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STEADY PLANE FLOW OF VISCOELASTIC FLUID
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Antonín Novotný, Toulon-La Garde, Milan Pokorný, Prague
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Abstract. We consider the steady plane flow of certain classes of viscoelastic fluids in
exterior domains with a non-zero velocity prescribed at infinity. We study existence as well
as asymptotic behaviour of solutions near infinity and show that for sufficiently small data
the solution decays near infinity as fast as the fundamental solution to the Oseen problem.

Keywords: viscoelastic fluid, Oseen problem, steady transport equation, weighted esti-
mates
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0. Introduction

We study the steady flow of certain classes of viscoelastic fluids past an obstacle in
two space dimensions. We consider a class of viscoelastic fluids for which the extra
stress tensor T satisfies

(0.1) T+ λ
DaT
Dt
+B(D,T) = 2ηD,

where

(0.2)
DaT
Dt

= (v · ∇)T+TW −WT− a(DT+TD)

represents the objective derivative of a symmetric tensor in the stationary case, v(x)
is the velocity of the fluid at the point x, D is the symmetric part andW the skew

*This work was partly supported by the program of Ministry of Education of the Czech
Republic and France, Barrande No. 99004-1. M. Pokorný was further partly supported
by the Council of Czech Government J14/98:153100011.

231



part of the gradient of velocity, B(D,T) will be in our case a bilinear tensor-valued
function, λ characterizes the relaxation time, η > 0 is the viscosity and a ∈ [−1; 1]
is a given real parameter (see e.g. [1] for another possible choices of B and for
characterizations of other models of viscoelastic fluids).
We will assume that the fluid occupies an exterior domain Ω in �2 ; without loss

of generality we may take �2 \ Ω ⊂ B1(0) and 0 ∈ �2 \ Ω.
Further, let v = 0 at ∂Ω and v→ v∞ = |v∞|e1 as |x| → ∞, where e1 is the unit

vector in the direction of the x1-axis. Throughout the paper the constant velocity
at infinity v∞ will be non-zero but small. We denote u = v − v∞ and |v∞| = β.
Similarly as in [9] we put (0.1) and (0.2) into the general equations describing the
steady flow of a fluid and using the idea of Renardy (see [11]) we end up with

−∆u+R′β
∂u
∂x1
+∇π

= f +∇ ·
[
W ′F(∇u,T)−R′W ′((u · ∇)u)⊗ u−R′u⊗ u−R′W ′β2

∂u
∂x1

⊗ e1

−R′W ′β
( ∂u

∂x1
⊗ u+ ((u · ∇)u)⊗ e1

)
+W ′f ⊗ (u+ βe1) +W ′p(∇u)T

]
,

(0.3)

∇ · u = 0,(0.4)

u = −βe1 on ∂Ω,(0.5)

u→ 0 as |x| → ∞,

π = p+W ′((u+ βe1) · ∇)p,(0.6)

T+W ′((u+ βe1) · ∇)T+W ′G(∇u,T) = 2D(u).(0.7)

Here p(x) denotes the pressure of the fluid at the point x, f is the external force.
The bilinear functions F and G are defined by

F(∇u,T) = −T(∇u)T − (TW −WT) + a(DT +TD)−B(D,T),

G(∇u,T) = (TW −WT)− a(DT+TD) +B(D,T),

where W ′ = λ/L, R′ = �L/η, L is the diameter of the obstacle. Unlike the three-
dimensional case, we cannot get the asymptotic structure of the solution without the
assumption |v∞| = β sufficiently small. Thus it is not convenient to write the system
in dimensionless form with W ′ replaced by the Weisenberg number W = λβ/L, R′

by the Reynolds number R = �βL/η, assume only these two numbers small and
take β = 1. Since for β sufficiently small there are no further restrictions on the size
of R′ and W ′, in what follows we put R′ = 1, W ′ = 1. Let us also note that in the
existence part (i.e. in Section 2) we could, similarly as in [9], get the existence of a
solution for R and W small, without any further restriction on the size of β. But,
unlike [9], we would have to assume the external force f to be small.
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We linearize the system (0.3)–(0.7) around u = 0. Denoting A(u) = −∆u +
β2∂2u/∂x21 we introduce an operator

M : (w, s) �→ (u, π),

as the solution operator of the system

A(u) + β
∂u
∂x1
+∇π

= f +∇ ·
[
F(∇w,T) − ((w · ∇)w)⊗w −w ⊗w

− β
( ∂w

∂x1
⊗w + ((w · ∇)w)⊗ e1

)
+ f ⊗ (w + βe1) + p(∇w)T

]
,

(0.8)

∇ · u = 0,(0.9)

u→ 0 as |x| → ∞,(0.10)

u = −βe1 on ∂Ω,

p+ ((w + βe1) · ∇)p = s,(0.11)

T+ ((w + βe1) · ∇)T+G(∇w,T) = 2D(w).(0.12)

We have decomposed the original problem into two kinds of standard problems;
the Oseen-like problem (0.8)–(0.10) and the steady transport equations (0.11)–(0.12).
Similarly as in three dimensions (see [9]), our aim is to show that at least for small

data the solution decays as fast as the fundamental solution to the Oseen problem.
A similar result is in the two-dimensional case known e.g. for the incompressible
(see [12]) or compressible (see [2]) Navier-Stokes equations. Denoting s(x) = |x|−x1
we would like to prove that

|u1(x)| � C|x|− 1
2 (1 + s(x))−

1
2 ,(0.13)

|u2(x)| � C|x|−1

for |x| sufficiently large.
While (0.13)1 will be shown below, instead of (0.13)2 we show only

|u2(x)| � C|x|−1|ln(2 + |x|)|−1.

The situation is the same as in the case of the incompressible Navier-Stokes equations
(see [12]). It is connected with the technique of estimates of certain convolutions and,
at least using this technique, it seems not to be possible to get rid of the additional
logarithmic term.
Similarly to the three-dimensional case, the Lp weighted estimates (Theorem 1.6)

do not allow to consider instead of the modified Oseen problem (0.8)–(0.10) the
(classical) Oseen problem, i.e. with A(u) = −∆u.
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1. Linear problems, basic estimates

Throughout the paper we use standard notation for the Lebesgue spaces Lp(Ω)
together with the norm ‖ · ‖p, the Sobolev spaces W k,p(Ω) with the norm ‖ · ‖k,p,
the homogeneous Sobolev spaces Dk,p(Ω) with the norm | · |k,p and the spaces of
continuously differentiable functions Ck(Ω) with the norm ‖ · ‖Ck . Moreover, let
g ∈ L1loc(Ω) be a non-negative weight. Then Lp(Ω; g) denotes the weighted Lp space
equipped with the norm

(1.1) ‖u‖p,(g) = ‖ug‖p.

Similarly, the space W k,p(Ω; g) denotes the space of weakly differentiable functions
for which the norm

‖u‖k,p,(g) = ‖ug‖k,p

is finite.
We have decomposed the original problem into two kinds of linear problems: the

(modified) Oseen problem and the steady transport equation. We will recall several
known properties of these problems in exterior plane domains. Let us start with the
former.
We denote by (Oµ, e) the fundamental solution to the modified Oseen problem

(i.e. solution of

−
[
∆− µ

∂2

∂y21
+ 2λ

∂

∂y1

]
Oµ

ij(x− y; 2λ)−
∂

∂yi
ej(x− y) = δijδx,

∂Oµ
ij(x− y; 2λ)

∂yi
= 0

in the sense of distributions). It can be verified that its asymptotic structure is the
same as the asymptotic structure of the fundamental solution to the classical Oseen
problem (see [3] or also [10]). Thus we have

e = ∇E(x)

with E(x) the fundamental solution to the Laplace equation. The tensor Oµ satisfies
the homogeneity property

Oµ(x;λ) = Oµ(λx; 1)

and therefore it is sufficient to study only the case λ = 1.
For small |x| we have

Oµ(x; 1) = S(x) +R(x),
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where S denotes the singular part of Oµ (i.e. DαS for |α| = 2 is a singular integral
kernel, see [3]) and

∣∣R(x)
∣∣ � C,

DαR(x) �
{

C ln |x|, |α| = 1,
C|x|−|α|+1, |α| � 2





for |x| → 0.

Denote further s(x) = |x| − x1. For |x| → ∞ we have1

Oµ
11(x; 1) � C|x|− 1

2 (1 + s(x))−
1
2 ,

Oµ
ij(x; 1) � C|x|−1 i+ j � 3,

∂Oµ
11

∂x2
(x; 1) � C|x|−1(1 + s(x))−1,

∂Oµ
ij

∂xk
(x; 1) � C|x|− 3

2 (1 + s(x))−
1
2 , (i, j, k) 	= (1, 1, 2),

∇2Oµ(x; 1) � C|x|− 3
2 (1 + s(x))−

3
2 .

Next, let us consider the problem

−∆u+ µ
∂2u
∂x21
+ β

∂u
∂x1
+∇π = f = ∇ · G,(1.2)

∇ · u = 0,
u = u∗ on ∂Ω,

u→ 0 as |x| → ∞

with Ω an exterior domain in �2 , 0 � µ < 1.
Using a similar procedure as for the classical Oseen problem we can show (see [10],

note that µ = β2 in our case; compare also with [4] or [7]).

Theorem 1.1. Let f ∈ Lq(Ω) ∩W k,p(Ω), 1 < q < 6
5 , 1 < p < ∞, k � 0, let Ω

be a plane exterior domain of class Ck+2, u∗ ∈ W k+2− 1
p ,p(∂Ω) ∩W 2− 1

q ,q(∂Ω). Let
µ(β) � C|ln β|−1 for β → 0+. Then there exists a unique strong solution to the
modified Oseen problem (1.2) (u, π) and it satisfies

β(‖u2‖ 2q
2−q
+ ‖∇u2‖q) + β

2
3 |u| 3q

3−2q
+ β

1
3 ‖∇2u‖ 3q

3−q

� C(‖f‖q + β2(1−
1
q )|lnβ|−1‖u∗‖2− 1

q ,q,(∂Ω)),

β2(1−
1
q )(‖∇2u‖q + ‖∇π‖q + |∇2u|k,p + ‖∇π‖k,p)

� C
(
‖f‖q + β2(1−

1
q )(‖f‖k,p + ‖u∗‖2− 1q ,q,(∂Ω) + ‖u∗‖k+2− 1

p ,p,(∂Ω))
)
.

The constant C depends on k, q, p, Ω and, for β ∈ (0;B], only on B.

1Although in some cases we can get better uniform behaviour, we do not use it and thus
we will not write it out explicitly.
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For obtaining weighted estimates we will use the integral representation of solu-
tions to (1.2) constructed in Theorem 1.1.
Let us denote

Tij(u, π) =
∂ui

∂xj
+

∂uj

∂xi
− πδij − µδ1j

∂ui

∂x1
,(1.3)

Tij(e) =
∂ei

∂xj
+

∂ej

∂xi
+ βe1δij + µ

∂e1
∂x1

δij − µδ1j
∂ei

∂x1
.

Theorem 1.2. Let Ω ∈ C2 be a plane exterior domain, G ∈ C∞
0 (Ω) and let

(u, π) be the unique solution to the Oseen problem (1.2). Let T be defined in (1.3)1,
let (Oµ, e) be the fundamental solution to the modified Oseen problem. Then

uj(x) =
∫

Ω

∂

∂xk
Oµ

ij(x− y;β)Gik(y) dy(1.4)

+
∫

∂Ω
[−βOµ

ij(x− y;β)ui(y)δ1k + ui(y)Tik(Oµ
·j , ej)(x− y;β)

+Oµ
ij(x− y;β)Tik(u, π)(y) +Oµ

ij(x − y;β)Gik(y)]nk(y) dS

Dαuj(x) = A(1),αj (G)−
∫

Ω
Dα ∂Rij(x− y;β)

∂xk
Gik(y) dy(1.5)

+
∫

∂Ω
[−βDαOµ

ij(x− y;β)ui(y)δ1k

+ ui(y)DαTik(Oµ
·j , ej)(x− y;β)

+DαOµ
ij(x − y;β)Tik(u, π)(y)

+DαOµ
ij(x − y;β)Gik(y)]nk(y) dS

if |α| = 1,

Dαuj(x) = A(2),αj (∇ · G) +
∫

Ω
DαRij(x− y;β)

∂Gik(y)
∂yk

dy(1.6)

+
∫

∂Ω
[−βDαOµ

ij(x− y;β)ui(y)δ1k

+ ui(y)DαTik(Oµ
·j , ej)(x − y;β)

+DαOµ
ij(x− y;β)Tik(u, π)(y)]nk(y) dS

if |α| = 2, where A(i),αj are operators which map Lq(Ω) into Lq(Ω), Lq(Ω; g) into
Lq(Ω; g) for 1 < q < ∞ and g � 0 are weights from the Muckenhoupt class Aq.

Let us recall that a weight g belongs to the Muckenhoupt class Ap, 1 < p < ∞ if
there exists a constant C such that for cubes Q in �2 we have

sup
Q

[(
1
|Q|

∫

Q

gp(x) dx
)(

1
|Q|

∫

Q

g(x)−
p

p−1 dx
)p−1]

� C < ∞.
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Corollary 1.1. The integral representation formulas in Theorem 1.2 hold for
a.a. x ∈ Ω if v ∈ W 2,q

loc (Ω), π ∈ W 1,q
loc (Ω) for some 1 < q < ∞ and

a) (1.4) if G ∈ Lq(Ω), ∇ · G ∈ Lr
loc(Ω), 1 < q < 3, 1 < r < ∞,

b) (1.5) if G ∈ Lq(Ω), ∇ · G ∈ Lr
loc(Ω), 1 < q, r < ∞,

c) (1.6) if ∇ · G ∈ Lq(Ω), 1 < q < ∞.

Similarly, for the pressure we have

Theorem 1.3. Let Ω ∈ C2 be a plane exterior domain, G ∈ C∞
0 (Ω) and let

(u, π) be the unique solution to the Oseen problem (1.2). Let Til(e) be defined in
(1.3)2 and Tij(u, π) in (1.3)1. Then2

π(x) = v.p.
∫

Ω

∂ei(x− y)
∂xk

Gik(y) dy + cikGik(x)(1.7)

+
∫

∂Ω
[−βei(x− y)ui(y)δ1l + ui(y)Til(e)(x − y)

+ ei(x− y)Til(u, π)(y) + ei(x− y)Gil(y)]nl(y) dyS,

∂π(x)
∂xj

= v.p.
∫

Ω

∂ei(x− y)
∂xj

∂

∂yk
Gik(y) dy + cij

∂Gik(x)
∂xk

(1.8)

+
∫

∂Ω

[
−β

∂ei(x− y)
∂xj

ui(y)δ1l + ui(y)
∂

∂xj
Til(e)(x− y)

+
∂ei(x− y)

∂xj
Til(u, π)(y)

]
nl(y) dyS.

Corollary 1.2. The integral representation in Theorem 1.3 holds a.e. in Ω if
v ∈ W 2,q

loc (Ω), π ∈ W 1,q
loc (Ω) for some 1 < q < ∞ and

a) (1.7) if G ∈ Lq(Ω), ∇ · G ∈ Lr
loc(Ω), 1 < q, r < ∞,

b) (1.8) if ∇ · G ∈ Lq(Ω), 1 < q < ∞.

In order to capture the asymptotic structure of solutions to the original problem
(especially the existence of the wake region), we will use the anisotropic weights

ηA
B(x) = (1 + |x|)A(1 + s(x))B ,

νA
B(x) = |x|A(1 + s(x))B ,

µA,ω
B (x) = ηA−ω

B (x)νω
0 (x),

ηA
B(x;β) = (1 + |βx|)A(1 + s(βx))B ,

νA
B (x;β) = |x|A(1 + s(βx))B ,

µA,ω
B (x;β) = ηA−ω

B (x;β)νω
0 (x;β).

2 v.p. in front of an integral means that the integral is taken in the principal value sense.
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with real exponents A, B. In some cases, disturbing logarithmic terms appear. Thus
we denote

ηE
F (x;β) = ηE

F (x;β)P (ln
−1 |βx|),

where P (·) denotes a polynomial of zero, first or second degree, depending on the fact
whether a logarithmic term appears or not, see the theorems below. Analogously for
νE

F (x;β).
We will use the following estimates proved in [5]; B∗ = min(B, 12 ) and ∂k denotes

the k-th component of the gradient, i.e. the derivative with respect to xk.

Theorem 1.4. Let A + B > 1/2, (A + B)∗ > 1/2, and i, j = 1, 2. Then for
f ∈ L∞(�; ηA

B (·;β)) we have ∂2Oµ
11(·;β) ∗ f ∈ L∞(�; ηE

F (·;β)), where3

E =





A− 1
2 for − 1

2 < A � 3
2 , A � B + 1, B � 0,

1 for A+B∗ � 2,
A+B − 1

2 for B < 0, A+B � 1,
1
2 (A+B) for B � A− 1, 1 � A+B � 2,

E + F =





A+B∗ for − 1
2 < A � 3

2 , B � 1,
A+B − 1

2 for A+B � 5
2 , B � 1,

2 for A+B � 5
2 , A � 3

2 ,

with logarithmic factors

ln+(β|x|) for





A+B∗ = 2,

A = B + 1, 0 � B � 1
2 ,

A+B = 1, B � 0,

ln+(βs(x)) for A+B = 1, 0 < B � 1.

Moreover, we have

‖∂2Oµ
12(·;β) ∗ f‖∞,(ηE

F (·;β)),�2 � Cβ−1‖f‖∞,(ηA
B(·;β)),�2.

Let in addition A, B satisfy the following conditions:

1
2 < A < 2, B � − 12 , A � B + 2.

3 The proof in [5] is done for the (classical) Oseen problem, i.e. µ = 0; nevertheless, as
follows from [3], the results are applicable also to the case 0 � µ < 1, i.e. to the modified
Oseen problem.

238



Then f ∈ L∞(�2 ; νA
B(·;β)) we have ∂2Oµ

11 ∗ f ∈ L∞(�2 ; νE
F (·;β)) and

‖∂2Oµ
11(·;β) ∗ f‖∞,(νE

F (·;β)),�2 � Cβ−1+A−E‖f‖∞,(νA
B(·;β)),�2.

Theorem 1.5. Let A+B∗ > 0 and R = |∂kOij |, i, j, k = 1, 2, except of |∂2O11|.
Then for f ∈ L∞(�2 ; ηA

B(·;β)) we have R ∗ f ∈ L∞(�2 ; ηE
F (·;β)), where

E =





3
2 for A+B∗ � 2,
A for A � 3

2 , B � 0, A � B + 1,
1
2 (A+B + 1) for 1 � A+B � 2, A � B + 1,

A+B for B � 0, A+B � 1,

E + F =

{
2 for A+B∗ � 2,
A+B∗ for A+B∗ � 2,

with logarithmic factors
ln+(λ|x|) for A+B∗ � 2.

Moreover, we have

‖ |∂kOij(·;β)| ∗ f‖∞,(ηE
F (·;β)),�2 � Cβ−1‖f‖∞,(ηA

B(·;β)),�2.

Let in addition A, B satisfy the following conditions:

0 � A < 2, B � −1.

Then for f ∈ L∞(�2 ; νA
B (·;β)) we have R ∗ f ∈ Lp(�2 ; νE

F (·;β)) and

‖ |∂kOij(·;β)| ∗ f‖∞,(νE
F (·;β)),�2 � Cβ−1+A−E‖f‖∞,(νA

B(·;β)),�2.

Theorem 1.6. Let T be an integral operator defined by the volume terms in (1.5)
or (1.6) and let 1 < p < ∞. Then T is a well defined continuous operator

a) Lp(�2 ; ηA+1/2
B (·;β)) �−→ Lp(�2 ; ηA+1/2−ε

B (·;β))

for max{−1/(2p),−ε(p− 1)/p} < B < 1/2 − 1/(2p), −1/2− 1/p− ε/p < A + B <

3/2−2/p, A−B < 1/2−1/p+ε+ε(p−1)/p,−1−1/(2p)−ε/p < A < 1−3/(2p)+ε,
0 < ε � 1/2;

b) Lp(�2 \ B, µ
A+1/2,kω
B (·;β)) �−→ Lp(�2 \ B, µ

A+1/2−ε,ω
B (·;β))
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for max{−1/(2p),−ε(p− 1)/p} < B < 1/2 − 1/(2p), −1/2− 1/p− ε/p < A + B <

3/2−2/p, −1−1/(2p)−ε/p < A < 1−3/(2p)+ε, A−B < 1/2−1/p+ε+ε(p− 1)/p,
0 < ε � 1/2, ω < min(1/(2k) + A/k, A + 1/2 − ε), B ⊂ �

2—an arbitrary domain,
0 ∈ B, k ∈ �0 .
Moreover, we have for A, B specified in a) and b), respectively,

‖Tf‖
p,(ηA+1/2−ε

B (·;β)),�2 � C‖f‖
p,(ηA+1/2

B (·;β)),�2

and

‖Tf‖
p,(µA+1/2−ε,ω

B (·;β)),�2\B � Cβ(k−1)ω‖f‖
p,(µA+1/2,kω

B (·;β)),�2\B.

Theorem 1.7. Let

Tf(x) =
∂

∂xi

∫

�N

∂E(x− y)
∂xj

f(y) dy, i, j = 1, . . . , N,

f ∈ C∞
0 (�

N ), where E denotes the fundamental solution to the Laplace equation.
Let 1 < p < ∞ and let g stand for one of the weights ηA

B , ν
A
B or µA,ω

B . Let A, B, ω
be such that g is an Ap weight in �N . Then T maps C∞

0 (�
N ) into Lp(�N ; g) and

we have
‖Tf‖p,(g),�N � C‖f‖p,(g),�N .

T can be therefore continuously extended onto Lp(�N ; g).4 Especially, for kω < A

(ω < A if k = 0), 0 ∈ B ⊂ �
N , k ∈ �0 we have

‖Tf‖p,(µA,ω
B (·;β)),�N\B � Cβ(k−1)ω‖f‖p,(µA,kω

B (·;β)),�N\B.

In two space dimensions we have

Theorem 1.8.
(i) Let −1/2 < Bp < 1/2(p− 1), −2 < (A +B)p < 2(p− 1). Then the weight ηA

B

is an Ap weight in �2 for p ∈ (1;∞).
(ii) Let −1/2 < Bp < 1/2(p−1), −2 < (A+B)p < 2(p−1), −2 < Ap < 2(p−1) and
0 � ω � A. Then the weights νA

B and µA,ω
B are Ap weights in �2 for p ∈ (1;∞).

Further we consider the steady transport equation

(1.9) z +w · ∇z + az = f

4More precisely, to the closure of C∞(�N ) in the norm ‖·‖p,(g). But, as shown e.g. in [13],

this space coincides with Lp(�N ; g).
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in Ω. Although the equation (1.9) is scalar, everything below holds also for the vector
case. For the proofs see [6].

Theorem 1.9. Let Ω ∈ C0,1 be an exterior domain, a ∈ Ck−1(Ω), w ∈ Ck(Ω),
w · n = 0 on ∂Ω, ∇ka ∈ Lq(Ω), kq > 2, f ∈ W k,q(Ω). Then there exists α > 0 such
that if

‖a‖Ck−1 + ‖∇w‖Ck−1 + ‖∇ka‖q < α,

then there exists a unique solution z ∈ W k,q(Ω) to (1.9) satisfying the estimate

‖z‖k,q � C(α)‖f‖k,q.

Another situation is considered in

Theorem 1.10. Let Ω ∈ C0,1 be an exterior domain, a ∈ C(Ω), w ∈ C1(Ω),
w · n = 0 on ∂Ω, ∇a ∈ L2(Ω), f ∈ Lp(Ω) ∩D1,q(Ω), 1 < q < 2, 1 < p < ∞. Then
there exists α > 0 such that if

‖a‖C0 + ‖∇w‖C0 + ‖∇a‖2 < α,

then there exists a unique solution z ∈ D1,q(Ω) ∩ Lp(Ω) to (1.9) satisfying the
estimates

|z|1,q � C(α)|f |1,q,
‖z‖p � C(α)‖f‖p.

Let the weight g be such that W k,q(Ω; g) ⊂ W k,q(Ω). Then we have

Theorem 1.11. Let k, q, Ω, a, w and f satisfy the assumptions of Theo-
rem 1.9 (ii). Moreover, let g ∈ Ck(Ω) be a positive weight and let

‖w · ∇ ln g‖Ck−1 + |w · ∇ ln g|k,q

be sufficiently small. If f ∈ W k,q(Ω; g), then z, the solution to (1.9), belongs to
W k,q(Ω; g) and

‖z‖k,q,(g) � C‖f‖k,q,(g).
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2. Existence of a solution

In this head we only shortly sketch the construction of a solution to the system
(0.3)–(0.7). It is essentially based on the following version of the Banach fixed point
theorem:

Lemma 2.1. Let X , Y be Banach spaces such that X is reflexive and X ↪→ Y .
Let H be a non-empty, closed, convex and bounded subset of X and letM : H �→ H

be a mapping such that

‖M(u)−M(v)‖Y � κ‖u− v‖Y ∀u, v ∈ H,

0 � κ < 1. ThenM has a unique fixed point in H .

The proof of existence of a solution is straightforward but slightly technical. Com-
bining Theorem 1.1 with Theorems 1.9 and 1.10 gives

Theorem 2.1. Let Ω ∈ Ck+1 be an exterior domain in �2 . Let f ∈ W 2,q(Ω) ∩
W k,p(Ω), k � 2, p ∈ (2;∞), 1 < q < 6

5 . Let β0 and ‖f‖2,q + ‖f‖k,p be sufficiently
small. Then for any 0 < β � β0 there exists a solution (u, π) to the problem (0.3)–
(0.7) such that5

u ∈ L
3q
3−2q (Ω) ∩D1,

3q
3−q (Ω),

∇2u,∇p,∇π ∈ W 1,q(Ω) ∩W k−1,p(Ω).

������ 2.1. The construction of a solution can be viewed as a successive
approximation procedure; namely

(un+1, pn+1) =M(un, pn), n � 0.

This is a direct consequence of the fact that Lemma 2.1 is a version of the Banach
fixed point theorem. It can be shown that there exist ε ∈ (0; 1), α ∈ (23 ; 1) depending
on β0 and ‖f‖2,q + ‖f‖k,p such that

β(‖(u2)n‖ 2q
2−q
+ ‖∇(u2)n‖q) + β

2
3 ‖un‖ 3q

3−2q
+ β

1
3 ‖∇un‖ 3q

3−q
� εβ2(1+1/q)+1,(2.1)

‖∇2un‖q + ‖∇πn‖q + ‖∇2un‖k−1,p + ‖∇πn‖k−1,p � εβα(2.2)

for all n ∈ �0 , 0 < β � β0. The details can be found in [10].

5 Let us recall (see (0.6)) that � plays the role of the effective pressure; the real pressure
is p.
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3. Weighted estimates

This head is devoted to the study of weighted estimates of solutions to the original
problem constructed in Theorem 2.1. Due to the construction of a solution (see
Remark 2.1) it is sufficient to verify that the operator M maps sufficiently small
balls in some weighted spaces into themselves. Then also the solution (i.e. the limit
of the sequence) belongs to the same ball. Let us denote

µ1,ω0 (x;β) = µ1,ω0 (x;β)|ln(2 + |βx|)|−1.

We will search the solution in the space

Vβ =
{
(u, π); u1 ∈ L∞(Ω;µ1/2,ω1/2 (·;β)), u2 ∈ L∞(Ω;µ1,ω0 (·;β)),

∇u,∇2u ∈ Lr(Ω;µ1−2/r,ω
1/2−1/r(·;β)), π,∇π ∈ Lr(Ω;µ1−3/r,ω

0 (·;β))
}

with the norm

‖(u, π)‖Vβ
= ‖u1‖∞,(µ1/2,ω

1/2 (·;β)) + ‖u2‖∞,(µ1,ω
0 (·;β))

+ ‖∇u,∇2u‖
r,(µ1−2/r,ω

1/2−1/r
(·;β)) + ‖π,∇π‖

r,
(
µ
1−3/r,ω
0 (·;β)

),

where r ∈ (1;∞) is a sufficiently large power and ω > 0 will be made more precise
later. Note that the asymptotic structure of u is almost the same as the asymptotic
structure of Oµ.6

Let us assume that (w, s) is such that

‖(w, s)‖Vβ
� δ0 = εβ1−ω

with ε, β sufficiently small. Moreover, let (w, s) satisfy (2.1) and (2.2). Our aim is
to show that (u, π) defined by

(u, π) =M(w, s)

remains in the same ball in Vβ for β and f sufficiently small. Recall that from
the existence part we already know that (u, π) satisfies (2.1) and (2.2). Applying
Theorem 1.11 we get

6 This is no more true for higher gradients of the velocity; nevertheless, under more re-
strictive assumptions on the right-hand side f we can get better asymptotic structure
also here, see Remark 3.2.
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Lemma 3.1. Let β and ‖w‖C1 , ‖∇2w‖r (2 < r < ∞) be sufficiently small.
Then for any 0 � ω � a, 0 � b and p, T solutions to (0.11) and (0.12), respectively,
we have

‖p‖r,(µa,ω
b (·;β)) � C‖s‖r,(µa,ω

b (·;β)),

‖p‖1,r,(µa,ω
b (·;β)) � C‖s‖1,r,(µa,ω

b (·;β)),

‖T‖r,(µa,ω
b (·;β)) � C‖∇w‖r,(µa,ω

b (·;β)),

‖T‖1,r,(µa,ω
b (·;β)) � C‖∇w‖1,r,(µa,ω

b (·;β))

with the constant C independent of β.

�����. It follows from Theorem 1.11 since for 0 ∈ �
2 \ Ω, |∇ lnµa,ω

b (x;β)| is
independent of β. �
������ 3.1. There exist Ci = Ci(Ω, a, b, r), i = 1, 2, independent of β such

that for any a, b � 0, β � 1 and any g ∈ W 1,r(Ω;µa,ω
b ) we have

C1‖g‖1,r,(µa,ω
b (·;β)) � [‖g‖r,(µa,ω

b (·;β)) + ‖∇g‖r,(µa,ω
b (·;β))](3.1)

� C2‖g‖1,r,(µa,ω
b (·;β)).

This follows easily due to the fact that there exists a constant C independent of β

such that
‖g‖r,(∇µa,ω

b (·;β)) � C‖g‖r,(µa,ω
b (·;β))

for 0 ∈ �2 \ Ω. Moreover, for r > 2 we have

‖gµa,ω
b (x;β)‖∞ � C‖gµa,ω

b (x;β)‖1,r
and therefore by (3.1) also

‖gµa,ω
b (x;β)‖∞ � C(‖g‖r,(µa,ω

b (·;β)) + ‖∇g‖r,(µa,ω
b (·;β))).

Let
N (f ,w,T(w), p(w, s)) = ∇ · G(f ,w,T(w), p(w, s)),

N denoting the right-hand side of (0.8). Let f = ∇ · h. From Theorem 1.2 and
Corollary 1.1 we have

uj(x) =
∫

Ω

∂Oµ
ij(x− y;β)

∂xk

[
hik + Fik(∇w,T) + p

∂wk

∂yi
− wlwk

∂wi

∂yl
(3.2)

− wiwk − β
(
wk

∂wi

∂y1
+ wl

∂wi

∂yl
δ1k

)
+ fi(wk + βδ1k)

]
(y) dy

+
∫

∂Ω
[−βOµ

ij(x− y;β)ui(y)δ1k + ui(y)Tik(Oµ
·j , ej)(x − y;β)

+Oµ
ij(x − y;β)Tik(u, π)(y) +Oµ

ij(x− y;β)Gik(y)]nk(y) dyS

for j = 1, 2.
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Due to different asymptotic properties of ∂Oµ
11/∂x2 and the other components

of ∇Oµ we have to study separately u1 and u2. We denote by uV
j the part of uj

corresponding to the volume integrals, by uS,i
j , i = 1, 2, 3, 4, the parts corresponding

to the surface integrals. Applying Theorems 1.4 and 1.5 we obtain7

‖uV
1 ‖∞,(µ1/2,ω

1/2 (·;β)) = ‖u
V
1 µ
1/2,ω
1/2 (·;β)‖∞

� Cβ−1+(k−1)ω [ ‖G12‖∞,(µ1,kω
1/2 (·;β))

+ ‖G11,G21,G22‖∞,(µ1/2+δ,kω

1/2 (·;β))],

ω � 0, (k − 1)ω � 1, k ∈ �0 , δ > 0 can be taken arbitrarily small. We will assume
that h and f are sufficiently smooth with sufficiently fast decay at infinity and we
will collect the precise assumptions in the main theorem. We estimate each term
separately. Applying Lemma 3.1 and Remark 3.1 we obtain for r � 5

‖F(∇w,T‖∞,(µ1,2ω
1/2 (·;β))

+ ‖p∇w‖∞,(µ1,2ω
1/2 (·;β))

� C(‖T‖1,r,(µ2/5,ω

1/4 (·;β))

+ ‖p‖
1,r,(µ2/5,ω

1/4 (·;β))‖∇w‖1,r,(µ3/5,ω
1/4 (·;β)) � ε

60
β2−2ω,

‖ |w|2∇w‖∞,(µ1,2ω
1/2 (·;β))

� ‖w‖2∞,(µ1/2,ω

1/4 (·;β))‖∇w‖∞ � ε

60
β2−2ω

(see (2.1) and (2.2)). Next,

‖ |w|2‖∞,(µ1,2ω
1/2 (·;β))

� ‖w‖2∞,(µ1/2,ω
1/4 (·;β)) � ε

60
β2−2ω .

For r � 4 it is also easy to establish

β‖w∇w|∞,(µ1,2ω
1/2 (·;β))

� β‖w‖∞,(µ1/2,ω

1/2 (·;β))‖∇w‖ω,(µ1/2,ω
0 (·;β)) � ε

60
β2−2ω

and finally,

‖f w‖∞,(µ1,ω
1/2(·;β))

+ β‖f‖∞,(η11/2(·;β))

� ‖w‖∞,(µ1/2,ω

1/2 (·;β))‖f‖∞,(η1/2
0 (·)) + β‖f‖∞,(η11/2(·)) � ε

60
β2.

Summarizing the calculations above we have

‖uV
1 ‖∞,(µ1/2,ω

1/2 (·;β)) � ε

10
β1−ω

for β and ε sufficiently small.

7Note that the other components of ∇Oµ which appear in (3.2) for j = 1 behave better
and thus the most restrictive condition comes from the term ∂Oµ

11/∂x2.
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Next we estimate the L∞-weighted norm of uV
2 . As in the integral representation

the term ∂Oµ
11/∂y2 does not appear, we have

(3.3) ‖uV
2 ‖∞,(µ1,ω

0 (·;β)P |ln(2+2|βx|)|−1) � Cβ(k−1)ω−1‖G‖∞,(µ1,kω
0 (·;β)),

where P is a polynomial of the first or second order. The most delicate term in G
will be w1w1. We therefore write (3.3) in a different way, namely

‖uV
2 ‖∞,(µ1,ω

0 (·;β)P |ln(2+2|βx|)|−1) � Cβω−1‖w1w1‖∞,(µ1,2ω
0 (·;β))

+ Cβ(k−1)ω−1‖G′‖∞,(µ1+δ,kω
0 (·;β)),

where δ > 0, G′ij = Gij+w1w1δ1iδ1j . Thus we get (see [10]; compare also with Tab. 3
and Tab. 4 in [5]) that the power of the polynomial P , which is determined by the
term ∂Oµ

12/∂y1 ∗ (w1w1), is equal to 1.
Moreover,

‖w1w1‖∞,(µ1,2ω
0 (·;β)) � ‖w1‖2∞,(µ1/2,ω

0 (·;β)) � Cε2β2−2ω.

So we have

‖uV
2 ‖∞,(µ1,ω

0 (·;β)) � Cε2β1−ω + Cβ(k−1)ω−1‖G′‖∞,(µ1+δ,kω
0 (·;β)).

We can now estimate all the other terms in the weighted L∞-spaces, analogously
as for uV

1 . It can be easily checked that the estimates were not “optimal”. We only
have to restrict a little bit more the values of r, namely to r > 5. We get

‖uV
2 ‖∞,(µ1,ω

0 (·;β)) � ε

10
β1−ω.

Next, we continue with the surface integrals. We distinguish three situations:
a) |x| � 1
b) 1 � |x| � 1/β, (β < 1)
c) β|x| > 1.
In the case a) we will not use the integral representation; we rather use the esti-

mates (2.1) and (2.2). Thus

‖u‖∞,Ω1 � C‖u‖2,q,Ω1 � C(‖u‖ 2q
2−q ,Ω1

+ ‖∇2u‖q,Ω1).

However, due to the Friedrichs inequality we have

‖u‖ 2q
2−q ,Ω1

� C(β + ‖∇2u‖q)
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and then, using (2.1) and (2.2), we get for ω > 1− α

‖u‖∞,(µ1,ω
1 (·;β)),Ω1 � ε

20
β1−ω .

In the other two situations we can use the integral representation (3.2). We easily
observe that the boundary terms decay sufficiently fast at infinity. Thus we are only
left with the checking that these terms are sufficiently small. This is evidently true
for the first term due to the presence of the number β in the boundary integral. The
second integral can be estimated easily; in the case b) using the fact that β|x| � 1,
|x| > 1, we obtain

|uS,2
1 (x)µ

1/2,ω
1/2 (x;β)|+ |u

S,2
2 (x)µ

1,ω
0 (x;β)|

� Cβ|x|ω(1 + |βx|)1/2−ω(1 + s(βx))1/2

×
[
|∇Oµ

11(x;β)| +
∣∣∣∇2Oµ

11

(x
2
;β

)∣∣∣+ |e(x)|+
∣∣∣∇e

(x
2

)∣∣∣
]

+ Cβ|x|ω(1 + |βx|)1−ω |ln(2 + |βx|)|−1

×
[
|∇Oµ

12(x;β)| +
∣∣∣∇2Oµ

12

(x
2
;β

)∣∣∣+ |e(x)|+
∣∣∣∇e

(x
2

)∣∣∣
]

� Cβ
( 1
|x|1−ω

+
1

|x|2−ω

)
� Cβ.

Therefore

‖uS,2
1 ‖∞,(µ1/2,ω

1/2 (·;β)),Ω11/β

+ ‖uS,2
2 ‖∞,(µ1,ω

0 (·;β)),Ω11/β
� ε

40
β1−ω .

In the case c) we use β|x| > 1 and thus

|uS,2
1 (x)µ

1/2,ω
1/2 (x;β)| + |u

S,2
2 (x)µ

1,ω
0 (x;β)|

� Cβ2−ω
( 1
(1 + |βx|)1/2(1 + s(βx))1/2

+
(1 + s(βx))1/2

(1 + |βx|)1/2 + |ln(2 + |βx|)|
−1

)
,

i.e.
‖uS,2
1 ‖∞,(µ1/2,ω

1/2 (·;β)),Ω1/β + ‖uS,2
2 ‖∞,(µ1,ω

0 (·;β)),Ω1/β � ε

40
β1−ω .

We must proceed very carefully in the estimate of the third term. We put u =
Iu + IIu where Iu solves the Oseen problem with zero right-hand side and a non-
zero boundary condition while IIu solves the Oseen problem with zero boundary
conditions and a non-zero right-hand side. Then

|uS,3
j (x)| �

∣∣∣∣
∫

∂Ω
Oµ

ij(x − y;β)
[
Tik(

Iu,Iπ) + Tik(
IIu,IIπ)

]
(y)nk(y) dyS

∣∣∣∣.
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From [4]8 we have for |βx| � 1
∣∣∣∣
∫

∂Ω
Tik(Iu,Iπ)(y)nk(y) dyS

∣∣∣∣ � C|lnβ|−1‖u∗‖2−1/q,q,(∂Ω) � Cβ|lnβ|−1

and so

|IuS,3
1 (x)µ

1/2,ω
1/2 (x;β)| + |Iu

S,3
2 (x)µ

1,ω
0 (x;β)|

� C|Oµ(x;β)|x|ω(1 + |βx|)1/2−ω[(1 + |βx|)1/2 ln(2 + |βx)|)−1

+ (1 + s(βx))1/2]
∣∣∣∣
∫

∂Ω
Tik(Iu,Iπ)(y)nk(y) dyS

∣∣∣∣

+ C
∣∣∣∇Oµ

(x
2
;β

)∣∣∣ |x|ω(1 + |βx|)1/2−ω[(1 + |βx|)1/2|ln(2 + |βx|)|−1

+ (1 + s(βx))1/2]
∫

∂Ω
(|∇u|+ |p|) dS

� C(β1−ω |lnβ|−1 + β).

Here we have used the fact that (see Theorem 1.1, recall that If = 0)
∫

∂Ω
(|∇Iu|+ |Iπ|) dS � C(‖∇2Iu‖q,Ω + ‖∇Iπ‖q,Ω).

Thus
‖IuS,3

1 ‖∞,(µ1/2,ω

1/2 (·;β)),Ω11/β

+ ‖IuS,3
2 ‖∞,(µ1,ω

0 (·;β)),Ω11/β
� ε

80
β1−ω .

Analogously we have

‖IIuS,3
1 ‖∞,(µ1/2,ω

1/2 (·;β)),Ω11/β

+ ‖IIuS,3
2 ‖∞,(µ1,ω

0 (·;β)),Ω11/β

� Cβ−ω−2(1−1/q)‖∇ · G‖q.

However, estimating the right-hand side term by term, we get

‖∇ · G‖q � C[ε2β1+2(1−
1
q ) + ε2β2α + ε3β

4
3+2(1−1/q) + c(f)],

and thus

‖uS,3
1 ‖∞,(µ1/2,ω

1/2 (·;β)),Ω11/β

+ ‖uS,3
2 ‖∞,(µ1,ω

0 (·;β)),Ω11/β
� ε

40
β1−ω .

In a completely analogous way we can proceed for |x| > 1
β and thus

‖uS,3
1 ‖∞,(µ1/2,ω

1/2 (·;β)),Ω1/β + ‖uS,3
2 ‖∞,(µ1,ω

0 (·;β)),Ω1/β � ε

40
β1−ω .

8 The proof in [4] is done for the classical Oseen problem; in the case of the modified
version, the proof is essentially the same, see [10].
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For the fourth term we get (in both cases b) and c))

‖uS,4
1 ‖∞,(µ1/2,ω

1/2 (·;β)),Ω1 + ‖u
S,4
2 ‖∞,(µ1,ω

0 (·;β)),Ω1 � Cβ−ω

∫

∂Ω
|G · n| dS.

But ∫

∂Ω
|G · n| dS � C

∫

Ω1

(|G|+ |∇ · G|) dx

and estimating the right-hand side term by term we get

‖uS,4
1 ‖∞,(µ1/2,ω

1/2 (·;β)),Ω + ‖u
S,4
2 ‖∞,(µ1,ω

0 (·;β)),Ω � ε

5
β1−ω.

Next we continue with the first and second gradients of the velocity. We will
simultaneously treat the pressure and its gradients as these terms can be estimated
analogously as the gradients of the velocity. We denote again by the upper index V

the volume parts of the integral representation and by the upper index S the surface
parts.
Applying Theorem 1.6 we get (0 < δ < 1

2r , k = 0, 1, 2, 3)

‖∇uV ‖
r,(µ1−2/r,ω

1/2−1/r
(·;β)) � Cβ(k−1)ω‖G‖

r,(µ1−2/r+δ,kω

1/2−1/r
(·;β)),(3.4)

‖∇2uV ‖
r,(µ1−2/r,ω

1/2−1/r
(·β)) � Cβ(k−1)ω‖∇ · G‖

r,(µ1−2/r+δ,kω

1/2−1/r
(·;β)).

Similarly, applying Theorems 1.7 and 1.8 we get

‖πV ‖
r,(µ1−3/r,ω

0 (·;β)) � Cβ(k−1)ω‖G‖
r,(µ1−3/r,kω

0 (·;β)),(3.5)

‖∇πV ‖
r,(µ1−3/r,ω

0 (·;β)) � Cβ(k−1)ω‖∇ · G‖
r,(µ1−3/r,kω

0 (·;β)).

However, the right-hand side of (3.5) can be estimated by the right hand side of (3.4)
and thus it is sufficient to consider only the latter case. We thus estimate G and
∇ · G term by term in the norm indicated in (3.4). Let δ > 0 be sufficiently small.
First, evidently

‖h, f ,∇f‖
r,(µ1−2/r+δ,0

1/2−1/r
(·;β)) � C‖h, f ,∇f‖∞,(η11/2(·)).

Next,

‖T∇w‖
r,(µ1−2/r+δ,2ω

1/2−1/r
(·;β)) � ‖T‖∞,(µ1/2−1/r,ω

1/4−1/(2r)(·;β))
‖∇w‖

r,(µ1/2−1/r+δ,ω

1/4−1/(2r) (·;β))

and due to Remark 3.1 and Lemma 3.1 we have for r > 5

‖T∇w‖
r,(µ1−2/r+δ,2ω

1/2−1/r
(·;β)) � C‖∇w‖2

1,r(µ1/2−1/r+δ,ω

1/4−1/(2r) (·;β))
� ε

120
β1−ω.
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In a completely analogous way we obtain

‖∇(T∇w)‖
r,(µ1−2/r+δ,2ω

1/2−1/r
(·;β)) + ‖p∇w‖r,(µ1−2/r+δ,2ω

1/2−1/r
(·;β))

+ ‖∇(p∇w)‖
r,(µ1−2/r+δ,2ω

1/2−1/r
(·;β)) � ε

120
β1−ω.

In order to estimate the trilinear term it is enough to use

‖|w|2∇lw‖r � ‖∇lw‖r‖w‖2∞ (l = 1, 2),

‖|∇w|2w‖r � ‖∇w‖r‖∇w‖1,r‖w‖∞

and we get

‖|w|2∇w‖
r,(µ1−2/r+δ,3ω

1/2−1/r
(·;β)) + ‖∇(|w|

2∇w)‖
r,(µ1−2/r+δ,3ω

1/2−1/r
(·;β)) � ε

120
β1−ω .

For estimating the convective term we use the L∞ estimate
(
δr < 1

2

)

‖|w|2‖r

r,(µ1−2/r+δ,2ω

1/2−1/r
(·;β)) =

∫

Ω
|w|2r|x|2ωr(1 + |βx|)r−2rω−2+δr(1 + s(βx)r/2−1 dx

� ‖w‖2r∞,(µ1/2,ω
1/2 (·;β))

∫

Ω
(1 + |βx|)−2+δr(1 + s(βx))−r/2−1 dx

� Cβ−2‖w‖2r
ω,(µ1/2,ω

1/2 (·;β))

concluding
β‖w ⊗w‖

r,(µ1−2/r+δ,2ω

1/2−1/r
(·;β)) � ε

120
β1−ω

for r > 5.
The other bilinear terms are estimated using the standard inequalities

β‖w∇w‖
r,(µ1−2/r+δ,2ω

1/2−1/r
(·;β)) + β‖w · ∇w‖

r,(µ1−2/r+δ,2ω

1/2−1/r
(·;β))

+ β‖∇(w · ∇)w‖
r,(µ1−2/r,2ω

1/2−1/r
(·;β)) � ε

120
β1−ω.

The last term which contains fw and ∇(fw) can be estimated analogously and thus
we get

‖∇uV ‖
r,(µ1−2/r,ω

1/2−1/r
(·;β)) + ‖∇

2uV ‖
r,(µ1−2/r,ω

1/2−1/r
(·;β)) + ‖π

V ‖
r,(µ1−3/r,ω

0 (·;β))

+ ‖∇πV ‖
r,(µ1−3/r,ω

0 (·;β)) � ε

5
β1−ω

for β sufficiently small. We continue with the boundary terms. As above, we distin-
guish three cases, i.e. |x| � 1, 1 < |x| � 1

β and |x| > 1
β .
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Let us start with the first case. Using the Sobolev imbedding theorem we have
(q < 2)

‖∇u,∇2u‖
r,(µ1−2/r,ω

1/2−1/r
(·;β)),Ω1 � C(‖∇u,∇2u‖r,Ω1

� C(‖∇2u‖1,p,Ω1 + ‖∇2u‖q,Ω) �
ε

20
β1−ω,

‖π,∇π‖
r,(µ1−3/r,ω

0 (·;β)),Ω1 � C(‖∇π‖1,p,Ω1 + ‖∇π‖q,Ω) �
ε

20
β1−ω.

Let us continue with the case 1 < |x| � 1
β , β < 1. Using the integral representation

(see Theorems 1.2 and 1.3) we easily check that it is sufficient to consider only
∇uS and πS ; ∇2uS and ∇πS are estimated similarly and even easier as the higher
gradients of Oµ and E decay faster.
First, let 1 < |x| � 1

β . We again skip the term ∇uS,1 and concentrate on the other
terms. We have

|∇uS,2(x)µ1−2/r,ω
1/2−1/r(x;β)|

� Cβ|x|ω(1 + |βx|)1−ω−2/r(1 + s(βx))1/2−1/r

×
(
|∇2Oµ(x;β)|+ |∇e(x)| +

∣∣∣∇3Oµ
(x
2
;β

)∣∣∣+
∣∣∣∇2e

(x
2

)∣∣∣
)
,

i.e.

‖∇uS,2‖r

r,(µ1−2/r,ω

1/2−1/r
(·;β)),Ω11/β

� Cβ(3−ω)r
∫

Ω11/β

(|βx|(ω−2)r + βr|βx|(ω−3)r)

× (1 + |βx|)(1−ω−2/r)r(1 + s(βx))r/2−1 dx

� Cβ(3−ω)r−2
∫ 1

β

yωr−2r+1 dy �
( ε

40
β1−ω

)r

.

Similarly

‖∇uS,3‖r

r,(µ1−2/r,ω

1/2−1/r
(·;β)),Ω11/β

+ ‖∇uS,4‖r

r,(µ1−2/r,ω

1/2−1/r
(·;β)),Ω11/β

� C

∫

∂Ω
(|u|+ |π|+ |G · n|) dS �

( ε

40
β1−ω

)r

.

For the pressure we proceed similarly. Again, the gradient of the pressure is
estimated easier than the pressure itself. We skip the term πS,1 and consider only
the other three terms. We have

|πS,2(x)µ
1− 3

r ,ω
0 (x;β)| � Cβ|x|ω(1 + |βx|)1−ω− 3

r

( 1
|x|2 +

1
|x|4

)
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and then

‖πS,2‖r

r,(µ1−3/r,ω
0 (·;β)),Ω11/β

� Cβ

∫ 1/β

1
(y(ω−2)r + y(ω−4)r)y dy �

( ε

40
β1−ω

)r

.

The last two terms can be estimated as above:

‖πS,3‖
r,(µ1−3/r,ω

0 (·;β)),Ω11/β

+ ‖πS,4‖
r,(µ1−3/r,ω

0 (·;β)),Ω11/β

� C

∫

∂Ω
(|∇u| + |π|+ |G · n|) dS � ε

40
β1−ω .

Finally, let |x| > 1
β . Here the most restrictive terms are the first, third and fourth.

We consider only the first term

|∇uS,1(x)µ1−2/r,ω
1/2−1/r(x;β)|

� Cβ2|x|ω(1 + |βx|)1−ω−2/r(1 + s(βx))1/2−1/r

×
[

β

(1 + |βx|)(1 + s(βx))
+

β2

(1 + |βx|)3/2(1 + s(βx))3/2

]

and so

‖∇uS,1‖r

r,(µ1−2/r,ω

1/2−1/r
(·;β)),Ω1/β

� Cβ(3−ω)r
∫

Ω1/β

(1 + |βx|)−2−ωr|βx|ωr(1 + s(βx))−1−r/2 dx

� Cβ(3−ω)r−2
∫

Ω1
(1 + y)−2(1 + s(y))−1−r/2 dy �

( ε

40
β(1−ω)

)r

.

The other terms decay similarly or even faster and thus cause no problems.9

For the pressure, the most restrictive terms are the first, the third and the fourth.
We demonstrate the estimate on the first term:

|πS,1(x)µ1−3/r,ω
0 (x;β)| � Cβ2|x|ω(1 + |βx|)1−ω−3/r

[
1
|x| +

1
|x|2

]

and therefore

‖πS,1‖r

r,(µ1−3/r,ω
0 (·;β)),Ω1/β

� Cβ(3−ω)r−2
∫

Ω1
|y|−3 dy � Cβ(3−ω)r−2.

9Note that we could even get a better result, i.e. an estimate of the surface terms in

Lr(Ω;µ1−2/r,ω
1−1/r

(·;β)); the bound comes therefore from the volume terms, see also Re-
mark 3.2.
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The other terms can be estimated similarly. Thus we get

‖∇uS‖
r,(µ1−2/r,ω

1/2−1/r
(·;β)),Ω + ‖∇

2uS‖
r,(µ1−2/r,ω

1/2−1/r
(·;β)),Ω � ε

5
β1−ω,

‖πS‖
r,(µ1−3/r,ω

0 (·;β)),Ω + ‖∇πS‖
r,(µ1−3/r,ω

0 (·;β)),Ω � ε

5
β1−ω.

Combining this with the estimates above we have

‖(u, π)‖Vβ
� εβ1−ω = δ0

and the operatorM maps sufficiently small balls into themselves. We have proved

Theorem 3.1. Let f = ∇ · h and let h ∈ L1loc(Ω), f ∈ W 2,q(Ω) ∩ W k,p(Ω),
q ∈ (1; 65 ), k � 2, p ∈ (2;∞) with norms sufficiently small. Let Ω ∈ Ck+1 be an
exterior domain in �2 . Moreover, let

(3.6) h, f ,∇f ∈ L∞(Ω; η1+δ
1/2 (·))

for some δ > 0. Let β = |v∞| and ‖h, f ,∇f‖∞,η1+δ
1/2 (·)

be sufficiently small.

Then (v = u + v∞, p), the solution to the problem (0.3)–(0.7) constructed in
Theorem 2.1, has the asymptotic properties

u1 = v1 − β ∈ L∞(Ω; η1/21/2(·)),(3.7)

v2 ∈ L∞(Ω; η10(·)|ln(2 + ·)|−1),
∇v,∇2v ∈ Lr(Ω; η1−2/r

1/2−1/r(·)),

p,∇p ∈ Lr(Ω; η1−3/r
0 (·)),

where r ∈ (5;∞).

������ 3.2. The assumptions on f were in some sense “minimal” in order
to ensure the fastest possible decay of the velocity itself. Assuming h, f ,∇f ∈
L∞(Ω; η3/21/2(·)) we would get ∇v, ∇2v ∈ Lr(Ω; η1−2/r

1−1/r(·)). Thus, using the Sobolev
imbedding theorem we have that ∇v ∈ L∞(Ω; η1−2/r

1−1/r(·)) and π ∈ L∞(Ω; η1−3/r
0 (·)).

Passing with r → ∞ we get almost the same asymptotic structure for ∇v and p as
for ∇Oµ and ∇E , respectively. The details can be found in [10].
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