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Abstract. A unilateral contact problem with a variable coefficient of friction is solved by
a simplest variant of the finite element technique. The coefficient of friction may depend
on the magnitude of the tangential displacement. The existence of an approximate solution
and some a priori estimates are proved.
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Introduction

The problem of a unilateral contact with Coulomb friction attracted attention of

many research workers both in engineering and mathematics. Among the numerous
literature we have chosen the paper by Licht, Pratt and Raous [7], who proposed an

efficient approximate method of solution on the basis of a simplest variant of the finite
element method. They justified the method by numerical experiments and presented

some theoretical numerical analysis, namely the proof of existence of a solution and
some conditions guaranteeing its uniqueness. They restricted themselves, however,

to a constant coefficient F of the Coulomb friction. See also the papers by Haslinger
[5], [6] for similar results.

The aim of the present paper is to extend the above-mentioned results to the
cases when the coefficient F is not constant, but depends on (i) the place (F =

*This research was supported by grant No. 201/97/0217 of the Grant Agency of the Czech
Republic.
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F (x)) or (ii) on the place and on the magnitude of the tangential displacement, i.e.

F = F (x, |uT |).
The first section contains the definition of a continuous unilateral problem of

contact with a variable coefficient of friction. In the second section an approximate

problem is formulated by means of a simple finite element technique. We prove
the existence of an approximate solution and some a priori estimates for the case

F = F (x). The proof is based on a fixed point theorem, like in [7] for F = const.
The uniqueness is guaranteed if the ratio ‖F‖2∞/h0 is sufficiently small. (Here ‖·‖∞
is the standard norm in C(ΓC) and h0 is the norm of the triangulation near the
contact boundary ΓC .)

The third section contains a proof of the existence theorem and some a priori
estimates for the case F = F (x, |uT |). We employ the same method of proof as
that used by Eck and Jarušek in [2], [3], i.e., a penalization and regularization,
followed by a successive limiting process.

1. Setting of a continuous contact problem

Let Ω ⊂ �
d , d ∈ {2, 3}, be a polyhedral domain with Lipschitz boundary ∂Ω.

Assume that
∂Ω = ΓU ∪ ΓF ∪ ΓC

is a mutually disjoint partition, ΓU , ΓF , ΓC are of positive surface measure. More-

over, let ΓC be an open subset of a straight line or of a plane

{x : x = (x1, . . . , xd−1, 0)}.

Let the body occupying the domain Ω be elastic, so that the stress-strain relations

are

(1.1) σij = aijkl ekl,

where

ekm =
1
2

(
∂uk

∂xm
+
∂um

∂xk

)

and u is the displacement vector,

aijkl = ajikl = aklij ∈ L∞(Ω),
aijkm τij τkm � α0 τij τij for all symmetric τij and a.a. x ∈ Ω,

with some positive α0. Here we use the summation convention for repeated indices
within the range {1, . . . , d}.
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The equations of equilibrium are

(1.2)
∂σij

∂xj
+ fi = 0 in Ω, 1 � i � d,

where f ∈ [L2(Ω)]d are given body forces. We consider the boundary conditions

u = 0 on ΓU ,

σijnj = (T0)i, 1 � i � d on ΓF ,

where T0 ∈ [L2(ΓF )]d are given surface tractions and n denotes the unit outward
normal vector.
On the part ΓC a unilateral contact with friction is considered:

uN � 0, σN � 0, uNσN = 0(1.3)

|σT | � F (uT )|σN |,(1.4)

uT = 0⇒ |σT | < F (0)|σN |,
uT �= 0⇒ σT = −F (uT )|σN |uT /|uT |.

Here

uN = uini, uTi = ui − uNni,

σN = σijninj , σTi = σijnj − σNni, 1 � i � d;

F is the coefficient of the Coulomb friction, such that F (uT ) ≡ F (x, |uT |) is a
bounded nonnegative function on ΓC × [0,∞) and F (x, ·) is Lipschitz continuous
for almost all x ∈ ΓC with a constant CL independent of x; F (·, ξ) has a compact
support in ΓC .
We define the subspace

V = {v ∈ [H1(Ω)]d : v = 0 on ΓU},

the subset

K = {v ∈ V : vN � 0 on ΓC},

the bilinear form

a(u, v) =
∫

Ω
aijkm eij(u) ekm(v) dx

and the linear functional

L(v) =
∫

Ω
fivi dx+

∫

ΓF

T0i vi ds.
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If ω ∈ V , σij(ω) = aijkm ekm(ω) and ∂σij(ω)/∂xj+fi = 0 in Ω, the Green formula

enables us to define a functional t(ω) = t(σ(ω)) ∈ H−1/2(ΓC) as follows:

(1.5) 〈〈t(ω), v〉〉 = a(ω,P v)− L(P v) ∀v ∈ [H1/20 (ΓC)]
d
,

where P v ∈ V is any extension of v such that P v = 0 on ΓF , and H
1/2
0 (ΓC) is the

subspace of traces of functions from H1(Ω) vanishing on ΓU ∪ ΓF .
If σij(ω) ∈ H1(Ω), the standard formula for surface stress vector holds:

ti(ω) = σij(ω)nj ∈ L2(ΓC), 1 � i � d,

and 〈〈·, ·〉〉 reduces to the inner product in [L2(ΓC)]
d.

Finally, we define the normal component of the surface stress vector

(1.6) 〈tN (ω), w〉 = 〈〈t(ω),nw〉〉 ∀w ∈ H1/20 (ΓC).

The weak solution of the contact problem is a function u ∈ K such that

(1.7) a(u, v − u)−
〈
tN (u),F (uT )(|vT | − |uT |)

〉
� L(v − u) ∀v ∈ K.

For the existence and regularity of a weak solution we refer to Eck and Jarušek

[2], [3], who considered even more general domains Ω and functions F (x, |uT |).

2. Approximate contact problem

We shall approximate the problem (1.7) by a simplest finite element technique,

i.e., by means of linear simplicial elements.
Assume that {Th}, h → 0+, is a quasi-uniform (strongly regular) family of tri-

angulations of the domain Ω (see [1], (17.13) for the definition). We introduce the
following finite element spaces on simplexes T ∈ Th:

Xh = {w ∈ C(Ω): w|T ∈ P1(T ) ∀T ∈ Th},
Vh = {w ∈ [Xh]

d : w = 0 on ΓU},
Kh = {v ∈ Vh : vN � 0 on ΓC},
X̃h = {w|ΓC : w ∈ Xh, w = 0 on ∂ΓC} = Xh|ΓC ∩H1/20 (ΓC).

The following discrete analog of the definitions (1.5), (1.6) will be used:

〈〈
th(u), ṽ

〉〉
= a(u,Rṽ)− L(Rṽ), ṽ ∈ [X̃h]d, u ∈ Vh,(2.1)

〈
thN (u), w̃

〉
=

〈〈
th(u), w̃n

〉〉
, w̃ ∈ X̃h, u ∈ Vh,(2.2)
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where R : [X̃h]d → Vh is a linear mapping such that Rṽ(ai) = ṽ(ai) at the nodes

ai ∈ ΓC and Rṽ = 0 at the other nodes of the triangulation Th.

Let Πh denote the Lagrange interpolation operator of Xh restricted to the part
ΓC of the boundary, Πh : C0(ΓC)→ X̃h, where C0 denotes the space of continuous

functions vanishing on ∂ΓC .

The approximate solution is a function uh ∈ Kh such that

(2.3) a(uh, v − uh)−
〈
thN (u

h),Πh
(
F (uh

T )(|vT | − |uh
T |)

)〉
� L(v − uh) ∀v ∈ Kh.

The main result of the section is represented by the following

Theorem 2.1. There exists at least one approximate solution uh of (2.3). Positive
constants C0 and M exist, independent of F and such that

‖uh‖1,Ω � ‖L‖−1/C0,
‖thN (uh)‖∗ � M‖L‖−1h−1/20 ,

where

C0 = inf
v∈V \{0}

a(v, v)
‖v‖21,Ω

,

‖L‖−1 is the norm of L in the dual space ([H1(Ω)]d)′; ‖·‖∗ is the norm in (X̃h)′;

‖g‖∗ = sup
ṽ∈X̃h

〈g, ṽ〉
‖ṽ‖0,ΓC

,

h0 = max
T⊂suppRṽ

(diamT ).

Let R : X̃h → Xh be the extension determined by the nodal values of z̃ ∈ X̃h on

ΓC and by zero values at the other nodes of Th.

Lemma 2.1. There exists a positive constant Ĉ, independent of h0 and such that

(2.4) ‖Rz̃‖0,Ω � Ĉh
1/2
0 ‖z̃‖0,ΓC ∀z̃ ∈ X̃h.

�����. (i) Let d = 2. Consider a triangle T1(a1a2a3), a1 = (0, 0), a2 = (a12, 0),

a3 = (a13, a23) and the barycentric coordinates

λ1 = 1− λ2 − λ3, λ2 = (x1 − a13x2/a23)/a12, λ3 = x2/a23.
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We find that

(2.5)
∫

T1

λ2i dx =
1
6
measT1 =

1
4
a23

∫ a12

0
λ̃2i dx1, i = 1, 2,

where λ̃i = λi|x2=0. Furthermore, we have

(2.6)
∫

T1

λ1λ2 dx =
1
4
a23

∫ a12

0
λ̃1λ̃2 dx1 =

1
12
measT1.

Consequently, we obtain for Rz̃ = z1λ1 + z2λ2, z̃ = z1λ̃1 + z2λ̃2

(2.7)
∫

T1

(Rz̃)2 dx =
1
4
a23

∫ a12

0
z̃2 dx1.

For the adjacent triangle T2(a1a3a4) (with a24 > 0) we derive
∫

T2

(Rz̃)2 dx =
∫

T2

z21µ
2
1(x) dx =

1
6
z21 measT2,

where µ1 is a barycentric coordinate and (2.5) has been used. Since the family of
triangulations is strongly regular,

measT2 � CmeasT1

holds with the constant C independent of h and therefore

(2.8)
∫

T2

(Rz̃)2 dx � 1
6
z21CmeasT1 � C̃z21a23

∫ a12

0
λ̃21 dx1.

Due to the regularity of the family of triangulations, there exist at mostM triangles
with the vertex a1, M being independent of h. Since a23 � h0, adding the estimates

of the type (2.7) and (2.8) we arrive at

∑

j

∫

Tj

(Rz̃)2 dx � h0

(
1
4
+MC̃

) ∫

ΓC

z̃2 dx1,

so that (2.4) follows.

(ii) d = 3. Consider a tetrahedron T1(a1, a2, a3, a4), where a1 = (0, 0, 0), a2 =
(a12, 0, 0), a3 = (a13, a23, 0), a4 = (a14, a24, a34), a34 > 0, a12 > 0. Using the

barycentric coordinates λi, we derive
∫

T1

λ2i dx =
1
5
a34

∫

T̃1

λ̃2i dx1 dx2, 1 � i � 3,(2.9)

∫

T1

λiλj dx =
1
5
a34

∫

T1

λ̃iλ̃j dx1 dx2, i �= j, 1 � i, j � 3,(2.10)
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where T̃1 = T̃1(a1, a2, a3). Then for Rz̃ =
3∑

i=1
ziλi, z̃ =

3∑
i=1

ziλ̃i, λ̃i = λi|x3=0 we
obtain

(2.11)
∫

T1

(Rz̃)2 dx =
1
5
a34

∫

T̃1

z̃2 dx1 dx2.

Next, let us consider the tetrahedron T2(a2, a3, a4, b), where b = (b1, b2, b3), b3 > 0.
We may write

(2.12)
∫

T2

(Rz̃)2 dx = z22

∫

T2

µ22 dx+ z
2
3

∫

T2

µ23 dx+ 2z2z3

∫

T2

µ2µ3 dx.

Using (2.9), we obtain

(2.13)
∫

T2

µ22 dx � 1
5
h0

∫

∆
µ̃22 dS, ∆ = ∆(a2, a3, a4).

The results of part (i) and the definition of a strongly regular family of triangulations

imply that

∫

∆
µ̃22 dS =

1
6
meas∆ � 1

12
h20 = C̃meas T̃1 = C

∫

T̃1

λ̃22 dx1 dx2.

Substituting this estimate into (2.13), we arrive at

(2.14)
∫

T2

µ22 dx � 1
5
Ch0

∫

T̃1

λ̃22 dx1 dx2.

In the same way we derive that

(2.15)
∫

T2

µ2µ3 dx � 1
5
h0

∫

∆
µ̃2µ̃3 dS =

1
60
h0meas∆ � 1

5
Ch0

∫

T̃1

λ̃2λ̃3 dx1 dx2.

There exist at most M tetrahedrons with the vertex ai, i = 1, 2, 3, where M is

independent of h. Combining the estimates (2.11), (2.12), (2.14) and (2.15), we are
led to the estimate (2.4). �

The case F = F (x).

First we introduce an auxiliary problem of unilateral contact with a given slip
stress.
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Let G be the set of positive linear functionals g on X̃h. For any g ∈ G let us define
the problem Phg to find ug ∈ Kh such that

(2.16) a(ug, v − ug) +
〈
g,Πh

(
F (|vT | − |ugT |)

)〉
� L(v − ug) ∀v ∈ Kh.

Proposition 2.1. The problem (Phg) has a unique solution for any g ∈ G.

�����. Let us denote

J1(u) =
〈
g,Πh(F |uT |)

〉
, J2(u) =

1
2
a(u, u)− L(u).

Since J1 is convex, J2 strictly convex and differentiable on Vh, the inequality in (Phg)
is equivalent to the minimization of the sum J = J1 + J2 over the set Kh.

We can show that the functional J1 is Lipschitz continuous on Vh, i.e.,

(2.17) |J1(u)− J1(v)| � Cg‖F‖∞‖u− v‖1,Ω ∀u, v ∈ Vh,

where ‖·‖∞ denotes the standard norm in C(ΓC).

Indeed, let d = 2. For any v ∈ H1(ΓC) we have

‖Πhv − v‖0,ΓC � Cπh0|v|1,ΓC

so that

(2.18) ‖Πhv‖0,ΓC � Cπh0|v|1,ΓC + ‖v‖0,ΓC .

We may write

|J1(u)− J1(v)| � ‖g‖∗
∥∥Πh

(
F (|uT | − |vT |)

)∥∥
0,ΓC

(2.19)

� ‖g‖∗‖F‖∞
∥∥Πh(| |uT | − |vT | |)

∥∥
0,ΓC

� ‖g‖∗‖F‖∞‖Πh(|wT |)‖0,ΓC

since

∣∣Πh
(
F (|uT | − |vT |)

)∣∣ � ‖F‖∞Πh
(∣∣|uT | − |vT |

∣∣) � ‖F‖∞Πh(|wT |),

where w := u− v. For wj ∈ Xh|ΓC the “inverse inequality”

(2.20) ‖wj‖1,ΓC � Ch−10 ‖wj‖0,ΓC
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holds [1]. Using (2.18), (2.20) and the Trace Theorem, we obtain

‖Πh(|wT |)‖0,ΓC � Cπh0
∣∣|w1|

∣∣
1,ΓC
+

∥∥|w1|
∥∥
0,ΓC

(2.21)

� Ch0‖w1‖1,ΓC + ‖w1‖0,ΓC

� C̃‖w1‖0,ΓC � C̃C‖w‖1,Ω.

Inserting (2.21) into (2.19), we arrive at (2.17).
Next, let d = 3. Let us consider

v := |wj |, wj ∈ Xh|ΓC , (j = 1, 2),

and realize that for any triangle K ∈ ΓC we may write (cf. [1], Theorem 3.16)

(i) ‖ΠKv − v‖20,2,K � C(measK)1−2/(2+ε)h2K |v|21,2+ε,K , ε > 0.

Since we have
∣∣∣∣
∂wj

∂xi

∣∣∣∣ =
∣∣∣∣
∂|wj |
∂xi

∣∣∣∣ a.e. in K (i, j = 1, 2),

|v|21,2+ε,K = |wj |21,2+ε,K(ii)

holds. By means of the “inverse assumption” (cf. [1], (3.2.33)), we may write

(iii) |wj |21,2+ε,K � C(h20)
2/(2+ε)−1|wj |21,2,K .

Inserting (ii) and (iii) into (i), we obtain

‖ΠKv − v‖20,2,K � Ch2K |wj |21,2,K .

Summing over all K ∈ ΓC , we arrive at the estimate

‖Πh|wj | − |wj | ‖0,ΓC � Ch0|wj |1,ΓC , j = 1, 2.

As a consequence, we have

‖Πh|wj | ‖0,ΓC � ‖wj‖0,ΓC + Ch0|wj |1,ΓC � C̃‖wj‖0,ΓC .

Since

Πh(|wT |) �
2∑

j=1

Πh(|wj |),
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we obtain

(2.21a) ‖Πh(|wT |)0,ΓC �
2∑

j=1

‖Πh(|wj |)‖0,ΓC � C̃

2∑

j=1

‖wj‖0,ΓC � C̃C‖w‖1,Ω.

Combining (2.21a) with (2.19), (2.17) follows.

As a consequence, the functional J is continuous and coercive on Vh by virtue of
Korn’s inequality and the non-negativeness of J1(u). Since the setKh is convex and

closed, a minimizer exists. The uniqueness follows from the fact that J2 is strictly
convex and J1 is convex. �

Next let us define a mapping T : G→ (Xh)′ by the formula

(2.22) T (g) = −thN (ug).

Lemma 2.2.
T (G) ⊂ G.

�����. Let w̃ ∈ X̃h, w̃ � 0. We may write

(2.23) 〈T (g), w̃〉 =
〈
−thN (ug), w̃

〉
= a

(
ug,R(−w̃n)

)
− L

(
R(−w̃n)

)
.

If v = ug+R(−w̃n), then v ∈ Kh, since (R(−nw̃))N � 0 on ΓC . From the inequality

(Phg) we deduce

a(ug,R(−w̃n)) − L(R(−w̃n)) � −
〈
g,Πh

(
F (|ugT +RT (−w̃n)| − |ugT |)

)〉
= 0,

since RT (−w̃n) = 0. Inserting this into (2.23), we obtain

〈T (g), w̃〉 � 0.

�

Lemma 2.3. The mapping T is Lipschitz continuous, i.e.,

‖T (g2)− T (g1)‖∗ � Ch
−1/2
0 ‖F‖∞‖g2 − g1‖∗,

where C is independent of h0, F , g1, g2.

�����. Denote u1 := ug1 , u
2 := ug2 and choose an arbitrary w̃ ∈ X̃h. It is

readily seen that

(2.24)
∣∣〈thN (u1)− thN (u

2), w̃
〉∣∣ = |a(u1 − u2,R(w̃n))| � C1|u1 − u2|1,Ω |Rw̃|1,Ω,
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since nj = 0 and Rj(w̃n) = 0 for 1 � j � d − 1, nd = −1, Rd(w̃n) = −Rw̃.

Lemma 2.1 and the inverse inequality for elements of Xh yield

(2.25) |Rw̃|1,Ω � C2h
−1
0 ‖Rw̃‖0,Ω � C2Ĉh

−1/2
0 ‖w̃‖0,ΓC .

Thus we have the following estimate from (2.24) and (2.25):

(2.26) ‖T (g1)− T (g2)‖∗ � C3h
−1/2
0 |u1 − u2|1,Ω.

On the other hand, the definition (2.16) and Korn’s inequality imply

C0‖u1 − u2‖21,Ω � a(u1 − u2, u1 − u2)(2.27)

�
〈
g1 − g2,Π

h
(
F (|u2T | − |u1T |)

)〉

� ‖g1 − g2‖∗
∥∥Πh

(
(|u2T | − |u1T |)F

)∥∥
0,ΓC

.

Using (2.20) and (2.21) or (2.21a), we obtain

∥∥Πh
(
F (|u2T | − |u1T |)

)∥∥
0,ΓC

� ‖F‖∞‖Πh(|wT |)
∥∥
0,ΓC

� C‖F‖∞‖u2 − u1‖1,Ω

so that (2.27) yields

(2.28) C0‖u2 − u1‖1,Ω � C‖F‖∞‖g1 − g2‖∗.

Combining (2.26) and (2.28), we arrive at

‖T (g1)− T (g2)‖∗ � C−10 C‖F‖∞h−1/20 ‖g1 − g2‖∗.

�

Lemma 2.4. There exists a constant M > 0, independent of h0 and F , such

that

‖T (g)‖∗ � M‖L‖−1h−1/20 ∀g ∈ G.

�����. Setting v := 0 in the definition (2.16) and using Korn’s inequality, we
obtain

C0‖ug‖21,Ω � a(ug, ug) � L(ug)−
〈
g,Πh(F |ugT |)

〉
� L(ug) � ‖L‖−1‖ug‖1,Ω

so that

(2.29) ‖ug‖1,Ω � C−10 ‖L‖−1
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holds for all g ∈ G. We may write

| 〈T (g), w̃〉 | = |a(ug,R(nw̃))− L(R(nw̃))|(2.30)

� C1‖ug‖1,Ω ‖Rw̃‖1,Ω + ‖L‖−1‖Rw̃‖1,Ω
� (C−10 C1 + 1)‖L‖−1‖Rw̃‖1,Ω.

On the other hand,

‖Rw̃‖1,Ω � C2h
−1
0 ‖Rw̃‖0,Ω � C2Ĉh

−1/2
0 ‖w̃‖0,ΓC

follows from the inverse inequality on the domain supp(Rw̃) and from Lemma 2.1.

Inserting this into (2.30), we arrive at

‖T (g)‖∗ � (1 + C1/C0)C3h−1/20 ‖L‖−1.

�

����� �� ������� 2.1 �	 
��� F = F (x). Let us denote

B(h0) = {g ∈ G : ‖g‖∗ � M‖L‖−1h−1/20 },

where the constant M is that of Lemma 2.4. Since the set B(h0) is bounded and
closed in the dual space (X̃h)′, B(h0) is compact and convex. By virtue of Lemma 2.3

the mapping T is continuous and T (B(h0)) ⊂ B(h0) holds by virtue of Lemma 2.4.
As a consequence, the Brouwer Theorem yields the existence of a fixed point of T .

It is easy to see that a solution of the problem (2.3) exists if and only if there
exists a fixed point of T .

The a priori estimates of Theorem 2.1 follow from (2.29) and Lemma 2.4. �

Theorem 2.2. There exists a positive constant C, independent of h0, F , and L
such that the problem (2.3) has at most one solution provided

h0 > C‖F‖2∞.

�����. If u and u are two solutions of (2.3), then

a(u, u− u)−
〈
thN (u),Π

h
(
F (|uT | − |uT |)

)〉
� L(u− u),

a(u, u− u)−
〈
thN (u),Π

h
(
F (|uT | − |uT |)

)〉
� L(u− u).

By addition, we derive that

a(u− u, u− u) +
〈
thN (u)− thN (u),Π

h
(
F (|uT | − |uT |)

)〉
� 0.
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By definitions (1.5), (1.6) we may therefore write

a(u− u, u− u) � a
(
u− u,R

(
nΠh(F (|uT | − |uT |))

))
.

Denoting w := u− u, we obtain

(2.31) C0‖w‖21,Ω � C1‖w‖1,Ω|Ud|1,Ω,

where
Ud = R

(
Πh(F (|uT | − |uT |))

)
.

Since Ud ∈ Xh, the inverse inequality and Lemma 2.1 imply

(2.32) |Ud|1,Ω � C2h
−1
0 ‖Ud‖0,Ω � C2Ĉh

−1/2
0

∥∥Πh
(
F (|uT | − |uT |)

)∥∥
0,ΓC

.

Arguing as in the derivation of the estimates (2.20), (2.21), we obtain

(2.33)
∥∥Πh

(
F (|uT | − |uT |)

)∥∥
0,ΓC

� C3‖F‖∞‖w‖1,Ω.

Combining (2.31), (2.32) and (2.33), we arrive at

(2.34) ‖w‖1,Ω � C−10 C1C2ĈC3h
−1/2
0 ‖F‖∞‖w‖1,Ω.

Let us denote C4 := C
−1
0 C1C2ĈC3 and assume that

(2.35) C4h
−1/2
0 ‖F‖∞ < 1.

Then w = 0 follows from (2.34). �

����� 2.1. It is easy to see that the mapping T defined by (2.22) is contractive

if (2.35) holds. �

3. The case F = F (x, |uT |)

Following the line of thoughts used by Eck and Jarušek in [2] and [3] for the contin-
uous problem (1.7), we shall prove Theorem 2.1. Thus we will apply a penalization

with respect to thN (u) and a regularization of the absolute values in the definition
(2.3). After that, we will pass to the limit with the parameters of regularization and

penalization.

����� 3.1. The approach of the previous section, based on the fixed point,
fails in the present case since we are not able to prove the continuity of the mapping T

outside a small ball in (X̃h)′, where the uniqueness for (Phg) is guaranteed. �
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Let us introduce the functionals

Φδ(u, v) =
∫

ΓC

Πh(δ−1[uN ]+vN ) ds,

jδ(u, v) =
∫

ΓC

Πh
(
δ−1[uN ]+F (uT )|vT |

)
ds,

where δ is a positive parameter, and the problem (Pδ): find u ∈ Vh such that

(3.1) a(u, v − u) + Φδ(u, v − u) + jδ(u, v)− jδ(u, u) � L(v − u) ∀v ∈ Vh.

Let ε > 0 and let

ϕε(t) =





|t| for |t| � ε,

−|t|
4

8ε3
+
3|t|2
4ε
+
3
8
ε for |t| � ε

be a regularization of the absolute value |t|.
We define also

jδ,ε(u, v) =
∫

ΓC

Πh
(
δ−1[uN ]+F (uT )ϕε(vT )

)
ds

and

ψδ,ε = lim
λ→0+

(
jδ,ε(u, u+ λv)− jδ,ε(u, u)

)

=
∫

ΓC

Πh
(
δ−1[uN ]+F (uT ) gradϕε(uT ) · vT

)
ds.

The regularized problem (3.1), where jδ is replaced by jδ,ε, is equivalent to the
following variational equation (Pδ,ε): find u ∈ Vh, such that

(3.2) a(u, v) + Φδ(u, v) + ψδ,ε(u, v) = L(v) ∀v ∈ Vh.

In what follows, we prove the existence of a solution of (3.2). Then passing to the
limit successively with ε→ 0+ and δ → 0+, we obtain the existence of a solution of
the problem (2.3).
Let us introduce the operators

A : Vh → V ′
h, Q : Vh → V ′

h, F : Vh → V ′
h

by the formulae

〈Au, v〉 = a(u, v), 〈Qu, v〉 = Φδ(u, v), 〈Fu, v〉 = ψδ,ε(u, v)
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and the operator T : Vh → Vh
′, T = A+Q+ F.

We can show that the operator T is continuous and coercive. To this end we need
an auxiliary

Lemma 3.1. For any u, v, w ∈ [Xh]d, we have

[uN ]+ � |uN | = |ud|,
|vT | = |v1| for d = 2 and |vT | � |v1|+ |v2| for d = 3,
|Πh(|uN |+vN )| � Πh([uN ]+|vN |) � Πh(|ud| |vd|) � ‖ud‖∞‖vd‖∞,

Πh(|uj | |wT |) � ‖uj‖∞(
d−1∑

j=1

‖wj‖∞).

����� is obvious. �

Lemma 3.2. The following assertions hold:
(i) A is continuous, linear and elliptic,
(ii) Q is continuous and 〈Qv, v〉 � 0 for all v ∈ Vh,

(iii) F is continuous and 〈Fv, v〉 � 0 for all v ∈ Vh.

�����. (i) is obvious.
(ii) Since |[a]+ − [b]+| � |a− b| holds for all a, b ∈ �, we have

| 〈Qu−Qw, v〉 | � δ−1
∫

ΓC

∣∣Πh
(
([uN ]+ − [wN ]+)vn

)∣∣ds

� δ−1
∫

ΓC

Πh(|uN − wN | |vN |) ds � Cδ−1‖ud − wd‖∞‖vd‖∞.

Hence Q is Lipschitz continuous. Since

[a]+a = ([a]+)2 � 0,

we have
〈Qv, v〉 = δ−1

∫

ΓC

Πh(|vN |+vN ) ds � 0.

(iii) We may write

| 〈Fu− Fw, v〉 | = δ−1
∣∣∣∣
∫

ΓC

{
Πh([uN ]+F (uT )∇ϕε(uT ) · vT(3.3)

−Πh([wN ]+F (wT )∇ϕε(wT ) · vT )
}
ds

∣∣∣∣

� δ−1
∫

ΓC

|Πh(J1 + J2 + J3)| ds

� δ−1
∫

ΓC

(|ΠhJ1|+ |ΠhJ2|+ |ΠhJ3|) ds,
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where

J1 = ([uN ]+ − [wN ]+)F (uT )∇ϕε(uT ) · vT ,

J2 = [wN ]+F (uT )
(
∇ϕε(uT )−∇ϕε(wT )

)
· vT ,

J3 = [wN ]+
(
F (uT )−F (wT )

)
∇ϕε(wT ) · vT .

We have ∫

ΓC

|ΠhJ1| ds � C‖F‖∞‖ud − wd‖∞‖ |vT | ‖∞,

since |∇ϕε| � 1 everywhere;

∫

ΓC

|ΠhJ2| ds � C‖F‖∞‖wd‖∞
d−1∑

j=1

‖uj − wj‖∞‖ |vT | ‖∞,

since

|∇ϕε(uT )−∇ϕε(wT )| �
3
2ε
|uT − wT |;

∫

ΓC

|ΠhJ3| ds � CCL‖wd‖∞
d−1∑

j=1

‖uj − wj‖∞‖ |vT | ‖∞

since

|F (s) −F (t)| � CL|s− t| ∀s, t ∈ [0,∞) and a.a. x ∈ ΓC .

Inserting these estimates into (3.3), we obtain

|〈Fu− Fw, v〉| � Cδ−1(3.4)

×
{
‖F‖∞‖ud − wd‖∞ + (‖F‖∞ + CL)‖wd‖∞

d−1∑

j=1

‖uj − wj‖∞
}
‖ |vT | ‖∞

where C ≡ C(ε), so that F is continuous. Finally, we have

〈Fv, v〉 = δ−1
∫

ΓC

Πh
(
[vN ]+F (vT )∇ϕε(vT ) · vT

)
ds � 0,

since

∇ϕε(vT ) · vT � 0.

In fact, the latter inequality follows from the convexity of ϕε and the fact that ϕε

attains its minimum at the origin. �
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Proposition 3.1. The problem (Pδ,ε) (3.2) has at least one solution for any

positive δ and ε.

����� follows from a general theorem—see [4], Theorem 2.5, since the operator
T = A+Q+ F is continuous and coercive by Lemma 3.2. �

Proposition 3.2. The problem (3.1) (Pδ) has at least one solution for any posi-

tive δ.

�����. Let us denote the solution of the problem (3.2) with parameters δ, ε by
uε and let us substitute v := uε in (3.2). We have

C0‖uε‖21,Ω � 〈Tuε, uε〉 = L(uε) � ‖L‖−1‖uε‖1,Ω

so that
‖uε‖1,Ω � ‖L‖−1/C0 ∀ε > 0.

There exists an element ω ∈ Vh and a sequence {εk}, k →∞, such that εk → 0 and
uk → ω hold for uk := uεk

.

The equation (3.2) is equivalent to the variational inequality

a(uk, v − uk) + Φδ(uk, v − uk) + jδ,εk
(uk, v)− jδ,εk

(uk, uk) � L(v − uk) ∀v ∈ Vh.

Let us pass to the limit with k →∞ and use Lemma 3.2. Thus we obtain

(3.5) a(uk, v − uk)→ a(ω, v − ω), L(v − uk)→ L(v − ω),

Φδ(uk, v − uk) = 〈Quk, v − uk〉 → 〈Qω, v − ω〉 = Φδ(ω, v − ω).

Next, we may write

|jδ,εk
(uk, v)− jδ(ω, v)|

� |jδ,εk
(uk, v)− jδ(uk, v)|+ |jδ(uk, v)− jδ(ω, v)|

= J1 + J2,

J1 = δ−1
∣∣∣∣
∫

ΓC

Πh
(
[ukN ]+F (ukT )

(
ϕεk
(vT )− |vT |

))
ds

∣∣∣∣

� δ−1‖F‖∞
∫

ΓC

Πh
(
|ukN |

∣∣ϕεk
(vT )− |vT |

∣∣) ds

� Cδ−1‖F‖∞εk‖ukd‖∞ → 0,

since ∣∣ϕεk
(vT )− |vT |

∣∣ � εk;
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J2 � δ−1
∫

ΓC

∣∣Πh
(
([ukN ]+ − |ωN |)F (ukT )|vT |

)∣∣ ds

+ δ−1
∫

ΓC

∣∣Πh
(
[ωN ]+

(
F (ukT )−F (ωT )

)
|vT |

)∣∣ ds

� Cδ−1
{
‖F‖∞‖ukd − ωd‖∞ + CL‖ωd‖∞

d−1∑

j=1

‖ukj − ωj‖∞
}
‖ |vT | ‖∞ → 0.

As a consequence, we get

(3.6) jδ,εk
(uk, v)→ jδ(ω, v).

In a similar way, we can write

|jδ,εk
(uk, uk)− jδ(ω, ω)| � |jδ,εk

(uk, uk)− jδ,εk
(uk, ω)|+ |jδ,εk

(uk, ω)− jδ(ω, ω)|
= J3 + J4.

From (3.6), J4 → 0 follows immediately. Finally, we have

J3 = δ−1
∣∣∣∣
∫

ΓC

Πh
(
[ukN ]+F (ukT )

(
ϕεk
(ukT )− ϕεk

(ωT )
))
ds

∣∣∣∣(3.7)

� Cδ−1‖F‖∞‖ukd‖∞
d−1∑

j=1

‖ukj − ωj‖∞ → 0

using Lemma 3.1 and the estimate

|ϕεk
(ukT )− ϕεk

(ωT )| � | |ukT | − |ωT | | � |ukT − ωT |.

Combining (3.5)–(3.7), we arrive at the inequality

a(ω, v − ω) + Φδ(ω, v − ω) + jδ(ω, v)− jδ(ω, ω) � L(v − ω).

As a consequence, ω is a solution of the problem (Pδ) (3.1). �

Next let us consider a solution u := uδ of the problem (3.1) with a parameter δ
and substitute v := 0 into (3.1). Then

a(u, u) + Φδ(u, u) � jδ(u, 0)− jδ(u, u) + L(u),

Φδ(u, u) = δ−1
∫

ΓC

Πh([uN ]2+) ds,

jδ(u, 0)− jδ(u, u) = − jδ(u, u) = −δ−1
∫

ΓC

Πh
(
[uN ]+F (uT )|uT |

)
ds � 0.
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We arrive at the estimate

(3.8) C0‖u‖21,Ω + δ−1
∫

ΓC

Πh([uN ]2+) ds � ‖L‖−1‖u‖1,Ω

and at

Lemma 3.3. There exists a positive constant C independent of δ and such that

‖uδ‖1,Ω + δ−1
∫

ΓC

Πh([uδN ]2+) ds � C

holds for all solutions uδ of the problem (3.1).

�����. The estimate (3.8) yields that

(3.9) ‖uδ‖1,Ω � ‖L‖−1/C0,

and inserting this into the right-hand side of (3.8) we get

δ−1
∫

ΓC

Πh([uδN ]2+) ds � ‖L‖2−1/C0.

�

As a consequence of Lemma 3.3, there exist u ∈ Vh and a sequence {δk}, k →∞,
such that δk → 0 and

(3.10) uk := uδk
→ u.

Let us denote

Gk = δ
−1
k [ukN ]+

and define functionals Gk ∈ (X̃h)′ as follows:

〈Gk, ψ〉 =
∫

ΓC

Πh(Gkψ) ds, ψ ∈ X̃h.

Each Gk is linear and bounded, since

| 〈Gk, ψ〉 | � C‖Gk‖∞‖ψ‖∞.

Let
‖Gk‖′ = sup 〈Gk, ψ〉 /‖ψ‖∞ for ψ ∈ X̃h \ {0}.

375



Lemma 3.4. There exists a positive constant C such that

‖Gk‖′ � C ∀k � 1.

�����. Let us insert

v = uk ±R(ψn), ψ ∈ X̃h

into (3.1), where R is the mapping from (2.1). We obtain

(3.11) a(uk,R(ψn)) + Φδk
(uk,R(ψn)) = L(R(ψn)),

since (R(ψn))T = 0 and therefore

jδk
(uk, uk ±R(ψn)) = jδk

(uk, uk).

The equation (3.11) implies that

|Φδk
(uk,R(ψn))| = |L(R(ψn)) − a(uk,R(ψn))|(3.12)

� (‖L‖−1 + C1‖uk‖1,Ω)‖R(ψn)‖1,Ω
� C4‖Rψ‖1,Ω � C5‖ψ‖0,ΓC ,

where Lemma 3.3, the definition of R, the inverse inequality and Lemma 2.1 have
been used. Since (R(ψn))N = ψ, (3.12) and the definition of Φδ imply that

| 〈Gk, ψ〉 | = |Φδk
(uk,R(ψn))| � C6‖ψ‖∞,

where C6 does not depend on δ. �

����� �� ������� 2.1. By Lemma 3.4, there exist a functional G ∈ (X̃h)′

and a subsequence {Gm} ⊂ {Gk} such that

(3.13) Gm → G in (X̃h)′.

Choose an arbitrary v ∈ Kh. Since vN � 0 on ΓC , we have

Φδm(um, v − um) = δ−1m

∫

ΓC

Πh
(
[umN ]+(vN − umN )

)
ds

� − δ−1m

∫

ΓC

Πh
(
[umN ]+umN

)
ds � 0.
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As a consequence, we may write

(3.14) a(um, v − um) + jδm(um, v)− jδm(um, um) � L(v − um).

Passing to the limit with m→∞ and using (3.10), we obtain

a(um, v − um)→ a(u, v − u), L(v − um)→ L(v − u).

Next, we have

jδm(um, v)− jδm(um, um) =
∫

ΓC

Πh
(
GmF (umT )(|vT | − |umT |)

)
ds

=
∫

ΓC

Πh
(
Gm

(
F (umT )−F (uT )

)
(|vT | − |umT |)

)
ds

+
∫

ΓC

Πh
(
GmF (uT )(|vT | − |uT |)

)
ds

+
∫

ΓC

Πh
(
GmF (uT )(|uT | − |umT |)

)
ds

= J1 + J2 + J3.

For any ϕ ∈ C(ΓC) we may write

∫

ΓC

Πh(Gmϕ) ds =
∫

ΓC

Πh(GmΠ
hϕ) ds =

〈
Gm,Π

hϕ
〉
.

Therefore, J1 can be estimated as

|J1| =
∣∣〈Gm,Πh

((
F (umT )−F (uT )

)
(|vT | − |umT |)

)〉∣∣

� C‖Πh
(
(F (umT )−F (uT ))(|vT | − |umT |)

)
‖∞

� CCL‖ |umT | − |uT | ‖∞‖ |vT | − |umT | ‖∞ → 0,

using also Lemma 3.4.
On the basis of (3.13) we obtain

J2 =
〈
Gm,Πh

(
F (uT )(|vT | − |uT |)

)〉
→

〈
G ,Πh

(
F (uT )(|vT | − |uT |)

)〉
.

Finally,

|J3| =
〈
Gm,Π

h
(
F (uT )(|uT | − |umT |)

)〉
� C‖F‖∞‖ |uT | − |umT | ‖∞ → 0.

Employing these results in the limiting process of (3.14), we arrive at

(3.15) a(u, v − u) +
〈
G ,Πh

(
F (uT )(|vT | − |uT |)

)〉
� L(v − u).
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Lemma 3.3 yields the estimate
∫

ΓC

Πh([umN ]2+) ds � Cδm.

Passing to the limit, we obtain
∫

ΓC

Πh([uN ]2+) ds = 0,

so that [uN ]+ = 0 at all nodes of the triangulation of ΓC . Since uN ∈ Xh|ΓC , we
have uN � 0 everywhere on ΓC and u ∈ Kh follows.

Let us set
v = um ±R(ψn),

where ψ = Πhϕ and ϕ ∈ C0(ΓC) as in the proof of Lemma 3.4. The definition of Φδ

and (3.11) imply that

Φδm(um,R(ψn)) = 〈Gm, ψ〉 = L(R(ψn)) − a(um,R(ψn)).

Passing to the limit and using the definition (2.1), (2.2), we obtain

(3.16) 〈G , ψ〉 = L(R(ψn)) − a(u,R(ψn)) = −
〈
thN (u), ψ

〉
.

If we set

ψ = Πh
(
F (uT )(|vT | − |uT |)

)
,

the inequality (3.15) can be rewriten as

a(u, v − u)−
〈
thN (u),Π

h
(
F (uT )(|vT | − |uT |)

)〉
� L(v − u).

Thus u is a solution of the problem (2.3). The estimate

‖u‖1,Ω � ‖L‖−1/C0

is an immediate consequence of (3.10) and (3.9).
From (3.16) we deduce

∣∣ 〈
thN (u), ψ

〉 ∣∣ � (‖L‖−1 + C1‖u‖1,Ω)‖R(ψn)‖1,Ω
� (1 + C1C−10 )‖L‖−1Ch

−1/2
0 ‖ψ‖0,ΓC

as in the proof of Lemma (2.4). Consequently,

‖thN (u)‖∗ � Mh
−1/2
0 ‖L‖−1

follows. �
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