{i}$ for $i=2,3$. Hence and by (8), we directly obtain

$$
\max _{t \in J}\left|y_{n+1}(t)-y(t)\right| \leqslant \bar{a}_{2} \max _{t \in J}\left|x_{n}(t)-x(t)\right|^{2}+\bar{a}_{3} \max _{t \in J}\left|y_{n}(t)-y(t)\right|^{2}
$$

where

$$
\bar{a}_{i}=\frac{B_{4} c_{i}}{1-B}+b_{i-1}, \quad i=2,3
$$

In the same way we can show that the convergence of $\left(u_{n}, v_{n}\right)$ to (x, y) is quadratic, so

$$
\begin{aligned}
\max _{t \in J}\left|u_{n+1}(t)-x(t)\right| \leqslant & d_{1} \max _{t \in J}\left|u_{n}(t)-x(t)\right|^{2}+d_{2} \max _{t \in J}\left|v_{n}(t)-y(t)\right|^{2} \\
& +d_{3} \max _{t \in J}\left|x_{n}(t)-x(t)\right|^{2}+d_{4} \max _{t \in J}\left|y_{n}(t)-y(t)\right|^{2}, \\
\max _{t \in J}\left|v_{n+1}(t)-y(t)\right| \leqslant & e_{1} \max _{t \in J}\left|u_{n}(t)-x(t)\right|^{2}+e_{2} \max _{t \in J}\left|v_{n}(t)-y(t)\right|^{2} \\
& +e_{3} \max _{t \in J}\left|x_{n}(t)-x(t)\right|^{2}+e_{4} \max _{t \in J}\left|y_{n}(t)-y(t)\right|^{2},
\end{aligned}
$$

where $\left|f_{y y}(t, u, v)\right| \leqslant A_{5}$ on Ω,

$$
\begin{array}{ll}
d_{1}=c\left[A_{2}+\frac{3}{2} A_{1}+A_{4} \frac{B_{2}+\frac{3}{2} B_{1}}{1-B}\right], & d_{2}=c\left[A_{2}+\frac{3}{2} A_{5}+A_{4} \frac{B_{2}+\frac{3}{2} B_{3}}{1-B}\right], \\
d_{3}=\frac{1}{2} c\left[A_{2}+A_{1}+A_{4} \frac{B_{2}+B_{1}}{1-B}\right], & d_{4}=\frac{1}{2} c\left[A_{2}+A_{5}+A_{4} \frac{B_{2}+B_{3}}{1-B}\right],
\end{array}
$$

and

$$
\begin{array}{ll}
e_{1}=\frac{B_{2}+\frac{3}{2} B_{1}+d_{1} B_{4}}{1-B}, & e_{2}=\frac{B_{2}+\frac{3}{2} B_{3}+d_{2} B_{4}}{1-B}, \\
e_{3}=\frac{1}{2} \frac{B_{2}+B_{1}+d_{3} B_{4}}{1-B}, \quad e_{4}=\frac{1}{2} \frac{B_{2}+B_{3}+d_{4} B_{4}}{1-B} .
\end{array}
$$

References

[1] J. Bahi, E. Griepentrog and J. C. Miellou: Parallel treatment of a class of differen-tial-algebraic systems. SIAM J. Numer. Anal. 33 (1996), 1969-1980.
[2] R. Bellman, R. Kalaba: Quasilinearization and Nonlinear Boundary Value Problems. American Elsevier, New York, 1965.
[3] Z. Jackiewicz, M. Kwapisz: Convergence of waveform relaxation methods for differen-tial-algebraic systems. SIAM J. Numer. Anal. 33 (1996), 2303-2317.
[4] T. Jankowski, V. Lakshmikantham: Monotone iterations for differential eguations with a parameter. J. Appl. Math. Stoch. Anal. 10 (1997), 273-278.
[5] T. Jankowski, M. Kwapisz: Convergence of numerical methods for systems of neutral functional-differential-algebraic eguations. Appl. Math. 40 (1995), 457-472.
[6] M. Kwapisz: On solving systems of differential algebraic eguations. Appl. Math. 37 (1992), 257-264.
[7] G.S. Ladde, V. Lakshmikantham and A.S. Vatsala: Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman, Boston, 1985.

Authors' addresses: Anita Dabrowicz-Tlatka, Faculty of Applied Physics and Mathematics, Technical University of Gdańsk, G. Narutowicza 11/12, 80-952 Gdańsk, Poland, e-mail: anita@sunrise.pg.gda.pl; Tadeusz Jankowski, Faculty of Applied Physics and Mathematics, Technical University of Gdańsk, G. Narutowicza 11/12, 80-952 Gdańsk, Poland, e-mail: tjank@mifgate.pg.gda.pl.

