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Abstract. The subject of the paper is the derivation of error estimates for the com-
bined finite volume-finite element method used for the numerical solution of nonstationary
nonlinear convection-diffusion problems. Here we analyze the combination of barycentric fi-
nite volumes associated with sides of triangulation with the piecewise linear nonconforming
Crouzeix-Raviart finite elements. Under some assumptions on the regularity of the exact
solution, the L2(L2) and L2(H1) error estimates are established. At the end of the paper,
some computational results are presented demonstrating the application of the method to
the solution of viscous gas flow.
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1. Introduction

Many processes in science and technology are described by convection-diffusion

equations. We can mention, e.g., processes of fluid dynamics, hydrology and envi-
ronmental protection. There is an extensive literature on the numerical solution of

convection-diffusion problems. Let us mention, e.g., the papers [1], [25], [26], [37],

*This research has been supported by the Grants No. 201/99/0267, No. 201/02/0684 and
No. 201/00/D116 of the Grant Agency of the Czech Republic and the Grant No. MSM
113200007.
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[40], [46], [48], [49] and the monographs [36], [39] (and the references therein), de-

voted mainly to linear problems. The main difficulty which must be overcome is the
precise resolution of the so-called boundary layers. If the equation under consider-
ation represents a nonlinear conservation law with a small dissipation, then beside

boundary layers also shock waves appear (slightly smeared due to dissipation). This
is particularly the case for the system describing viscous gas flow.

In [6], [8], [13], [14], [15] we developed numerical methods for the solution of
the high-speed viscous compressible flow in domains with complex geometry. These

methods are based on the combination of a finite volume scheme for the discretization
of inviscid convective terms and the finite element discretization of viscous terms.

The finite element method is one of the most powerful tools for solving partial differ-
ential equations, particularly of elliptic and parabolic types (cf. [4], [27], [33], [41]).

On the other hand, in Computational Fluid Dynamics, especially for convection dom-
inated flows, the upwind finite volume schemes are very popular. (For an extensive

treatment of the finite volume methods, we refer the reader to [9]. See also [11] or
[30].) In [6], [8], [13], [14], [15], we have developed combined finite volume-finite

element methods, which exploit advantages of both the above methods. Numerical
experiments proved the efficiency and robustness of these methods with respect to

the precise resolution of boundary layers and shock capturing. Since the complete
viscous gas flow problem is rather complex, the theoretical analysis of the combined

finite volume-finite element methods has been carried out for the case of a simplified
scalar nonlinear conservation law equation with a dissipation term, which is the sim-

plest prototype of the compressible Navier-Stokes equation. Papers [16], [17], [18]
are concerned with the convergence and error estimates for the method using dual

finite volumes over a triangular mesh combined with conforming piecewise linear
triangular finite elements.

Another possibility is the combination of the so-called barycentric finite volumes

constructed over a triangular grid with the well-known Crouzeix-Raviart noncon-
forming piecewise linear finite elements used for the numerical solution of incom-

pressible viscous flows ([5], [45]). The upwind version of the Crouzeix-Raviart fi-
nite element method was developed and analyzed in [37] for a linear stationary

convection-diffusion equation. This was the inspiration for Schieweck and Tobiska
who investigated in [40] upwind schemes for steady Navier-Stokes equations. In [2]

the convergence analysis of the combined barycentric finite volume-nonconforming
finite element method applied to a nonlinear convection-diffusion problem is given.

In [6] and [13] this method was applied with success to the numerical solution of a
compressible viscous flow. A similar approach was proposed in [3].

Here we will be concerned with the continuation of results from [2]. We will
present the analysis of the error estimates of the finite volume-finite element method
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combining barycentric finite volumes with nonconforming Crouzeix-Raviart finite

elements applied to an initial-boundary value problem for a scalar nonlinear conser-
vation law with a diffusion term. The basic tools used in the investigation of error
estimates presented here are the discrete maximum principle, a priori error estimates

and analysis of the discretization and truncation errors, carried out under some as-
sumptions on the regularity of the exact solution. As a result, error estimates are

obtained in discrete analogy of L2(L2) and L2(H1) norms. At the end we present
application of the method analyzed to a technically relevant flow problem.

2. Continuous problem

Let Ω ⊂ �2 be a bounded polygonal domain with a Lipschitz-continuous bound-
ary ∂Ω. In the space-time cylinder QT = Ω × (0, T ) (0 < T < ∞) we consider the
following initial-boundary value problem:
Find u : QT → �, u = u(x, t), x ∈ Ω, t ∈ (0, T ), such that

∂u

∂t
+

2∑

s=1

∂fs(u)
∂xs

− ν∆u = g in QT ,(2.1)

u|∂Ω×(0,T ) = 0,(2.2)

u(x, 0) = u0(x), x ∈ Ω,(2.3)

where ν > 0 is a given real constant and fs : � → �, s = 1, 2, g : QT → �,

u0 : Ω→ � are given functions. Precise assumptions on these functions will be given
later.

In what follows we will work with the Lebesgue spaces Lp(Ω), the Sobolev spaces
W k,p(Ω), Hk(Ω) = W k,2(Ω), the subspace H10 (Ω) ⊂ H1(Ω) of functions with zero

traces on ∂Ω and Bochner spaces Lq(0, T ;X), C([0, T ], X), where X is a Banach
space. For their definitions and properties see, e.g., [34].

We set

(2.4) V = H10 (Ω).

In the space H1(Ω) beside its norm we will often work with the seminorm

(2.5) |u|H1(Ω) =

(∫

Ω
|∇u|2 dx

)1/2
,

which is an equivalent norm on V . We can write |u|H1(Ω) = ((u, u))1/2, where

(2.6) ((u, v)) =
∫

Ω
∇u · ∇v dx, u, v ∈ H1(Ω),
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is a scalar product on V . Further we set

(2.7) (u, v) =
∫

Ω
uv dx, u, v ∈ L2(Ω).

We will assume that

fs ∈ C2(�), fs(0) = 0, s = 1, 2,(2.8)

g ∈ C([0, T ];W 1,q(Ω)) for some q > 2,(2.9)

u0 ∈ H10 (Ω) ∩ C(Ω).(2.10)

Now we derive the weak formulation of problem (2.1)–(2.3). Multiplying (2.1) by
an arbitrary v ∈ V , integrating over Ω and using Green’s theorem, we obtain the

identity

d
dt

∫

Ω
u(t)v dx−

∫

Ω

2∑

s=1

fs(u(t))
∂v

∂xs
dx+ ν

∫

Ω
∇u(t) · ∇v dx(2.11)

=
∫

Ω
g(t)v dx, ∀ v ∈ V, ∀ t ∈ [0, T ].

Here, for t ∈ [0, T ], u(t) means the function “x ∈ Ω �→ u(t)(x) = u(x, t)”. Let us set

(2.12) b(ϕ, v) = −
∫

Ω

2∑

s=1

fs(ϕ)
∂v

∂xs
dx for ϕ ∈ L∞(Ω), v ∈ V.

Definition 1.

We say that a function u is a weak solution of problem (2.1)–(2.3), if it satisfies
the conditions

u ∈ L2(0, T ;V ) ∩ L∞(QT ),(2.13)
d
dt
(u(t), v) + b(u(t), v) + ν((u(t), v)) = (g(t), v) ∀ v ∈ V,(2.14)

in the sense of distributions on (0, T ),

u(0) = u0.(2.15)

It follows from [16] that the solution of problem (2.13)–(2.15) exists and is unique.

304



3. Discrete problem

By Th we will denote a triangulation of Ω with standard properties (see e.g. [4]):
T ∈ Th are closed triangles and

Ω =
⋃

T∈Th

T,(3.1)

if T1, T2 ∈ Th, T1 	= T2, then T1 ∩ T2 = ∅,(3.2)

or T1 ∩ T2 is a common side of T1 and T2,

or T1 ∩ T2 is a common vertex of T1 and T2.

By �h we denote the set of all sides of all triangles T ∈ Th. We introduce a

numbering of triangles T ∈ Th and their sides S ∈ �h in such a way that

(3.3) Th = {Ti ; i ∈ I}, �h = {Sj ; j ∈ J},

where I and J are suitable index sets of positives integers. By Qj we denote the

centre of a side Sj ∈ �h and put Ph = {Qj ; j ∈ J}. Moreover, we set

(3.4) J◦ = {i ∈ J ; Qi ∈ Ω}.

Sometimes we will use the local notation Si
T and Qi

T , i = 1, 2, 3, for the sides of a
triangle T ∈ Th and their centres, respectively. Then

Sh = {Si
T ; i = 1, 2, 3, T ∈ Th},(3.5)

Ph = {Qi
T ; i = 1, 2, 3, T ∈ Th}.

By h(T ) and θ(T ) we denote the length of the longest side and the magnitude of

the smallest angle, respectively, of the triangle T ∈ Th, and put

(3.6) h = max
T∈Th

h(T ), θh = min
T∈Th

θ(T ).

Now let us construct the barycentric mesh Dh = {Di ; i ∈ J} over the basic
mesh Th. The barycentric finite volumes Di are closed polygons defined in the

following way: We join the barycentre of each triangle T ∈ Th with its vertices.
Then around each side Si, i ∈ J◦, we obtain a closed quadrilateral Di containing Si.

If Sj ⊂ ∂Ω is a side with vertices P1, P2 of a triangle T ∈ Th adjacent to ∂Ω, then by
Dj we denote the triangle with the sides Sj and segments connecting the barycentre

of T with P1 and P2. (See Figs. 1, 2.) Obviously,

(3.7) Ω =
⋃

i∈J

Di.

If Di 	= Dj and the set ∂Di ∩ ∂Dj contains more than one point, we call Di and
Dj neighbours and set Γij = ∂Di∩∂Dj (= the common side of Di and Dj). Further,
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Figure 1. Barycentric finite volume.

Figure 2. Triangular mesh and associated barycentric finite volume mesh.

we define the set s(i) = {j ∈ J ; Dj is a neighbour of Di}. If Qi ∈ ∂Ω then we set
S(i) = s(i)∪ {−1} and Γi,−1 = Si ⊂ ∂Ω, otherwise we put S(i) = s(i). Then we can

write

(3.8) ∂Di =
⋃

j∈S(i)

Γij .

In the sequel we use the following notation: |T | = area of T ∈ Th, |Di| = area
of Di ∈ Dh (i.e., i ∈ J), �ij = length of the segment Γij , |∂Di| = length of ∂Di,

nij = (nij1, nij2) = unit outer normal to ∂Di on Γij (i.e., nij points from Di to Dj).
Moreover, let us consider a partition 0 = t0 < t1 < . . . of the interval (0, T ) and set

τk = tk+1 − tk for k = 0, 1, . . .
Let us define the following spaces over grids Th and Dh:

Xh = {vh ∈ L2(Ω); vh|T is linear ∀T ∈Th, vh is continuous at Qj ∀ j ∈ J},(3.9)

Vh = {vh ∈ Xh ; vh(Qi) = 0 ∀ i ∈ J − J◦},
Zh = {wh ∈ L2(Ω); wh|Di = const. ∀ i ∈ J},
Yh = {wh ∈ Zh ; wh = 0 on Di ∈ Dh ∀ i ∈ J − J◦}.
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We can notice that Xh 	⊂ H1(Ω) and Vh 	⊂ V = H10 (Ω). Therefore, we speak

about nonconforming, piecewise linear finite elements. (By G. Strang, the use of
nonconforming finite elements belongs to one of the basic finite element variational
crimes, see [43]).

In the spaces from (3.9) we easily construct simple bases : The system {wi ; i ∈ J}
of functions wi ∈ Xh such that wi(Qj) = δij = Kronecker’s delta, i, j ∈ J , forms a

basis in Xh. The system {wi, i ∈ J◦} is a basis in Vh. Furthermore, denoting by
di = χDi the characteristic function of Di ∈ Dh, we have bases in Zh and Yh as the

systems {di ; i ∈ J} and {di ; i ∈ J◦}, respectively.
By Ih we denote the interpolation operator for nonconforming finite elements

(see [11], 8.9.79). If v : H1(Ω)⊕Xh = {v + vh ; v ∈ H1(Ω), vh ∈ Xh} → �, then

(3.10) Ihv ∈ Xh, (Ihv)(Qi) =
1
|Si|

∫

Si

v dS, i ∈ J.

This integral exists due to the imbedding L2(S) ⊂ L1(S) and the theorem on traces

in the space H1(T ):

(3.11) ‖ϕ‖L2(∂T ) � c‖ϕ‖H1(T ), ϕ ∈ H1(T ) (c = c(T )).

By Lh we denote the so-called lumping operator which can be applied to all func-

tions v defined at the points Qi, i ∈ J :

(3.12) Lhv =
∑

i∈J

v(Qi)di ∈ Zh.

Obviously, Lh(Vh) = Yh.

In order to define the discrete problem to (2.13)–(2.15), we put

a) (u, v)h =
∫

Ω
(Ihu)(Ihv) dx,(3.13)

u, v ∈ H1(Ω)⊕Xh,

b) ((u, v))h =
∑

T∈Th

∫

T

∇u · ∇v dx,

u, v ∈ L2(Ω), u|T , v|T ∈ H1(T ) ∀T ∈ Th,

c) b̃h(u, v) =
∑

T∈Th

∫

T

2∑

s=1

∂fs(u)
∂xs

v dx,

u ∈ L∞(Ω), v ∈ L2(Ω), u|T ∈ H1(T ) ∀T ∈ Th.

By ‖·‖h we denote the discrete L2-norm induced by (·, ·)h. For uh, vh ∈ Xh we have
Ihuh = uh, Ihvh = vh and, hence,

(3.14) (uh, vh)h = (uh, vh), ‖vh‖h = ‖vh‖L2(Ω).
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Furthermore,

((u, v))h = ((u, v)), u, v ∈ H1(Ω),(3.15)

b̃h(u, v) = b(u, v), u ∈ H1(Ω) ∩ L∞(Ω), v ∈ L2(Ω).

The bilinear form ((·, ·))h induces in Xh ⊕H1(Ω) the seminorm

(3.16) ‖uh‖Xh
=

(∑

T∈T

∫

T

|∇uh|2 dx
)1/2

, uh ∈ Xh ⊕H1(Ω).

Under the notation

(3.17) ‖uh‖Xh(T ) =

(∫

T

|∇uh|2 dx
)1/2

, T ∈ Th, uh ∈ Xh ⊕H1(Ω),

we have

(3.18) ‖uh‖2Xh
=

∑

T∈Th

‖uh‖2Xh(T ), uh ∈ Xh ⊕H1(Ω).

Of course, for u ∈ H1(Ω) we have ‖u‖Xh
= |u|H1(Ω). The following Cauchy inequality

holds:

(3.19) ((uh, vh))h � ‖uh‖Xh
‖vh‖Xh

, uh, vh ∈ Xh ⊕H1(Ω).

In the case when the diffusion ν is small, it is suitable to modify the “convection”

form b̃h with the aid of the finite volume approach. Let u ∈ H1(Ω) ∩ C(Ω), v ∈ Vh.
Then we have by (3.12) and Green’s formula that

∫

Ω

2∑

s=1

∂fs(u)
∂xs

v dx ≈
∫

Ω

2∑

s=1

∂fs(u)
∂xs

Lhv dx

=
∑

i∈J

v(Qi)
∫

Di

2∑

s=1

∂fs(u)
∂xs

dx

=
∑

i∈J

v(Qi)
∫

∂Di

2∑

s=1

fs(u)ns dS

=
∑

i∈J

v(Qi)
∑

j∈S(i)

∫

Γij

2∑

s=1

fs(u)ns dS

=
∑

i∈J

v(Qi)
∑

j∈s(i)

∫

Γij

2∑

s=1

fs(u)ns dS

≈
∑

i∈J

v(Qi)
∑

j∈s(i)

H
(
u(Qi), u(Qj), nij

)
�ij .
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The function H defined on �2 × S, where S = {n ∈ �2 ; |n| = 1}, is called a
numerical flux. The form

(3.20) bh(u, v) =
∑

i∈J

v(Qi)
∑

j∈s(i)

H
(
u(Qi), u(Qj), nij

)
�ij

obtained above has sense for all u, v ∈ Xh. We will use it as an approximation of
the forms b and b̃h.

Definition 2. We define the approximate solution of problem (2.1)–(2.3) as
functions uk

h, tk ∈ [0, T ], given by the conditions

u0h = Ihu0,(3.21)

uk+1
h ∈ Vh, tk ∈ [0, T ),(3.22)

1
τk
(uk+1

h − uk
h, vh) + bh(uk

h, vh) + ν((uk+1
h , vh))h = (gk+1, vh)h,(3.23)

∀ vh ∈ Vh, tk ∈ [0, T )

where gk = g(·, tk). The function uk
h is the approximate solution at time tk.

As we see, the scheme defined above is semiimplicit. The diffusion linear term is
treated in an implicit way, whereas the nonlinear convective terms are discretized

explicitly in order to obtain an easily solvable system of algebraic equations on every
time level.

Properties of the numerical flux. In what follows we use the following as-
sumptions:
1. H = H(y, z, n) is locally Lipschitz-continuous with respect to y, z: for any

M > 0 there exists a constant c(M) > 0 such that

|H(y, z, n)−H(y∗, z∗, n)| � c(M)(|y − y∗|+ |z − z∗|)(3.24)

∀ y, y∗, z, z∗ ∈ [−M, M ], ∀n ∈ S.

2. H is consistent :

(3.25) H(u, u, n) =
2∑

s=1

fs(u)ns ∀u ∈ �, ∀n = (n1, n2) ∈ S.

3. H is conservative:

(3.26) H(y, z, n) = −H(z, y,−n) ∀ y, z ∈ �, ∀n ∈ S.

4. H is monotone in the following sense: For a given fixed numberM > 0 the func-
tion H(y, z, n) is nonincreasing with respect to the second variable z on the set

(3.27) MM = {(y, z, n) ; y, z ∈ [−M, M ], n ∈ S}.
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In [2] the following results are proved:

Lemma 1. Problem (3.21)–(3.23) has the following properties:
1. The bilinear forms (·, ·)h and ((·, ·))h are scalar products on Vh.

2. For each uh ∈ Xh, bh(uh, ·) is a linear continuous form on Vh.

3. If i ∈ J and T ∈ Th is a triangle for which the midpoint Qi ∈ T , then

(3.28) |T ∩Di| =
1
3
|T |.

4. The scalar product (·, ·)h can be expressed with the aid of numerical integration
using the centres Qi

T of sides of triangles T ∈ Th as integration points:

(3.29) (u, v)h =
1
3

∑

T∈Th

|T |
3∑

j=1

u(Qj
T )v(Q

j
T ) = (Lhu, Lhv), u, v ∈ Xh.

5. We have

‖vh‖L2(Ω) = ‖Lhvh‖L2(Ω), vh ∈ Xh,(3.30)

(uh, vh) = (uh, vh)h, uh, vh ∈ Xh,(3.31)

6. Problem (3.22)–(3.23) has a unique solution uk+1
h .

4. Stability and consistency

Our aim will be to investigate the behaviour of the error ek
h = u(tk) − uk

h. To

this end, let us consider a system {Th}h∈(0,h0) (h0 > 0) of triangulations of the
domain Ω, set τ = T /r for an integer r > 1 and define the partition of the interval

[0, T ] formed by time instants tk = kτ , k = 0, 1, . . . , r. In what follows, the symbols
c, c1, c2, . . . , c̃, ĉ, . . . will denote constants independent of h, τ , ν, whereas C, C1, . . .

are independent of h, τ , but dependent on ν.
We introduce the following assumptions:

1. Let the system {Th}h∈(0,h0) be regular, i.e., there exists ϑ0 > 0 such that

(4.1) θh � ϑ0 > 0 ∀h ∈ (0, h0).

2. The triangulations Th, h ∈ (0, h0), are of weakly acute type:

the magnitude of all angles of all T ∈ Th, h ∈ (0, h0),(4.2)

is less than or equal to �/2.

3. The inverse assumption is satisfied: There exists c1 > 0 such that

(4.3)
h

h(T )
� c1 ∀T ∈ Th, ∀h ∈ (0, h0).
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In view of [4], Remark 3.1.3, assumptions (4.1) and (4.3) imply the existence of a

constant c2 > 0 such that

(4.4) h2 � c2|T | ∀T ∈ Th ∀h ∈ (0, h0).

We summarize some results from [2] and derive some important estimates.

4.1. L∞-stability.
In virtue of (2.9) and (2.10), u0 ∈ C(Ω) and g ∈ C(QT ). Hence, there exist

constants M̃ and K̃ such that

(4.5) M̃ := ‖u0‖L∞(Ω), K̃ := ‖g‖L∞(QT ) < ∞.

Let us put

(4.6) M∗ = M̃ + T K̃, M = 3M∗.

Theorem 1. If τ > 0 and h ∈ (0, h0) satisfy the stability condition

(4.7) τc(M∗)|∂Di| � |Di|, i ∈ J,

where c(M∗) is the constant from (3.24), then

(4.8) ‖uk
h‖L∞(Ω) � M, tk ∈ [0, T ].

�����. See [2], Theorem 2. �

Lemma 2. Assumptions (4.1), (4.3) and the consequence (4.4) imply that there
exists a constant c3 > 0 such that

(4.9) |Di|/|∂Di| � c3h ∀ i ∈ J, ∀h ∈ (0, h0).

�����. See [2], Lemma 3. �

������ 1. Let us note that the condition

(4.10) 0 � τ � c3c(M
∗)−1h

together with (4.9) imply (4.7). Hence, the stability condition (4.7) can be replaced

by condition (4.10), which means that τ = O(h).
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4.2. Consistency.

Lemma 3 (Discrete Friedrich’s inequality). There exists a constant ĉ1 indepen-

dent of h such that

(4.11) ‖uh‖L2(Ω) � ĉ1‖uh‖Xh
, uh ∈ Vh, h ∈ (0, h0).

�����. In [45], Chap. I, § 4, Proposition 4.13 or [11], Lemma 8.9.92, this lemma

is proved provided Ω is convex. For the case of a general polygonal domain, see [10].
�

Lemma 4. The interpolation operator Ih defined by (3.10) has the following

properties:

(4.12) If ϕ ∈ V then Ihϕ ∈ Vh.

Let ϕ ∈ Hk+1(Ω), where k = 0 or 1. Then for h ∈ (0, h0) we have

‖ϕ− Ihϕ‖Xh
� c6h

k‖ϕ‖Hk+1(Ω),(4.13)

‖ϕ− Ihϕ‖L2(Ω) � c7h
k+1‖ϕ‖Hk+1(Ω),(4.14)

‖Ihϕ‖Xh
� c8‖ϕ‖H1(Ω),(4.15)

ϕ ∈ H1(Ω)⇒ ‖ϕ− Ihϕ‖Xh
→ 0 as h → 0,(4.16)

with c6 > 0, c7 > 0, c8 > 0 independent of ϕ and h.

�����. See [11], Lemma 8.9.81. �

Lemma 5. There exist constants c10 > 0 and c11 > 0 such that for any

h ∈ (0, h0) we have

‖vh − Lhvh‖L2(Ω) � c10h‖vh‖Xh
, vh ∈ Xh,(4.17)

|(gk, vh)− (gk, vh)h| � c11h‖gk‖W 1,q(Ω)‖vh‖Xh
, vh ∈ Vh.(4.18)

If M > 0 and κ ∈ (0, 1), then there exists a constant c̃ = c̃(M, κ) such that

|b̃h(uh, vh)− bh(uh, vh)| � c̃h1−κ(‖uh‖2Xh
+ ‖uh‖Xh

)‖vh‖Xh
(4.19)

∀uh ∈ Vh ∩ L∞(Ω), ‖uh‖L∞(Ω) � M ∀ vh ∈ Vh, h ∈ (0, h0),

where the forms b̃h and bh are defined by (3.13) and (3.20), respectively.

�����. See [2], Lemma 6. �
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Lemma 6. If M > 0, then there exist constants c∗ = c∗(M) and c∗1 = c∗1(M)

such that

|bh(uh, vh)| � c∗‖uh‖L∞(Ω)‖vh‖Xh
,(4.20)

|bh(uh, vh)| � c∗1‖uh‖Xh
‖vh‖L2(Ω),(4.21)

uh ∈ Xh, ‖uh‖L∞(Ω) � M, vh ∈ Vh, h ∈ (0, h0).

�����. For the proof of (4.20), see [2], Lemma 7. Here we prove (4.21).

By (3.20), (3.25) and the relation
∑

j∈s(i)
nij�ij = 0 valid for i ∈ J◦, for u ∈ Xh such

that ‖u‖L∞(Ω) � M and v ∈ Vh, we have

bh(u, v) =
∑

i∈J

v(Qi)
∑

j∈s(i)

H
(
u(Qi), u(Qj), nij

)
�ij(4.22)

−
∑

i∈J

v(Qi)
∑

j∈s(i)

H
(
u(Qi), u(Qi), nij

)
�ij .

If i ∈ J and j ∈ s(i), then we denote by T ij the triangle from Th such that Γij ⊂ T ij.
It is easy to see that

|Qi −Qj | �
h

2
, �ij � 2

3
h,(4.23)

|u(Qi)− u(Qj)| �
h

2
|(∇u|T ij )|.

From (3.24), (4.22), (4.23) and (4.4) we find that

|bh(u, v)| � c(M)
∑

i∈J

|v(Qi)|
∑

j∈s(i)

|u(Qi)− u(Qj)|�ij(4.24)

� c(M)
∑

i∈J

|v(Qi)|
∑

j∈s(i)

|(∇u|T ij )|h
2

3

� c2
3

c(M)
∑

i∈J

|v(Qi)|
∑

j∈s(i)

|T ij | |(∇u|T ij )|.

Since each T ∈ Th appears in (4.24) as some T ij at most six times and v(Qi) =

Lhv|Di , we have

|bh(u, v)| � 2c2c(M)
∑

T∈Th

∫

T

|∇u| |Lhv| dx.
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Using the Cauchy inequality, (3.14), (3.29) and (3.30), we finally conclude that

|bh(u, v)| � 2c2c(M)
( ∑

T∈Th

∫

T

|∇u|2 dx
)1/2

‖Lhv‖L2(Ω) = 2c2c(M)‖u‖Xh
‖v‖L2(Ω),

which we wanted to prove. �

4.3. A priori estimates.

Theorem 2. There exist constants ĉ > 0 and ĉ0 > 0 independent of h, τ , m

and ν such that

max
tk∈[0,T ]

‖uk
h‖L2(Ω) � ĉ,(4.25)

τ
m∑

k=0

‖uk
h‖2Xh

� ĉ0(ν−2 + ν−1), m ∈ {0, . . . , r},(4.26)

for all τ, h > 0 satisfying the conditions h ∈ (0, h0) and (4.7).

�����. Estimate (4.25) is a consequence of Theorem 1 and the inequality
‖uk

h‖L2(Ω) � |Ω|1/2‖uk
h‖L∞(Ω), where |Ω| is the area of Ω. Estimate (4.26) is obtained

in the same way as in the proof of Theorem 4 from [2]. �

Theorem 3. There exists a constant C1 > 0, C1 = O
(
ν−

3
2
)
, independent of h

and τ such that

(4.27) ‖uk
h‖Xh

� C1, tk ∈ [0, T ],

for h ∈ (0, h0) and τ > 0 satisfying (4.7).

�����. Let τ > 0 and h ∈ (0, h0) satisfy condition (4.7). Since (·, ·)h and ((·, ·))h
are scalar products on Vh, we can define a mapping Ah : Vh → Vh such that

(4.28) (Ahϕh, vh)h = ((ϕh, vh))h, vh ∈ Vh.

Substituting vh := Ahuk
h in (3.23) with k := k − 1 and using (4.28), we find that

(4.29) ((uk
h − uk−1

h , uk
h))h + τbh(u

k−1
h , Ahuk

h) + τν(Ahuk
h, Ahuk

h)h = τ(gk, Ahuk
h)h.

Now, the relations

2((z − v, z))h = ‖z‖2Xh
− ‖v‖2Xh

+ ‖z − v‖2Xh
,
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(3.29) and (2.9) imply that

‖uk
h‖2Xh

− ‖uk−1
h ‖2Xh

+ ‖uk
h − uk−1

h ‖2Xh
+ 2τν‖Ahuk

h‖2L2(Ω)(4.30)

= 2τ(gk, Ahuk
h)h − 2τbh(u

k−1
h , Ahuk

h)

� 2c12τ‖g‖C([0,T ],W 1,q(Ω))‖Ahuk
h‖L2(Ω) − 2τbh(u

k−1
h , Ahuk

h).

By (4.21) and Theorem 1 we have

(4.31) |bh(u
k−1
h , Ahuk

h)| � c∗1‖uk−1
h ‖Xh

‖Ahuk
h‖L2(Ω).

Substituting this estimate into (4.30) and using Young’s inequality, we find that

‖uk
h‖2Xh

− ‖uk−1
h ‖2Xh

+ ‖uk
h − uk−1

h ‖2Xh
+ 2τν‖Ahuk

h‖2L2(Ω)(4.32)

� 2c12τ‖g‖C([0,T ],W 1,q(Ω))‖Ahuk
h‖L2(Ω) + 2τc∗1‖uk−1

h ‖Xh
‖Ahuk

h‖L2(Ω)

� 2τν‖Ahuk
h‖2L2(Ω) +

τc13
ν

(
‖g‖2C([0,T ],W 1,q(Ω)) + ‖uk−1

h ‖2Xh

)
,

where c13 = max(c212, (c
∗
1)
2). Hence,

(4.33) ‖uk
h‖2Xh

−‖uk−1
h ‖2Xh

+‖uk
h−uk−1

h ‖2Xh
� τc13

ν

(
‖g‖2C([0,T ],W 1,q(Ω))+‖uk−1

h ‖2Xh

)
.

The summation of (4.33) over k = 1, . . . , m, tm ∈ (0, T ], and estimate (4.26) yield

‖um
h ‖2Xh

− ‖u0h‖2Xh
+

m∑

k=1

‖uk
h − uk−1

h ‖2Xh
(4.34)

� c13T

ν
‖g‖2C([0,T ],W 1,q(Ω)) +

c13
ν

τ

m∑

k=1

‖uk−1
h ‖2Xh

� c14

(
1
ν
+
1
ν2
+
1
ν3

)
,

c14 = max(T c13‖g‖2C([0,T ],W 1,q(Ω)), c13ĉ0).

From this and the estimate

(4.35) ‖u0h‖2Xh
= ‖Ihu0‖2Xh

� c8‖u0‖2H1(Ω)

(cf. (4.15)) we finally obtain (4.27) with C1 such that

(4.36) C21 = c8‖u0‖2H1(Ω) + c14

(
1
ν
+
1
ν2
+
1
ν3

)
� c̄14

1
ν3

.

�
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5. Truncation error

Let us suppose that the exact solution u : (0, T ) → V of problem (2.13)–(2.15)
satisfies the conditions

a) u ∈ L∞(0, T ;H2(Ω) ∩W 1,∞(Ω)),(5.1)

b) u′ ∈ L∞(0, T ;L2(Ω)),

c) u′′ ∈ L∞(0, T ;L2(Ω)).

By u′ and u′′ we denote the first and second derivatives of the mapping u : (0, T )→
V . The above assumptions imply that u ∈ C1([0, T ];L2(Ω)) ∩ C(QT ). We set
M̂ = ‖u‖L∞(QT ) < ∞. In what follows we write uk = u(tk) = u(·, tk). For simplicity
we put

c26 = ‖u‖L∞(0,T ;H2(Ω)),(5.2)

c27 = ‖u′‖L∞(0,T ;L2(Ω)),

c28 = ‖u′′‖L∞(0,T ;L2(Ω)).

Let us investigate the truncation error.

Lemma 7. The form

(5.3) b̂(u, v) =
∑

T∈Th

∫

T

∑

s

fs(u)
∂v

∂xs
dx, u ∈ L∞(Ω), v ∈ Xh,

is locally Lipschitz-continuous: For M̂ > 0 there exists a constant c̃4 = c̃4(M̂) such

that

|b̂(z, vh)− b̂(z̃, vh)| � c̃4‖z − z̃‖L2(Ω)‖vh‖Xh
(5.4)

∀ z, z̃ ∈ L∞(Ω), ‖z‖L∞(Ω), ‖z̃‖L∞(Ω) � M̂ ∀ vh ∈ Xh.

�����. By the definition of b̂, (2.8) and the Cauchy inequality, we find that for
z, z̃, vh with the above properties we have

|b̂(z, vh)− b̂(z̃, vh)| =
∣∣∣∣
∑

T∈Th

∫

T

(∫ 1

0

2∑

s=1

f ′s
(
z̃ + t(z − z̃)

)
dt

)
(z − z̃)

∂vh

∂xs
dx

∣∣∣∣

�
√
2 max

ξ∈[−M̂,M̂ ], s=1,2
|f ′s(ξ)| ‖z − z̃‖L2(Ω)‖vh‖Xh

,

which is (5.4), where

(5.5) c̃4 =
√
2 max

ξ∈[−M̂,M̂ ], s=1,2
|f ′s(ξ)|.

�
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Lemma 8. Under assumptions (5.1), for tk ∈ [0, T ) we have

|(uk+1 − uk, vh)− τ(u′(tk+1), vh)| � c15τ
2‖vh‖Xh

, vh ∈ Vh,(5.6)

‖uk+1 − uk‖L2(Ω) � c16τ,(5.7)

|b̃h(u
k+1, vh)− b̃h(u

k, vh)| � c17(τ + h)‖vh‖Xh
, vh ∈ Vh,(5.8)

with c15 = c15(u), c16 = c16(u) and c17 = c17(u).

�����. a) The proof of (5.6) is based on the following result (see [11], § 8.2,

or [24]): If η : (0, T ) → L2(Ω) is such that η, η′ ∈ L1(0, T ;L2(Ω)) and v ∈ L2(Ω),
then (η′, v) ∈ L1(0, T ) and

(5.9)
∫ t2

t1

(η′(t), v) dt =
(
η(t2)− η(t1), v

)
, t1, t2 ∈ [0, T ].

This and (5.1) imply that

(5.10)
(
u(tk+1)− u(tk), v

)
=

∫ tk+1

tk

(u′(t), v) dt,

and hence,

(5.11) (uk+1 − uk, v)− τ
(
u′(tk+1), v

)
=

∫ tk+1

tk

(
u′(t)− u′(tk+1), v

)
dt.

Since u′′ ∈ L∞(0, T ;L2(Ω)), we have

(5.12) (u′(t)− u′(tk+1), v) =
∫ t

tk+1

(u′′(ϑ), v) dϑ

and thus,

(5.13)
∫ tk+1

tk

(
u′(t)− u′(tk+1), v

)
dt =

∫ tk+1

tk

(∫ t

tk+1

(u′′(ϑ), v) dϑ

)
dt.

This, (5.10)–(5.12), the Cauchy inequality, assumption (5.1) c) and (5.2) imply that

|(uk+1 − uk, v)− τ(u′(tk+1), v)| � τ2‖u′′‖L∞(0,T ;L2(Ω))‖v‖L2(Ω)(5.14)

= τ2c28‖v‖L2(Ω).

Now, we substitute v := vh ∈ Vh, use (4.11) and obtain (5.6) with c15 = c28ĉ1.
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b) Since u′ ∈ L∞(0, T ;L2(Ω)), we can write

‖uk+1 − uk‖L2(Ω) =

∥∥∥∥
∫ tk+1

tk

u′(t) dt

∥∥∥∥
L2(Ω)

� τ‖u′‖L∞(0,T ;L2(Ω)) = τc27,

which yields (5.7) with c16 = c27.

c) In view of the definition of b̃h in (3.13), we can write

|b̃h(uk+1, vh)− b̃h(uk, vh)| =
∣∣∣∣
∑

T∈Th

∫

T

2∑

s=1

(
∂fs(uk+1)

∂xs
− ∂fs(uk)

∂xs

)
vh dx

∣∣∣∣(5.15)

=

∣∣∣∣
∑

T∈Th

∫

∂T

2∑

s=1

(
fs(uk+1)− fs(uk)

)
nsvh dS

−
∑

T∈Th

∫

T

2∑

s=1

(
fs(uk+1)− fs(uk)

)∂vh

∂xs
dx

∣∣∣∣

�
∣∣∣∣
∑

T∈Th

∫

∂T

2∑

s=1

(
fs(uk+1)− fs(uk)

)
nsvh dS

∣∣∣∣

+ |b̂(uk+1, vh)− b̂(uk, vh)|.

The first part of the right-hand side in inequality (5.15) can be written in the form

(5.16) R1 :=

∣∣∣∣
∑

T∈Th

3∑

j=1

∫

Sj
T

2∑

s=1

(
fs(uk+1)− fs(uk)

)
(nj

T )svh dS

∣∣∣∣,

where Sj
T ⊂ ∂T are sides of T , j = 1, 2, 3, and (nj

T )s is the s-th component of the
unit outer normal to ∂T on Sj

T . Now we use the assertion of Lemma 8.9.85 from [11]:

∣∣∣∣
∑

T∈Th

3∑

j=1

∫

Sj
T

(nj
T )svhϕdS

∣∣∣∣ � c18h‖ϕ‖H1(Ω)‖vh‖Xh
,(5.17)

s = 1, 2 ∀ϕ ∈ H1(Ω) ∀ vh ∈ Vh, h ∈ (0, h0).

This and (5.1) yield the estimate of (5.16):

R1 � c18h

2∑

s=1

‖fs(u
k+1)− fs(u

k)‖H1(Ω)‖vh‖Xh
(5.18)

� c18h max
ξ∈[−M̂,M̂]

s=1,2

|f ′s(ξ)|
(
‖uk‖H1(Ω) + ‖uk+1‖H1(Ω)

)
‖vh‖Xh

� c19 h‖vh‖Xh
,

c19 = c18 max
ξ∈[−M̂,M̂]

s=1,2

|f ′s(ξ)| 2c26.(5.19)
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The second term on the right-hand side of (5.15) is estimated with the aid of (5.4)

and (5.7):

|b̂(uk+1, vh)− b̂(uk, vh)| � c̃4c16τ‖vh‖Xh
.

This and (5.18) already yield (5.8) with c17 = max(c19, c̃4c16). �

Using the above results, we get an estimate of the truncation error.

Theorem 4. Under assumptions (5.1) we have

(uk+1
h − uk+1, vh)− (uk

h − uk, vh)(5.20)

+ τ [b̃h(u
k
h, vh)− b̃h(u

k, vh)] + τν((uk+1
h − uk+1, vh))h

= − τε1(h, uk+1, vh)− τε2(τ, h, uk, uk+1, vh)

+ τε3(h, uk
h, vh) + τε4(h, vh), vh ∈ Vh, tk ∈ [0, T ),

where ε1, . . . , ε4 (defined in the proof) satisfy the estimates

|ε1(h, uk+1, vh)| � c20h ‖vh‖Xh
,(5.21)

|ε2(τ, h, uk, uk+1, vh)| � c22(τ + h)h‖uk+1‖H2(Ω)‖vh‖Xh
,(5.22)

|ε3(h, uk
h, vh)| � c̃h1−κ(‖uk

h‖2Xh
+ ‖uk

h‖Xh
)‖vh‖Xh

,(5.23)

|ε4(h, vh)| � c11h‖gk‖W 1,q(Ω)‖vh‖Xh
,(5.24)

where κ ∈ (0, 1) follows from Lemma 5.

�����. In virtue of (5.1), equation (2.1) is satisfied a.e. in Ω for each t ∈ (0, T ).
We multiply (2.1) by vh ∈ Vh and integrate over Ω at the time level tk+1. In this
way we obtain the relation

(5.25) (u′(tk+1), vh) + b̃h(uk+1, vh) + ν(∆uk+1, vh) = (gk+1, vh).

Further,

(∆uk+1, vh) =
∑

T∈Th

∫

T

∆uk+1vh dx(5.26)

=
∑

T∈Th

∫

∂T

(∇uk+1 · n)vh dS −
∑

T∈Th

∫

T

∇uk+1 · ∇vh dx

=
∑

T∈Th

∫

∂T

(∇uk+1 · n)vh dS − ((uk+1, vh))h.
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Due to (5.17), for

ε1(h, uk+1, vh) := ν
∑

T∈Th

∫

∂T

(∇uk+1 · n)vh dS

we find that

|ε1(h, uk+1, vh)| � νc18h

2∑

s=1

∥∥∥∥
∂uk+1

∂xs

∥∥∥∥
H1(Ω)

‖vh‖Xh
(5.27)

� ν
√
2c18h‖uk+1‖H2(Ω)‖vh‖Xh

.

We put c20 =
√
2c18c26.

Setting

ε2(τ, h, uk, uk+1, vh) :=
1
τ
(uk+1 − uk, vh)− (u′(tk+1), vh)(5.28)

+ [b̃h(uk, vh)− b̃h(uk+1, vh)],

we can write relation (5.25) in the form

(uk+1 − uk, vh) + τ b̃h(uk, vh) + τν((uk+1, vh))h(5.29)

= τ(gk+1, vh) + τε2(τ, h, uk, uk+1, vh) + τε1(h, uk+1, vh).

The estimate of ε2(τ, h, uk, uk+1, vh) follows from (5.6) and (5.8):

(5.30) |ε2(τ, h, uk, uk+1, vh)| � c22(τ + h)‖vh‖Xh
, c22 = c15 + c17.

By (3.23), for the approximate solution we have

(5.31) (uk+1
h − uk

h, vh) + τbh(uk
h, vh) + τν((uk+1

h , vh))h = τ(gk+1, vh)h, vh ∈ Vh,

which can be rewritten as

(uk+1
h − uk

h, vh) + τ b̃h(uk
h, vh) + τν((uk+1

h , vh))h(5.32)

= τ(gk+1, vh) + τ
[
b̃h(uk

h, vh)− bh(uk
h, vh)

]

+ τ
[
(gk+1, vh)h − (gk+1, vh)

]
.

We set

ε3(h, uk
h, vh) = b̃h(uk

h, vh)− bh(uk
h, vh)(5.33)

and

ε4(h, vh) = (gk+1, vh)h − (gk+1, vh).(5.34)
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It is seen from (4.19) and (4.18) that

|ε3(h, vk
h, vh)| � c̃ h1−κ(‖uk

h‖2Xh
+ ‖uk

h‖Xh
)‖vh‖Xh

(5.35)

and

|ε4(h, vh)| � c11h‖gk‖W 1,q(Ω)‖vh‖Xh
.(5.36)

Now we subtract (5.29) from (5.32) and obtain (5.20). From (5.27), (5.30), (5.35)
and (5.36) we conclude that (5.21)–(5.24) hold. �

6. Error estimates

We denote by

(6.1) ek
h = uk

h − uk

the error of the method at time t = tk. Obviously, ek
h ∈ Vh ⊕ V = {vh + v ; vh ∈ Vh,

v ∈ V } ⊂ Xh ⊕H1(Ω). Our goal is to estimate ek
h in a suitable norm in terms of h

and τ . The error in the space-time cylinder QT can be characterized by a continuous
piecewise linear function e : [0, T ]→ Vh ⊕ V such that

(6.2) e(tk) = ek
h for tk ∈ [0, T ].

In Lemma 4 some properties of the interpolation operator Ih, defined by (3.10),

were formulated. They can be generalized in the following way:

Lemma 9. For each v ∈ Xh ⊕H1(Ω) the following inequalities hold:

a) ‖v − Ihv‖L2(Ω) � c23h‖v‖Xh
,(6.3)

b) ‖v − Ihv‖Xh
� c24‖v‖Xh

,

c) ‖Ihv‖Xh
� c25‖v‖Xh

,

where c23, c24, c25 are constants independent of h and v.

�����. Since v|T ∈ H1(T ) for each T , it follows from the general approximation

finite element properties ([4], Theorem 3.1.4) and assumption (3.1) that

‖v − Ihv‖L2(T ) � ch|v|H1(T ),

‖v − Ihv‖H1(T ) � c|v|H1(T )

with c independent of v, T and h. This immediately yields (6.3). �
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For our further considerations, because of the control of some terms, we introduce

the “inverse stability assumption”

(6.4) h � ˜̃cτ

with a constant c̃ independent of h and τ . Hence, h = O(τ). This condition seems to
be non-standard, but we can meet it also in other works concerned with the numerical

solution of evolution problems, as e.g. [39], § 4.2, 5.1 or [31].

Now we come to the fundamental result.

Theorem 5. Let assumptions (2.8)–(2.10), (3.1), (3.2), (3.24)–(3.27), (4.1)–
(4.3) be satisfied. Further, let {uk

h}tk=kτ∈[0,T ] be the approximate solution of prob-

lem (2.13)–(2.15) obtained with the aid of the discrete problem (3.21)–(3.23). Let
the exact solution u of (2.13)–(2.15) satisfy conditions (5.1). Moreover, we assume
that u0 ∈ H2(Ω) and set

‖e‖2h,τ,L2 := τ

r∑

k=0

‖ek
h‖2L2(Ω), τ = T /r,(6.5)

‖e‖2h,τ,ν,Xh
:= τν

r−1∑

k=0

‖ek+1
h ‖2Xh

.

Let κ ∈ (0, 1/2). Then there exist constants C2 = O(ν−6 exp(2T c/ν)) and C3 =
O(ν−7 exp(2T c/ν)) such that

a) ‖e‖2h,τ,L2 � C2h
2(1−κ),(6.6)

b) ‖e‖2h,τ,ν,Xh
� C3 h1−2κ

for all h ∈ (0, h0) and τ > 0 satisfying conditions (4.10), (6.4) and 2cτ � ν, where

c > 0 is the constant appearing in the proof.

�����. Let h ∈ (0, h0) and τ > 0 satisfy conditions (4.10) and (6.4). Then

condition (4.7) is satisfied. From (6.1) and (5.20) we obtain the relation

(ek+1
h , vh)− (ek

h, vh) + τν((ek+1
h , vh))h(6.7)

= − τ [b̃h(uk
h, vh)− b̃h(uk, vh)]− ε1(τ, uk, uk+1, vn)

− τε2(h, uk+1, vh) + τε3(h, uk
h, vh) + τε4(h, vh).
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Let us set vh := Ihek+1
h . Denoting by I the identity operator (Iϕ = ϕ), we get

(ek+1
h , ek+1

h )− (ek
h, ek+1

h ) + τν((ek+1
h , ek+1

h ))h(6.8)

= − τ [b̃h(uk
h, Ihek+1

h )− b̃h(uk, Ihek+1
h )]

− τε1(h, uk+1, Ihek+1
h )− τε2(τ, h, uk, uk+1, Ihek+1

h )

− τε3(h, uk
h, Ihek+1

h ) + τε4(h, Ihek+1
h ) + (ek+1

h , (I − Ih) e
k+1
h )

− (ek
h, (I − Ih) e

k+1
h ) + τν((ek+1

h , (I − Ih) e
k+1
h ))h.

From (6.1) it follows that (I− Ih)e
k+1
h = Ihuk+1−uk+1. Hence, by assumption (5.1)

and Lemma 4 we have

‖(I − Ih)e
k+1
h ‖L2(Ω) � c7h

2‖uk+1‖H2(Ω),(6.9)

‖(I − Ih)e
k+1
h ‖Xh

� c6h‖uk+1‖H2(Ω).(6.10)

Now we can write (6.8) in the form

‖ek+1
h ‖2L2(Ω) − ‖ek

h‖2L2(Ω) + ‖ek+1
h − ek

h‖2L2(Ω) + 2τν‖ek+1
h ‖2Xh

(6.11)

� σ(1) + σ(2) + . . .+ σ(6) + τσ(7),

where

σ(1) = |τε1(h, uk+1, Ihek+1
h )|,(6.12)

σ(2) = |τε2(τ, uk, uk+1, Ihek+1
h )|,

σ(3) = |τε3(h, uk
h, Ihek+1

h )|,
σ(4) = |τε4(h, Ihek+1

h )|,
σ(5) = |(ek+1

h , (I − Ih) e
k+1
h )− (ek

h, (I − Ih) e
k+1
h )|,

σ(6) = |τν((ek+1
h , (I − Ih) e

k+1
h ))|,

σ(7) = |b̃h(uk
h, Ihek+1

h )− b̃h(uk, Ihek+1
h )|.

Let us estimate these terms. From (4.10), (5.1), (5.21)–(5.24), (6.1), (6.3) and (6.4)

we find that

σ(1) � νc20c25τh‖ek+1
h ‖Xh

,(6.13)

σ(2) � c22c25τ(τ + h)‖uk+1‖H2(Ω)‖ek+1
h ‖Xh

� c29τh‖ek+1
h ‖Xh

,

σ(3) � c25c̃τh1−κ(‖uk
h‖2Xh

+ ‖uk
h‖Xh

)‖ek+1
h ‖Xh

,

σ(4) � c11c25τh‖gk‖W 1,q(Ω)‖ek+1
h ‖Xh

� c30τh‖ek+1
h ‖Xh

,

c29 = c22c25(1 + c3c(M∗)−1)c26,

c30 = c11c25‖gk‖W 1,q(Ω).
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Furthermore, the Cauchy inequality, (6.9), (6.10), Young’s inequality and (6.4) imply

that

σ(5) � ‖ek+1
h − ek

h‖L2(Ω)‖(I − Ih)e
k+1
h ‖L2(Ω)(6.14)

� c7h
2‖ek+1

h − ek
h‖L2(Ω)‖uk+1‖H2(Ω)

� c7c26h
2‖ek+1

h − ek
h‖L2(Ω),

σ(6) � c6τνh‖ek+1
h ‖Xh

‖uk+1‖H2(Ω)(6.15)

� c31τhν‖ek+1
h ‖Xh

, c31 = c6c26.

By (3.13),

σ(7) =

∣∣∣∣
∑

T∈Th

∫

T

2∑

s=1

(
f ′s(u

k
h)

∂uk
h

∂xs
− f ′s(u

k)
∂uk

∂xs

)
Ihek+1

h dx

∣∣∣∣

�
∣∣∣∣
∑

T∈Th

∫

T

2∑

s=1

(
f ′s(u

k
h)− f ′s(u

k)
)∂uk

∂xs
Ihek+1

h dx

∣∣∣∣

+

∣∣∣∣
∑

T∈Th

∫

T

2∑

s=1

f ′s(u
k
h)

(
∂uk

h

∂xs
− ∂uk

∂xs

)
Ihek+1

h ds

∣∣∣∣.

Using the bound (4.8), assumption (5.1), and a similar process as in the proof of

Lemma 8, we find that

σ(7) � c32(‖ek
h‖L2(Ω) + ‖ek

h‖Xh
) ‖Ihek+1

h ‖L2(Ω),(6.16)

c32 = max(‖u‖L∞(0,T ;W 1,∞(Ω)) max
ξ∈[−M̂,M̂]

s=1,2

|f ′′s (ξ)|, max
ξ∈[−M̂,M̂]

s=1,2

|f ′s(ξ)|).

This and (6.3) a) imply that

σ(7) � c33(‖ek
h‖L2(Ω) + ‖ek

h‖Xh
)(‖ek+1

h ‖L2(Ω) + h‖ek+1
h ‖Xh

),(6.17)

c33 = c32max(c23, 1).

By (4.25), (4.27) and properties (5.1) of the solution of the continuous problem,

‖ek
h‖L2(Ω) = ‖uk − uk

h‖L2(Ω) � ‖uk‖L2(Ω) + ‖uk
h‖L2(Ω) � c26 + ĉ =: c34(6.18)

and

‖ek
h‖Xh

= ‖uk − uk
h‖Xh

� |uk|H1(Ω) + ‖uk
h‖Xh

� c26 + C1(ν) =: Ĉ(ν)(6.19)

where, in view of (4.36),

(6.20) C1(ν) �
√

c̄14
1

ν3/2
⇒ Ĉ(ν) = O(ν−3/2).
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Therefore,

σ(7) � c35(‖ek
h‖L2(Ω)‖ek+1

h ‖L2(Ω) + ‖ek
h‖Xh

‖ek+1
h ‖L2(Ω)(6.21)

+ (h+ hĈ(ν))‖ek+1
h ‖Xh

), c35 = c33max(1, c34).

Now, using Young’s inequality in (6.21), we have

τσ(7) � τc35ν‖ek
h‖2L2(Ω) +

τc35
4ν

‖ek+1
h ‖2L2(Ω) +

τc235
4ν

‖ek+1
h ‖2L2(Ω)(6.22)

+ τν‖ek
h‖2Xh

+
τν

4
‖ek+1

h ‖2Xh
+

τ

ν
C(ν)h2

� τcν‖ek
h‖2L2(Ω) +

τc
ν
‖ek+1

h ‖2L2(Ω)
+ τν‖ek

h‖2Xh
+

τν

4
‖ek+1

h ‖2Xh
+

τ

ν
C(ν)h2

with c = max(c35, (c35 + c235)/4) and C(ν) = c235(1 + Ĉ(ν))2. Further, for

σ(1), . . . , σ(6) we again use Young’s inequality, (6.15), (6.4) and (4.27). Then
we obtain estimates

σ(1) � c36τh2 +
τν

8
‖ek+1

h ‖2Xh
, c36 = 2(c20c25)

2,(6.23)

σ(2) + σ(4) � c37τh2

ν
+

τν

8
‖ek+1

h ‖2Xh
, c37 = 2(c29 + c30)2,

σ(3) � c225
c̃2τ

ν
h2(1−κ)(‖uk

h‖2Xh
+ ‖uk

h‖Xh
)2 +

τν

4
‖ek+1

h ‖2Xh

� c40
τ

ν
h2(1−κ)(ν−6 + ν−4.5 + ν−3) +

τν

4
‖ek+1

h ‖2Xh
,

c40 := c225c̃
2max(c̄214, 2c̄

3
14, c̄

2
14),

σ(5) � c27c
2
26

4
h4 + ‖ek+1

h − ek
h‖2L2(Ω) � c41τh3 + ‖ek+1

h − ek
h‖2L2(Ω),

c41 :=
c27c
2
26

4
˜̃c,

σ(6) � c231τνh2 +
τν

4
‖ek+1

h ‖2Xh
.

Now, estimates (6.11), (6.22) and (6.23) imply that

‖ek+1
h ‖2L2(Ω) − ‖ek

h‖2L2(Ω) + τν‖ek+1
h ‖2Xh

(6.24)

� τcν‖ek
h‖2L2(Ω) +

τc
ν
‖ek+1

h ‖2L2(Ω) +
τ

ν
C(ν)h2

+ τν‖ek
h‖2Xh

+ c36τh2 +
c37τh2

ν

+
c40τ

ν
h2(1−κ)(ν−6 + ν−4.5 + ν−3) + c41τh3 + c231τνh2,
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which gives

(
1− τc

ν

)
‖ek+1

h ‖2L2(Ω) + τν‖ek+1
h ‖2Xh

(6.25)

� (1 + τcν)‖ek
h‖2L2(Ω) + τν‖ek

h‖2Xh
+

τ

ν
C(ν)h2 + c36τh2 +

c37τh2

ν

+
c40τh2(1−κ)

ν
(ν−6 + ν−4.5 + ν−3) + c41τh3 + c231τνh2.

Using the inverse stability condition (6.4), we obtain

(
1− τc

ν

)
‖ek+1

h ‖2L2(Ω) + τν‖ek+1
h ‖2Xh

� (1 + τcν)‖ek
h‖2L2(Ω)(6.26)

+ τν‖ek
h‖2Xh

+ τ2q(ν, h),

where

q(ν, h) :=

[ ˜̃cC(ν)
ν

h+
c37˜̃ch

ν
+ c36˜̃ch+

c40˜̃c
ν

h1−2κ(ν−6 + ν−4.5 + ν−3)(6.27)

+ c41˜̃ch2 + c231 ˜̃cνh

]

� h1−2κ
[
C(ν)˜̃c

ν
h2κ0 +

c37˜̃ch2κ0
ν

+ c36˜̃ch
2κ
0 +

c40 ˜̃c
ν
(ν−6 + ν−4.5 + ν−3)

+ c41˜̃ch
1+2κ
0 + c231˜̃cνh2−κ

0

]

for h ∈ (0, h0).
Now, we sum (6.26) over k = 0, . . . , m (tm ∈ [0, T )), which results in

(
1− τc

ν

) m∑

k=0

‖ek+1
h ‖2L2(Ω) + τν

m∑

k=0

‖ek+1
h ‖2Xh

(6.28)

� (1 + τcν)
m∑

k=0

‖ek
h‖2L2(Ω) + τν

m∑

k=0

‖ek
h‖2Xh

+ τT q(ν, h).

This implies that

(
1− τc

ν

) m∑

k=0

‖ek+1
h ‖2L2(Ω) + τν‖em+1

h ‖2Xh
(6.29)

� (1 + τcν)
m∑

k=0

‖ek
h‖2L2(Ω) + τν‖e0h‖2Xh

+ τT q(ν, h).
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Let us denote

(6.30) ξm =
m∑

k=0

‖ek
h‖2L2(Ω).

Then

(
1− τc

ν

)
(ξm+1 − ‖e0h‖2L2(Ω)) + τν‖em+1

h ‖2Xh
(6.31)

� (1 + τcν)ξm + τν‖e0h‖2Xh
+ τT q(ν, h).

Using the estimates

‖e0h‖Xh
= ‖u0 − Ihu0‖Xh

� c6‖u0‖H2(Ω)h =
√

c37h,(6.32)

‖e0h‖L2 = ‖u0 − Ihu0‖L2 � c7‖u0‖H2(Ω)h
2(6.33)

� c7(˜̃cτ)1/2h3/2‖u0‖H2(Ω) =
√

c38τ
1/2h3/2

and assuming that cτ/ν � 1/2 (see the assumptions of the theorem), we get

from (6.31) and (6.30) that

(6.34) ξm+1 � 1 + τcν
1− τc/ν

ξm +
τT q(ν, h)
1− τc/ν

+ c38τh3 +
c37τνh2

1− τc/ν
.

If we set

(6.35) A =
1 + τcν
1− τc/ν

,

the relation (6.34) can be written as

(6.36) ξm+1 � Aξm + τ

[
q(ν, h)T
1− τc/ν

+ c38h
3 +

c37νh2

1− τc/ν

]
.

From this we obtain

(6.37) ξm � Amξ0 +
Am − 1
A− 1 τ

[
q(ν, h)T
1− τc/ν

+ c38h+
c37νh2

1− τc/ν

]
.

In virtue of the inequality τc/ν � 1/2, we have

A � 1 + 2τc
(
ν + 1/ν

)
� exp

(
2τc

(
ν +
1
ν

))
.
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Hence,

ξm � exp
(
2mcτ

(
ν +
1
ν

))
ξ0(6.38)

+
exp

(
2mcτ(ν + 1/ν)

)
− 1

c(ν2 + 1)(ν − cτ )−1 [q(ν, h)T + c38h+ c37νh2]

� ξ0 exp

(
2Tc

(
ν +
1
ν

))

+
ν

c(ν2 + 1)

(
exp

(
2Tc

(
ν +
1
ν

))
− 1

)
[q(ν, h)T + c38h+ c37νh2].

Further, due to the relation (6.33) we have

ξ0 exp

(
2Tc

(
ν +
1
ν

))
= ‖e0h‖2L2(Ω) exp

(
2T c

(
ν +
1
ν

))

� c38 exp

(
2Tc

(
ν +
1
ν

))
τh3

=: C∗(ν)τh3

and we conclude from (6.38) that

(6.39) ξm � C∗(ν)τh3 + C̃(ν)[q(ν, h)T + c38h
3 + c37νh2],

where

(6.40) C̃(ν) =
ν

c(ν2 + 1)

(
exp

(
2Tc

(
ν +
1
ν

))
− 1

)
.

Due to (6.5) and (6.30),

(6.41) ‖e‖2h,τ,L2(Ω) = τξr .

From this and (6.39) we find that

‖e‖2h,τ,L2(Ω) � C∗(ν)τ2h3 + τC̃(ν)[q(ν, h)T + c38h
3 + c37νh2].

Then, in view of (4.10), (6.20), (6.27) and the fact that Ĉ(ν) = O(ν−3/2), C̃(ν) =

O(ν exp(2T c/ν)) and q(ν, h) = O(ν−7), we find that

‖e‖2h,τ,L2(Ω) � C2h
2(1−κ), C2 = O(ν−6 exp(2T c/ν)),

which yields estimate (6.6) a).
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Now we establish estimate (6.6) b). From (6.28) we obtain

(
1− τc

ν

)
‖em+1

h ‖2L2(Ω) + τν‖em+1
h ‖2Xh

(6.42)

� cτ
( 1

ν
+ ν

) m∑

k=0

‖ek
h‖2L2(Ω) + ‖e0k‖2L2(Ω) + τν‖e0h‖2Xh

+ τT q(ν, h).

As above we assume that 2cτ � ν. Then (6.42) implies that

τν‖em+1
h ‖2Xh

� cτ
( 1

ν
+ ν

) M∑

ν=0

‖ek
h‖2L2(Ω) + ‖e0h‖2L2(Ω) + τν‖e0h‖Xh

+ τT q(ν, h).

Now the summation of this inequality over m = 0, . . . , r − 1, estimates of ‖e0h‖L2(Ω)

and ‖e0h‖Xh
, (6.6) a) and (6.27) immediately yield (6.6) b). �

������ 2. a) The above results can be extended to the case when Ω ⊂ �
3 is a

bounded polyhedral domain and q from (2.9) is greater than three. The maximum

principle can be applied in this case on the basis of the results from [32].
b) There are some open questions and problems: the proof of error estimates

for other combined finite volume-finite element schemes (fully explicit or implicit
schemes, the method of fractional steps), the study of higher order schemes, the

derivation of efficient a posteriori error estimates, and generalization to systems of
equations.

c) Particularly interesting, but rather difficult, would be the investigation of the
behaviour of the error in dependence on the coefficient ν. The behaviour of the

constants C2 and C3 from the error estimates in Theorem 5 is rather pessimistic for
small ν. It would be desirable to develop error estimates uniform with respect to ν.

However, this has been obtained only in very few works analyzing simple problems
under rather special assumptions when complete analytic behaviour of solutions is

known ([1], [35] and citations in [39]).

7. Applications to viscous compressible flow

The main motivation for developing the combined finite volume-finite element

schemes was the numerical simulation of viscous compressible high-speed flow. The
goal was to construct a sufficiently efficient, robust and reliable method for the

computation of complicated flow fields with shock waves, boundary layers and their
interaction.

In what follows we describe a method combining barycentric finite volumes with
nonconforming piecewise linear finite elements, applied to the solution of a high-
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speed flow past a cascade of profiles modeling the flow in steam and gas turbines or

compressors.
We consider gas flow in a space-time cylinder QT = Ω× (0, T ), where Ω ⊂ �

2 is
a bounded domain representing the region occupied by the fluid and T > 0.

The complete system of a viscous compressible flow consisting of the continuity
equation, Navier-Stokes equations and the energy equation can be written in the

dimensionless form

(7.1)
∂w

∂t
+

2∑

s=1

∂fs(w)
∂xs

=
2∑

s=1

∂Rs(w,∇w)
∂xs

in QT .

Here

w = (w1, w2, w3, w4)
T = (�, �v1, �v2, e)

T,(7.2)

w = w(x, t), x ∈ Ω, t ∈ (0, T ),
fs(w) = (�vs, �vsv1 + δs1p, �vsv2 + δs2p, (e+ p)vs)T,

Rs(w,∇w) =

(
0, τs1, τs2, τs1v1 + τs2v2 +

γ

Re Pr
∂θ

∂xs

)T
,

τsr =
1
Re

[(
∂vs

∂xr
+

∂vr

∂xs

)
− 2
3
div vδsr

]
, s, r = 1, 2.

From thermodynamics we have

(7.3) p = (γ − 1)(e− �|v|2/2), e = �(θ + |v|2/2).

We use the standard notation for dimensionless quantities: t—time, x1, x2—
Cartesian coordinates in �2 , �—density, v = (v1, v2)—velocity vector with com-

ponents vs in the directions xs, s = 1, 2, p—pressure, θ—absolute temperature, e—
total energy, τsr—components of the viscous part of the stress tensor, δsr—Kronecker

delta, γ > 1—Poisson adiabatic constant, Re—Reynolds number, Pr—Prandtl num-
ber. We neglect the outer volume force. The functions fs, called inviscid (Euler)

fluxes, are defined in the set D = {(w1, . . . , w4) ∈ �
4 ; w1 > 0}. The viscous

terms Rs are defined in D×�8 . (Due to physical reasons it is also suitable to require
p > 0.)
System (7.1), (7.3) is equipped with an initial condition

(7.4) w(x, 0) = w0(x), x ∈ Ω

(which means that at time t = 0 we prescribe, e.g., �, v1, v2 and θ) and boundary
conditions. In the simulation of the flow past a cascade of profiles the region occupied

by the fluid is represented by an infinitely connected plane domain Ω̃, bounded in
one space direction (say x1) and unbounded but periodic in the other direction (x2).
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Assuming also the periodicity of the flow field, we can choose the computational

domain Ω in the form of one period of the original domain Ω̃ (see Fig. 3). The
boundary ∂Ω is formed by disjoint parts ΓI , ΓO, ΓW , Γ+ and Γ−. On ΓI , ΓO and
ΓW , representing the inlet, outlet and impermeable profile, respectively, we prescribe

conditions

(i) � = �∗, vs = v∗s , s = 1, 2, θ = θ∗ on ΓI ,(7.5)

(ii) vs = 0, s = 1, 2,
∂θ

∂n
= 0 on ΓW ,

(iii)
2∑

s=1

τsrns = 0, r = 1, 2,
∂θ

∂n
= 0 on ΓO.

Here ∂/∂n denotes the derivative in the direction of the unit outer normal n =

(n1, n2)T to ∂Ω; w0, �∗, v∗s and θ∗ are given functions.
Moreover, the arcs Γ− and Γ+ are piecewise linear artificial cuts such that

(7.6) Γ+ = {(x1, x2 + τ) ; (x1, x2) ∈ Γ−},

where τ > 0 is the width of one period of the cascade in the direction x2. On Γ± we
consider the periodicity condition

(7.7) w(x1, x2 + τ, t) = w(x1, x2, t), (x1, x2) ∈ Γ−.

The same condition is imposed on the first-order derivatives of the vector function w.

Let us note that equations (7.1) and (7.3) are of hyperbolic-parabolic type and that
nothing is known about the existence and uniqueness of the solution of problem (7.1),

(7.3)–(7.5) and (7.7).
We carry out the discretization of system (7.1) similarly as in Section 2. Assuming

that Ω is a polygonal domain, we denote by Th a triangulation of Ω and by Qi,
i ∈ J , the midpoints of the sides of all triangles T ∈ Th. We use nonconforming

piecewise linear finite elements. This means that the components of the state vector
are approximated by functions from the finite dimensional space Xh defined in (3.9).

Further, we set Xh = [Xh]4 and

a) Vh = {ϕh = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ Xh ; ϕi(Qj) = 0 for mid-
points Qj lying on the part of ∂Ω where wi satisfies

the Dirichlet condition and ϕh satisfies the periodicity
condition (7.7)},

(7.8)

b) Wh = {wh ∈ Xh; its components satisfy the Dirichlet bound-
ary conditions following from (7.5) and periodicity

condition (7.7)}.

331



Moreover, we consider a partition 0 = t0 < t1 < . . . of the interval (0, T ) and set

τk = tk+1 − tk.

Multiplying (7.1) considered on a time level tk by any ϕh ∈ Vh, integrating over Ω,
using Green’s theorem, taking into account the boundary conditions (7.5) and the

periodicity conditions (7.7) for w, ϕh and for the derivatives of w, we obtain the
following integral identity:

(7.9)
∫

Ω

∂w

∂t
ϕh dx+

∫

Ω

2∑

s=1

∂fs(w)
∂xs

ϕh dx+
∫

Ω

2∑

s=1

Rs(w,∇w)
∂ϕh

∂xs
dx = 0.

Now approximating the time derivative by the difference and the convective terms
with fluxes fs by a form bh defined similarly as in (3.20) with the aid of the finite

volume approach and evaluating the integrals with the aid of the quadrature formula
using midpoints of sides as integration points, i.e.,

(7.10)
∫

T

F dx ≈ 1
3
|T |

3∑

i=1

F (Qi
T )

for F ∈ C(T ) and a triangle T with midpoints of sides Qi
T , i = 1, 2, 3, we arrive

at the following scheme for the calculation of an approximate solution wk+1
h on the

(k + 1)-st time level:

a) wk+1
h ∈ Wh,(7.11)

b) (wk+1
h , ϕh)h = (wk

h, ϕh)h − τk{bh(wk
h, ϕh) + ah(wk

h, ϕh)}
∀ϕh ∈ Vh.

Here

(7.12) (wh, ϕh)h =
1
3

∑

T∈Th

|T |
3∑

i=1

wh(Qi
T )ϕh(Qi

T ), wh, ϕh ∈ Xh

and ah(wk
h, ϕh) approximates the viscous terms of the form

∫

Ωh

2∑

s=1

Rs(wk
h,∇wk

h)
∂ϕh

∂xs
dx.
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Namely,

(7.13)

ah(wh, ϕh) = a1h(wh, ϕh) + . . .+ a4h(wh, ϕh), a1h ≡ 0,

a2h(wh, ϕh) =
∑

T∈Th

|T |
{
2
∂vh,1

∂x1

∣∣∣∣
T

∂ϕh,2

∂x1

∣∣∣∣
T

− 2
3
(div vh)|T

∂ϕh,2

∂x1

∣∣∣∣
T

+

(
∂vh,2

∂x1

∣∣∣∣
T

+
∂vh,1

∂x2

∣∣∣∣
T

)
∂ϕh,2

∂x2

∣∣∣∣
T

}
/Re,

a3h(wh, ϕh) =
∑

T∈Th

|T |
{(

∂vh,2

∂x1

∣∣∣∣
T

+
∂vh,1

∂x2

∣∣∣∣
T

)
∂ϕh,3

∂x1

∣∣∣∣
T

+ 2
∂vh,2

∂x2

∣∣∣∣
T

∂ϕh,3

∂x2

∣∣∣∣
T

− 2
3
(div vh)|T

∂ϕh,3

∂x2

∣∣∣∣
T

}
/Re,

a4h(wh, ϕh) =
∑

T∈Th

{
1
3
|T |

(
τh,11|T

3∑

i=1

vh,1(Qi
T ) + τh,12|T

3∑

i=1

vh,2(Qi
T )

)
∂ϕh,4

∂x1

∣∣∣∣
T

+
1
3
|T |

(
τh,21|T

3∑

i=1

vh,1(Qi
T ) + τh,22|T

3∑

i=1

vh,2(Qi
T )

)
∂ϕh,4

∂x2

∣∣∣∣
T

+
γ

RePr
|T |

2∑

j=1

∂θh

∂xj

∣∣∣∣
T

∂ϕh,4

∂xj

∣∣∣∣
T

}
,

τh,rs|T =
1
Re

(
∂vh,r

∂xs
+

∂vh,s

∂xr
− 2
3
div vhδrs

)∣∣∣∣
T

= const.

By vh,s and θh we denote the functions from the space Xh approximating the velocity

components and temperature. Moreover, bh representing the approximation of the
convective terms is expressed as

bh(wh, ϕh) =
∑

i∈J

ϕh(Qi)
∑

j∈S(i)

βij∑

α=1

H
(
wh(Qi), wh(Qj), n

α
ij

)
�α
ij ,(7.14)

wh, ϕh ∈ Xh.

As H we use here the well-known Osher-Solomon numerical flux (cf. [38], [42], [15]).
From (7.14) we see that the used scheme is fully explicit. The reason is its simple

algorithmization. However, its application is conditioned by the use of a suitable
stability condition. Namely, the following condition has been used in practical com-

putations:

max

{
max
i∈J

τk

|Di|
|∂Di|

(
max

j∈S(i),α=1,...,βij

�(�(wk
i , nα

ij))
)
,(7.15)

max
T∈Th

3
4

h(T )
σ(T )

τk

|T |
1
Re

}
� CFL ≈ 0.85,
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where �(w, n) =
2∑

s=1
(Dfs(w)/Dw)ns, �(�) = spectral radius of the matrix �, h(T )

is the length of the maximal side of T ∈ Th and σ(T ) is the radius of the largest
circle inscribed into T . Condition (7.15) is obtained on the basis of linearization and

in analogy with the scalar problem (for details see [28]).

The use of the semiimplicit (or implicit) version of scheme (7.11) would require
the solution of a nonlinear algebraic system on each time level.

Another possible time discretization which we have applied with success is the

inviscid-viscous operator splitting described, e.g., in [6], [13], [14], [15].

In order to get sufficiently accurate computational results with a good resolution of
shock waves and boundary layers, it is suitable to apply an adaptive mesh refinement

strategy. We have developed several adaptive techniques based on a shock indicator
and error indicators, leading to satisfactory results (see, e.g., [6], [7], [12], [21], [29]).
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0.05

0.05

−0.05
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0

−0.2

ΓI
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Γ+

Γ−

ΓW

Ω

Figure 3. Cascade of profiles with the com-
putational domain Ω and the
boundary parts ΓI , ΓO, ΓW and
the artificial periodical cuts Γ+

and Γ−.

Figure 4. The wind tunnel interferogram
showing density isolines (Courtesy
of the Institute of Thermomechan-
ics, Academy of Science of Czech
Republic, Prague).

	
����� 1. The method described was applied to the numerical simulation of
the flow past a turbine cascade shown in Fig. 3. The goal was to obtain the steady

state solution with the aid of the time stabilization for t → ∞. The computational
results are compared with a wind tunnel experiment (by courtesy of the Institute
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Figure 5. The final triangular mesh.

Figure 6. The final corresponding barycentric mesh.
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of Thermomechanics of the Academy of Sciences of the Czech Republic in Prague,

see [44]). The experiment and computations were performed for the following data:
angle of attack = 19◦ 18′, inlet Mach number = 0.32, outlet Mach number = 1.18,
γ = 1.4, Reynolds number Re = 1.5 · 106, Prandtl number Pr = 0.72.

Fig. 4 represents the wind tunnel interferogram showing density isolines (see [44]).
In Fig. 5 and Fig. 6 the final triangular and the corresponding barycentric mesh

obtained with the aid of anisotropic mesh refinement ([6], [7]) are plotted, respec-
tively. Fig. 7 shows the pressure distribution along the profile compared with the

measurement. Further, Fig. 8 shows the computed density isolines. We see that a
good agreement of computational results with experiment was achieved. Let us note

that the inviscid-viscous operator splitting method ([6], [13], [14], [15]) gives nearly
identical results.

1

2

3

4

5
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7

8

0 10.2 0.4 0.6 0.8
Figure 7. Pressure distribution along the profile compared with measurement.
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Figure 8. Density isolines.
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[9] R. Eymand, T. Gallouët and R. Herbin: Finite Volume Methods. Technical Report
97-19, Centre de Mathématiques et d’Informatique. Université de Provence, Marseille,
1997.

[10] V. Dolejší, M. Feistauer and J. Felcman: On the discrete Friedrichs inequality for non-
conforming finite elements. Numer. Funct. Anal. Optim. 20 (1999), 437–447.

[11] M. Feistauer: Mathematical Methods in Fluid Dynamics. Pitman Monographs and Sur-
veys in Pure and Applied Mathematics 67. Longman Scientific & Technical, Harlow,
1993.

[12] M. Feistauer, V. Dolejší, J. Felcman and A. Kliková: Adaptive mesh refinement for
problems of fluid dynamics. In: Proc. of Colloquium Fluid Dynamics ’99 (P. Jonáš,
V. Uruba, eds.). Institute of Thermomechanics, Academy of Sciences, Prague, 1999,
pp. 53–60.

[13] M. Feistauer, J. Felcman: Convection-diffusion problems and compressible Navier-
Stokes equations. In: The Mathematics of Finite Elements and Applications (J.R.
Whiteman, ed.). John Wiley & Sons, 1997, pp. 175–194.

[14] M. Feistauer, J. Felcman and V. Dolejší: Numerical simulation of compresssible viscous
flow through cascades of profiles. Z. Angew. Math. Mech. 76 (1996), 297–300.

[15] M. Feistauer, J. Felcman and M. Lukáčová: Combined finite elements-finite volume
solution of compressible flow. J. Comput. Appl. Math. 63 (1995), 179–199.

[16] M. Feistauer, J. Felcman and M. Lukáčová: On the convergence of a combined fi-
nite volume-finite element method for nonlinear convection-diffusion problems. Numer.
Methods Partial Differential Equations 13 (1997), 163–190.

[17] M. Feistauer, J. Felcman, M. Lukáčová and G. Warnecke: Error estimates of a combined
finite volume-finite element method for nonlinear convection-diffusion problems. SIAM
J. Numer. Anal. 36 (1999), 1528–1548.

[18] M. Feistauer, J. Slavík and P. Stupka: On the convergence of the combined finite
volume-finite element method for nonlinear convection-diffusion problems. II. Explicit
schemes. Numer. Methods Partial Differential Equations 15 (1999), 215–235.

338



[19] J. Felcman: Finite volume solution of the inviscid compressible fluid flow. Z. Angew.
Math. Mech. 72 (1992), 513–516.

[20] J. Felcman, V. Dolejší: Adaptive methods for the solution of the Euler equations in
elements of the blade machines. Z. Angew. Math. Mech. 76 (1996), 301–304.

[21] J. Felcman, V. Dolejší and M. Feistauer: Adaptive finite volume method for the numeri-
cal solution of the compressible Euler equations. In: Computational Fluid Dynamics ’94
(J. Périaux, S. Wagner, E.H. Hirschel and R. Piva, eds.). John Wiley & Sons, Stuttgart,
1994, pp. 894–901.

[22] J. Felcman, G. Warnecke: Adaptive computational methods for gas flow. In: Proceed-
ings of the Prague Mathematical Conference (K. Segeth, ed.). ICARIS, Prague, 1996,
pp. 99–104.

[23] J. Fořt, M. Huněk, K. Kozel and M. Vavřincová: Numerical simulation of steady and
unsteady flows through plane cascades. In: Numerical Modeling in Continuum Mechan-
ics II (R. Ranacher, M. Feistauer and K. Kozel, eds.). Faculty of Mathematics and
Physics, Charles Univ., Prague, 1995, pp. 95–102.

[24] H. Gajewski, K. Gröger and K. Zacharias: Nichtlineare Operatorgleichungen und Op-
eratordifferentialgleichungen. Akademie-Verlag, Berlin, 1974.

[25] T. Ikeda: Maximum principle in finite element models for convection-diffusion phenom-
ena. In: Mathematics Studies 76, Lecture Notes in Numerical and Applied Analysis
Vol. 4. North-Holland, Amsterdam-New York-Oxford, 1983.

[26] C. Johnson: Finite element methods for convection-diffusion problems. In: Comput-
ing Methods in Engineering and Applied Sciences V. (R. Glowinski, J. L. Lions, eds.).
North-Holland, Amsterdam, 1981.

[27] C. Johnson: Numerical Solution of Partial Differential Equations. Cambridge University
Press, Cambridge, 1988.

[28] A. Kliková: Finite Volume—Finite Element Solution of Compressible Flow. Doctoral
Thesis. Charles University Prague, 2000.

[29] A. Kliková, M. Feistauer and J. Felcman: Adaptive methods for problems of fluid
dynamics. In: Software and Algorithms of Numerical Mathematics ’99 (J. Holenda,
I. Marek, eds.). West-Bohemian University, Pilsen, 1999.

[30] D. Kröner: Numerical Schemes for Conservation Laws. Wiley & Teuner, Chichester,
1997.

[31] D. Kröner, M. Rokyta: Convergence of upwind finite volume schemes for scalar conser-
vation laws in two dimensions. SIAM J. Numer. Anal. 31 (1994), 324–343.

[32] M. Křížek, Qun Lin: On diagonal dominance of stiffness matrices in 3D. East-West
J. Numer. Math. 3 (1993), 59–69.

[33] M. Křížek, P. Neittaanmäki: Finite Element Approximation of Variational Problems
and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics,
Vol. 50. Longman Scientific & Technical, Harlow, 1990.

[34] A. Kufner, O. John and S. Fučík: Function Spaces. Academia, Prague, 1977.
[35] J.M. Melenk and C. Schwab: The hp streamline diffusion finite element method for

convection dominated problems in one space dimension. East-West J. Numer. Math. 7
(1999), 31–60.

[36] K.W. Morton: Numerical Solution of Convection-Diffusion Problems. Chapman & Hall,
London, 1996.

[37] K. Ohmori, T. Ushijima: A technique of upstream type applied to a linear noncon-
forming finite element approximation of convective diffusion equations. RAIRO Anal.
Numér. 18 (1984), 309–322.

[38] S. Osher, F. Solomon: Upwind difference schemes for hyperbolic systems of conservation
laws. Math. Comp. 38 (1982), 339–374.

339



[39] H.-G. Roos, M. Stynes and L. Tobiska: Numerical Methods for Singularly Per-
turbed Differential Equations. Springer Series in Computational Mathematics, Vol. 24.
Springer-Verlag, Berlin, 1996.

[40] F. Schieweck, L. Tobiska: A nonconforming finite element method of upstream type
applied to the stationary Navier-Stokes equation. RAIRO Modél. Math. Anal. Numér.
23 (1989), 627–647.

[41] C. Schwab: p- and hp- Finite Element Methods. Theory and Applications in Solid and
Fluid Mechanics. Clarendon Press, Oxford, 1998.

[42] S.P. Spekreijse: Multigrid Solution of the Steady Euler Equations. Centrum voor
Wiskunde en Informatica, Amsterdam, 1987.

[43] G. Strang: Variational crimes in the finite element method. In: The Mathematical Foun-
dations of the Finite Element Method (A.K. Aziz, ed.). Academic Press, New York,
1972, pp. 689–710.

[44] M. Šťastný, P. Šafařík: Experimental analysis data on the transonic flow past a plane
turbine cascade. ASME Paper 90-GT-313. New York, 1990.

[45] R. Temam: Navier-Stokes Equations. North-Holland, Amsterdam-New York-Oxford,
1979.

[46] L. Tobiska: Full and weighted upwind finite element methods. In: Splines in Numeri-
cal Analysis Mathematical Research Volume, Vol. 32 (J.W. Schmidt, H. Spath, eds.).
Akademie-Verlag, Berlin, 1989.

[47] G. Vijayasundaram: Transonic flow simulation using an upstream centered scheme of
Godunov in finite elements. J. Comp. Phys. 63 (1986), 416–433.

[48] G. Zhou: A local L2-error analysis of the streamline diffusion method for nonstationary
convection-diffusion systems. RAIRO Modél. Math. Anal. Numér. 29 (1995), 577–603.

[49] G. Zhou, R. Rannacher: Pointwise superconvergence of streamline diffusion finite-
element method. Numer. Methods Partial Differential Equations 12 (1996), 123–145.

Authors’ addresses: Vít Dolejší, Miloslav Feistauer, Jiří Felcman, Institute of Numer-
ical Mathematics, Faculty of Mathematics and Physics, Charles University, Sokolovská 83,
186 75 Praha 8, Czech Republic, e-mail: {dolejsi, feist, felcman}@karlin.mff.cuni.cz;
Alice Kliková, Centre for Theoretical Study, Charles University, Jilská 1, 110 00 Praha 1,
Czech Republic, e-mail: klikova@cts.cuni.cz.

340


		webmaster@dml.cz
	2020-07-02T10:27:19+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




