Applications of Mathematics

Vít Dolejší; Miloslav Feistauer; Jiř̌í Felcman; Alice Kliková
Error estimates for barycentric finite volumes combined with nonconforming finite elements applied to nonlinear convection-diffusion problems

Applications of Mathematics, Vol. 47 (2002), No. 4, 301-340

Persistent URL: http://dml.cz/dmlcz/134500

Terms of use:

© Institute of Mathematics AS CR, 2002

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ERROR ESTIMATES FOR BARYCENTRIC FINITE VOLUMES COMBINED WITH NONCONFORMING FINITE ELEMENTS APPLIED TO NONLINEAR CONVECTION-DIFFUSION PROBLEMS*

Vít Dolejš̌í, Miloslav Feistauer, Jirí Felcman and Alice Kliková, Praha
(Received May 19, 2000)

Abstract. The subject of the paper is the derivation of error estimates for the combined finite volume-finite element method used for the numerical solution of nonstationary nonlinear convection-diffusion problems. Here we analyze the combination of barycentric finite volumes associated with sides of triangulation with the piecewise linear nonconforming Crouzeix-Raviart finite elements. Under some assumptions on the regularity of the exact solution, the $L^{2}\left(L^{2}\right)$ and $L^{2}\left(H^{1}\right)$ error estimates are established. At the end of the paper, some computational results are presented demonstrating the application of the method to the solution of viscous gas flow.

Keywords: nonlinear convection-diffusion problem, compressible Navier-Stokes equations, cascade flow, barycentric finite volumes, Crouzeix-Raviart nonconforming piecewise linear finite elements, monotone finite volume scheme, discrete maximum principle, a priori estimates, error estimates

MSC 2000: 65M12, $65 \mathrm{M} 50,35 \mathrm{~K} 60,76 \mathrm{M} 10,76 \mathrm{M} 25$

1. Introduction

Many processes in science and technology are described by convection-diffusion equations. We can mention, e.g., processes of fluid dynamics, hydrology and environmental protection. There is an extensive literature on the numerical solution of convection-diffusion problems. Let us mention, e.g., the papers [1], [25], [26], [37],

[^0][40], [46], [48], [49] and the monographs [36], [39] (and the references therein), devoted mainly to linear problems. The main difficulty which must be overcome is the precise resolution of the so-called boundary layers. If the equation under consideration represents a nonlinear conservation law with a small dissipation, then beside boundary layers also shock waves appear (slightly smeared due to dissipation). This is particularly the case for the system describing viscous gas flow.

In [6], [8], [13], [14], [15] we developed numerical methods for the solution of the high-speed viscous compressible flow in domains with complex geometry. These methods are based on the combination of a finite volume scheme for the discretization of inviscid convective terms and the finite element discretization of viscous terms. The finite element method is one of the most powerful tools for solving partial differential equations, particularly of elliptic and parabolic types (cf. [4], [27], [33], [41]). On the other hand, in Computational Fluid Dynamics, especially for convection dominated flows, the upwind finite volume schemes are very popular. (For an extensive treatment of the finite volume methods, we refer the reader to [9]. See also [11] or [30].) In [6], [8], [13], [14], [15], we have developed combined finite volume-finite element methods, which exploit advantages of both the above methods. Numerical experiments proved the efficiency and robustness of these methods with respect to the precise resolution of boundary layers and shock capturing. Since the complete viscous gas flow problem is rather complex, the theoretical analysis of the combined finite volume-finite element methods has been carried out for the case of a simplified scalar nonlinear conservation law equation with a dissipation term, which is the simplest prototype of the compressible Navier-Stokes equation. Papers [16], [17], [18] are concerned with the convergence and error estimates for the method using dual finite volumes over a triangular mesh combined with conforming piecewise linear triangular finite elements.

Another possibility is the combination of the so-called barycentric finite volumes constructed over a triangular grid with the well-known Crouzeix-Raviart nonconforming piecewise linear finite elements used for the numerical solution of incompressible viscous flows ([5], [45]). The upwind version of the Crouzeix-Raviart finite element method was developed and analyzed in [37] for a linear stationary convection-diffusion equation. This was the inspiration for Schieweck and Tobiska who investigated in [40] upwind schemes for steady Navier-Stokes equations. In [2] the convergence analysis of the combined barycentric finite volume-nonconforming finite element method applied to a nonlinear convection-diffusion problem is given. In [6] and [13] this method was applied with success to the numerical solution of a compressible viscous flow. A similar approach was proposed in [3].

Here we will be concerned with the continuation of results from [2]. We will present the analysis of the error estimates of the finite volume-finite element method
combining barycentric finite volumes with nonconforming Crouzeix-Raviart finite elements applied to an initial-boundary value problem for a scalar nonlinear conservation law with a diffusion term. The basic tools used in the investigation of error estimates presented here are the discrete maximum principle, a priori error estimates and analysis of the discretization and truncation errors, carried out under some assumptions on the regularity of the exact solution. As a result, error estimates are obtained in discrete analogy of $L^{2}\left(L^{2}\right)$ and $L^{2}\left(H^{1}\right)$ norms. At the end we present application of the method analyzed to a technically relevant flow problem.

2. COntinuous problem

Let $\Omega \subset \mathbb{R}^{2}$ be a bounded polygonal domain with a Lipschitz-continuous boundary $\partial \Omega$. In the space-time cylinder $Q_{\boldsymbol{T}}=\Omega \times(0, \boldsymbol{T})(0<\boldsymbol{T}<\infty)$ we consider the following initial-boundary value problem:

Find $u: Q_{\boldsymbol{T}} \rightarrow \mathbb{R}, u=u(x, t), x \in \Omega, t \in(0, \boldsymbol{T})$, such that

$$
\begin{gather*}
\frac{\partial u}{\partial t}+\sum_{s=1}^{2} \frac{\partial f_{s}(u)}{\partial x_{s}}-\nu \Delta u=g \quad \text { in } Q_{\boldsymbol{T}} \tag{2.1}\\
\left.u\right|_{\partial \Omega \times(0, \boldsymbol{T})}=0 \tag{2.2}\\
u(x, 0)=u^{0}(x), \quad x \in \Omega \tag{2.3}
\end{gather*}
$$

where $\nu>0$ is a given real constant and $f_{s}: \mathbb{R} \rightarrow \mathbb{R}, s=1,2, g: Q_{\boldsymbol{T}} \rightarrow \mathbb{R}$, $u^{0}: \Omega \rightarrow \mathbb{R}$ are given functions. Precise assumptions on these functions will be given later.

In what follows we will work with the Lebesgue spaces $L^{p}(\Omega)$, the Sobolev spaces $W^{k, p}(\Omega), H^{k}(\Omega)=W^{k, 2}(\Omega)$, the subspace $H_{0}^{1}(\Omega) \subset H^{1}(\Omega)$ of functions with zero traces on $\partial \Omega$ and Bochner spaces $L^{q}(0, \boldsymbol{T} ; X), C([0, \boldsymbol{T}], X)$, where X is a Banach space. For their definitions and properties see, e.g., [34].

We set

$$
\begin{equation*}
V=H_{0}^{1}(\Omega) \tag{2.4}
\end{equation*}
$$

In the space $H^{1}(\Omega)$ beside its norm we will often work with the seminorm

$$
\begin{equation*}
|u|_{H^{1}(\Omega)}=\left(\int_{\Omega}|\nabla u|^{2} \mathrm{~d} x\right)^{1 / 2} \tag{2.5}
\end{equation*}
$$

which is an equivalent norm on V. We can write $|u|_{H^{1}(\Omega)}=((u, u))^{1 / 2}$, where

$$
\begin{equation*}
((u, v))=\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x, \quad u, v \in H^{1}(\Omega) \tag{2.6}
\end{equation*}
$$

is a scalar product on V. Further we set

$$
\begin{equation*}
(u, v)=\int_{\Omega} u v \mathrm{~d} x, \quad u, v \in L^{2}(\Omega) \tag{2.7}
\end{equation*}
$$

We will assume that

$$
\begin{gather*}
f_{s} \in C^{2}(\mathbb{R}), \quad f_{s}(0)=0, \quad s=1,2, \tag{2.8}\\
g \in C\left([0, \boldsymbol{T}] ; W^{1, q}(\Omega)\right) \text { for some } q>2, \tag{2.9}\\
u^{0} \in H_{0}^{1}(\Omega) \cap C(\bar{\Omega}) . \tag{2.10}
\end{gather*}
$$

Now we derive the weak formulation of problem (2.1)-(2.3). Multiplying (2.1) by an arbitrary $v \in V$, integrating over Ω and using Green's theorem, we obtain the identity

$$
\begin{gather*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega} u(t) v \mathrm{~d} x-\int_{\Omega} \sum_{s=1}^{2} f_{s}(u(t)) \frac{\partial v}{\partial x_{s}} \mathrm{~d} x+\nu \int_{\Omega} \nabla u(t) \cdot \nabla v \mathrm{~d} x \tag{2.11}\\
=\int_{\Omega} g(t) v \mathrm{~d} x, \quad \forall v \in V, \quad \forall t \in[0, \boldsymbol{T}]
\end{gather*}
$$

Here, for $t \in[0, \boldsymbol{T}], u(t)$ means the function " $x \in \Omega \mapsto u(t)(x)=u(x, t)$ ". Let us set

$$
\begin{equation*}
b(\varphi, v)=-\int_{\Omega} \sum_{s=1}^{2} f_{s}(\varphi) \frac{\partial v}{\partial x_{s}} \mathrm{~d} x \quad \text { for } \varphi \in L^{\infty}(\Omega), v \in V \tag{2.12}
\end{equation*}
$$

Definition 1.

We say that a function u is a weak solution of problem (2.1)-(2.3), if it satisfies the conditions

$$
\begin{gather*}
u \in L^{2}(0, \boldsymbol{T} ; V) \cap L^{\infty}\left(Q_{\boldsymbol{T}}\right), \tag{2.13}\\
\frac{\mathrm{d}}{\mathrm{~d} t}(u(t), v)+b(u(t), v)+\nu((u(t), v))=(g(t), v) \forall v \in V \tag{2.14}
\end{gather*}
$$

in the sense of distributions on $(0, \boldsymbol{T})$,

$$
\begin{equation*}
u(0)=u^{0} . \tag{2.15}
\end{equation*}
$$

It follows from [16] that the solution of problem (2.13)-(2.15) exists and is unique.

3. Discrete problem

By \mathcal{T}_{h} we will denote a triangulation of Ω with standard properties (see e.g. [4]): $T \in \mathcal{T}_{h}$ are closed triangles and

$$
\begin{equation*}
\bar{\Omega}=\bigcup_{T \in \mathcal{T}_{h}} T \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\text { if } T_{1}, T_{2} \in \mathcal{T}_{h}, T_{1} \neq T_{2}, \text { then } T_{1} \cap T_{2}=\emptyset \tag{3.2}
\end{equation*}
$$

$$
\text { or } T_{1} \cap T_{2} \text { is a common side of } T_{1} \text { and } T_{2},
$$

$$
\text { or } T_{1} \cap T_{2} \text { is a common vertex of } T_{1} \text { and } T_{2}
$$

By \mathbb{S}_{h} we denote the set of all sides of all triangles $T \in \mathcal{T}_{h}$. We introduce a numbering of triangles $T \in \mathcal{T}_{h}$ and their sides $S \in \mathbb{S}_{h}$ in such a way that

$$
\begin{equation*}
\mathcal{T}_{h}=\left\{T_{i} ; i \in I\right\}, \quad \mathbb{S}_{h}=\left\{S_{j} ; j \in J\right\} \tag{3.3}
\end{equation*}
$$

where I and J are suitable index sets of positives integers. By Q_{j} we denote the centre of a side $S_{j} \in \mathbb{S}_{h}$ and put $\mathcal{P}_{h}=\left\{Q_{j} ; j \in J\right\}$. Moreover, we set

$$
\begin{equation*}
J^{\circ}=\left\{i \in J ; Q_{i} \in \Omega\right\} \tag{3.4}
\end{equation*}
$$

Sometimes we will use the local notation S_{T}^{i} and $Q_{T}^{i}, i=1,2,3$, for the sides of a triangle $T \in \mathcal{T}_{h}$ and their centres, respectively. Then

$$
\begin{align*}
& \mathcal{S}_{h}=\left\{S_{T}^{i} ; i=1,2,3, T \in \mathcal{T}_{h}\right\} \tag{3.5}\\
& \mathcal{P}_{h}=\left\{Q_{T}^{i} ; i=1,2,3, T \in \mathcal{T}_{h}\right\}
\end{align*}
$$

By $h(T)$ and $\theta(T)$ we denote the length of the longest side and the magnitude of the smallest angle, respectively, of the triangle $T \in \mathcal{T}_{h}$, and put

$$
\begin{equation*}
h=\max _{T \in \mathcal{T}_{h}} h(T), \quad \theta_{h}=\min _{T \in \mathcal{T}_{h}} \theta(T) \tag{3.6}
\end{equation*}
$$

Now let us construct the barycentric mesh $\mathcal{D}_{h}=\left\{D_{i} ; i \in J\right\}$ over the basic mesh \mathcal{I}_{h}. The barycentric finite volumes D_{i} are closed polygons defined in the following way: We join the barycentre of each triangle $T \in \mathcal{T}_{h}$ with its vertices. Then around each side $S_{i}, i \in J^{\circ}$, we obtain a closed quadrilateral D_{i} containing S_{i}. If $S_{j} \subset \partial \Omega$ is a side with vertices P_{1}, P_{2} of a triangle $T \in \mathcal{T}_{h}$ adjacent to $\partial \Omega$, then by D_{j} we denote the triangle with the sides S_{j} and segments connecting the barycentre of T with P_{1} and P_{2}. (See Figs. 1, 2.) Obviously,

$$
\begin{equation*}
\bar{\Omega}=\bigcup_{i \in J} D_{i} \tag{3.7}
\end{equation*}
$$

If $D_{i} \neq D_{j}$ and the set $\partial D_{i} \cap \partial D_{j}$ contains more than one point, we call D_{i} and D_{j} neighbours and set $\Gamma_{i j}=\partial D_{i} \cap \partial D_{j}\left(=\right.$ the common side of D_{i} and $\left.D_{j}\right)$. Further,

Figure 1. Barycentric finite volume.

Figure 2. Triangular mesh and associated barycentric finite volume mesh.
we define the set $s(i)=\left\{j \in J ; D_{j}\right.$ is a neighbour of $\left.D_{i}\right\}$. If $Q_{i} \in \partial \Omega$ then we set $S(i)=s(i) \cup\{-1\}$ and $\Gamma_{i,-1}=S_{i} \subset \partial \Omega$, otherwise we put $S(i)=s(i)$. Then we can write

$$
\begin{equation*}
\partial D_{i}=\bigcup_{j \in S(i)} \Gamma_{i j} . \tag{3.8}
\end{equation*}
$$

In the sequel we use the following notation: $|T|=$ area of $T \in \mathcal{T}_{h},\left|D_{i}\right|=$ area of $D_{i} \in \mathcal{D}_{h}$ (i.e., $i \in J$), $\ell_{i j}=$ length of the segment $\Gamma_{i j},\left|\partial D_{i}\right|=$ length of ∂D_{i}, $\boldsymbol{n}_{i j}=\left(n_{i j 1}, n_{i j 2}\right)=$ unit outer normal to ∂D_{i} on $\Gamma_{i j}$ (i.e., $\boldsymbol{n}_{i j}$ points from D_{i} to $\left.D_{j}\right)$. Moreover, let us consider a partition $0=t_{0}<t_{1}<\ldots$ of the interval $(0, \boldsymbol{T})$ and set $\tau_{k}=t_{k+1}-t_{k}$ for $k=0,1, \ldots$

Let us define the following spaces over grids \mathcal{T}_{h} and \mathcal{D}_{h} :
(3.9) $X_{h}=\left\{v_{h} \in L^{2}(\Omega) ;\left.v_{h}\right|_{T}\right.$ is linear $\forall T \in \mathcal{T}_{h}, v_{h}$ is continuous at $\left.Q_{j} \forall j \in J\right\}$,

$$
\begin{aligned}
V_{h} & =\left\{v_{h} \in X_{h} ; v_{h}\left(Q_{i}\right)=0 \forall i \in J-J^{\circ}\right\}, \\
Z_{h} & =\left\{w_{h} \in L^{2}(\Omega) ;\left.w_{h}\right|_{D_{i}}=\text { const. } \forall i \in J\right\}, \\
Y_{h} & =\left\{w_{h} \in Z_{h} ; w_{h}=0 \text { on } D_{i} \in \mathcal{D}_{h} \forall i \in J-J^{\circ}\right\} .
\end{aligned}
$$

We can notice that $X_{h} \not \subset H^{1}(\Omega)$ and $V_{h} \not \subset V=H_{0}^{1}(\Omega)$. Therefore, we speak about nonconforming, piecewise linear finite elements. (By G. Strang, the use of nonconforming finite elements belongs to one of the basic finite element variational crimes, see [43]).

In the spaces from (3.9) we easily construct simple bases: The system $\left\{w_{i} ; i \in J\right\}$ of functions $w_{i} \in X_{h}$ such that $w_{i}\left(Q_{j}\right)=\delta_{i j}=$ Kronecker's delta, $i, j \in J$, forms a basis in X_{h}. The system $\left\{w_{i}, i \in J^{\circ}\right\}$ is a basis in V_{h}. Furthermore, denoting by $d_{i}=\chi_{D_{i}}$ the characteristic function of $D_{i} \in \mathcal{D}_{h}$, we have bases in Z_{h} and Y_{h} as the systems $\left\{d_{i} ; i \in J\right\}$ and $\left\{d_{i} ; i \in J^{\circ}\right\}$, respectively.

By I_{h} we denote the interpolation operator for nonconforming finite elements (see [11], 8.9.79). If $v: H^{1}(\Omega) \oplus X_{h}=\left\{v+v_{h} ; v \in H^{1}(\Omega), v_{h} \in X_{h}\right\} \rightarrow \mathbb{R}$, then

$$
\begin{equation*}
I_{h} v \in X_{h}, \quad\left(I_{h} v\right)\left(Q_{i}\right)=\frac{1}{\left|S_{i}\right|} \int_{S_{i}} v \mathrm{~d} S, \quad i \in J \tag{3.10}
\end{equation*}
$$

This integral exists due to the imbedding $L^{2}(S) \subset L^{1}(S)$ and the theorem on traces in the space $H^{1}(T)$:

$$
\begin{equation*}
\|\varphi\|_{L^{2}(\partial T)} \leqslant c\|\varphi\|_{H^{1}(T)}, \quad \varphi \in H^{1}(T) \quad(c=c(T)) . \tag{3.11}
\end{equation*}
$$

By L_{h} we denote the so-called lumping operator which can be applied to all functions v defined at the points $Q_{i}, i \in J$:

$$
\begin{equation*}
L_{h} v=\sum_{i \in J} v\left(Q_{i}\right) d_{i} \in Z_{h} \tag{3.12}
\end{equation*}
$$

Obviously, $L_{h}\left(V_{h}\right)=Y_{h}$.
In order to define the discrete problem to (2.13)-(2.15), we put

$$
\begin{align*}
(u, v)_{h}= & \int_{\Omega}\left(I_{h} u\right)\left(I_{h} v\right) \mathrm{d} x \tag{3.13}\\
& u, v \in H^{1}(\Omega) \oplus X_{h}, \\
\text { b) }((u, v))_{h}= & \sum_{T \in \mathcal{T}_{h}} \int_{T} \nabla u \cdot \nabla v \mathrm{~d} x, \\
& u, v \in L^{2}(\Omega),\left.u\right|_{T},\left.v\right|_{T} \in H^{1}(T) \forall T \in \mathcal{T}_{h}, \\
\text { c) } \tilde{b}_{h}(u, v)= & \sum_{T \in \mathcal{T}_{h}} \int_{T} \sum_{s=1}^{2} \frac{\partial f_{s}(u)}{\partial x_{s}} v \mathrm{~d} x, \\
& u \in L^{\infty}(\Omega), v \in L^{2}(\Omega),\left.u\right|_{T} \in H^{1}(T) \forall T \in \mathcal{T}_{h} .
\end{align*}
$$

By $\|\cdot\|_{h}$ we denote the discrete L^{2}-norm induced by $(\cdot, \cdot)_{h}$. For $u_{h}, v_{h} \in X_{h}$ we have $I_{h} u_{h}=u_{h}, I_{h} v_{h}=v_{h}$ and, hence,

$$
\begin{equation*}
\left(u_{h}, v_{h}\right)_{h}=\left(u_{h}, v_{h}\right), \quad\left\|v_{h}\right\|_{h}=\left\|v_{h}\right\|_{L^{2}(\Omega)} . \tag{3.14}
\end{equation*}
$$

Furthermore,

$$
\begin{array}{ll}
((u, v))_{h}=((u, v)), & u, v \in H^{1}(\Omega), \tag{3.15}\\
\tilde{b}_{h}(u, v)=b(u, v), & u \in H^{1}(\Omega) \cap L^{\infty}(\Omega), v \in L^{2}(\Omega) .
\end{array}
$$

The bilinear form $((\cdot, \cdot))_{h}$ induces in $X_{h} \oplus H^{1}(\Omega)$ the seminorm

$$
\begin{equation*}
\left\|u_{h}\right\|_{X_{h}}=\left(\sum_{T \in \mathcal{T}} \int_{T}\left|\nabla u_{h}\right|^{2} \mathrm{~d} x\right)^{1 / 2}, \quad u_{h} \in X_{h} \oplus H^{1}(\Omega) \tag{3.16}
\end{equation*}
$$

Under the notation

$$
\begin{equation*}
\left\|u_{h}\right\|_{X_{h}(T)}=\left(\int_{T}\left|\nabla u_{h}\right|^{2} \mathrm{~d} x\right)^{1 / 2}, \quad T \in \mathcal{T}_{h}, \quad u_{h} \in X_{h} \oplus H^{1}(\Omega) \tag{3.17}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left\|u_{h}\right\|_{X_{h}}^{2}=\sum_{T \in \mathcal{T}_{h}}\left\|u_{h}\right\|_{X_{h}(T)}^{2}, \quad u_{h} \in X_{h} \oplus H^{1}(\Omega) \tag{3.18}
\end{equation*}
$$

Of course, for $u \in H^{1}(\Omega)$ we have $\|u\|_{X_{h}}=|u|_{H^{1}(\Omega)}$. The following Cauchy inequality holds:

$$
\begin{equation*}
\left(\left(u_{h}, v_{h}\right)\right)_{h} \leqslant\left\|u_{h}\right\|_{X_{h}}\left\|v_{h}\right\|_{X_{h}}, \quad u_{h}, v_{h} \in X_{h} \oplus H^{1}(\Omega) \tag{3.19}
\end{equation*}
$$

In the case when the diffusion ν is small, it is suitable to modify the "convection" form \tilde{b}_{h} with the aid of the finite volume approach. Let $u \in H^{1}(\Omega) \cap C(\bar{\Omega}), v \in V_{h}$. Then we have by (3.12) and Green's formula that

$$
\begin{aligned}
\int_{\Omega} \sum_{s=1}^{2} \frac{\partial f_{s}(u)}{\partial x_{s}} v \mathrm{~d} x & \approx \int_{\Omega} \sum_{s=1}^{2} \frac{\partial f_{s}(u)}{\partial x_{s}} L_{h} v \mathrm{~d} x \\
& =\sum_{i \in J} v\left(Q_{i}\right) \int_{D_{i}} \sum_{s=1}^{2} \frac{\partial f_{s}(u)}{\partial x_{s}} \mathrm{~d} x \\
& =\sum_{i \in J} v\left(Q_{i}\right) \int_{\partial D_{i}} \sum_{s=1}^{2} f_{s}(u) n_{s} \mathrm{~d} S \\
& =\sum_{i \in J} v\left(Q_{i}\right) \sum_{j \in S(i)} \int_{\Gamma_{i j}} \sum_{s=1}^{2} f_{s}(u) n_{s} \mathrm{~d} S \\
& =\sum_{i \in J} v\left(Q_{i}\right) \sum_{j \in s(i)} \int_{\Gamma_{i j}} \sum_{s=1}^{2} f_{s}(u) n_{s} \mathrm{~d} S \\
& \approx \sum_{i \in J} v\left(Q_{i}\right) \sum_{j \in s(i)} H\left(u\left(Q_{i}\right), u\left(Q_{j}\right), \boldsymbol{n}_{i j}\right) \ell_{i j}
\end{aligned}
$$

The function H defined on $\mathbb{R}^{2} \times \mathcal{S}$, where $\mathcal{S}=\left\{\boldsymbol{n} \in \mathbb{R}^{2} ;|\boldsymbol{n}|=1\right\}$, is called a numerical flux. The form

$$
\begin{equation*}
b_{h}(u, v)=\sum_{i \in J} v\left(Q_{i}\right) \sum_{j \in s(i)} H\left(u\left(Q_{i}\right), u\left(Q_{j}\right), \boldsymbol{n}_{i j}\right) \ell_{i j} \tag{3.20}
\end{equation*}
$$

obtained above has sense for all $u, v \in X_{h}$. We will use it as an approximation of the forms b and \tilde{b}_{h}.

Definition 2. We define the approximate solution of problem (2.1)-(2.3) as functions $u_{h}^{k}, t_{k} \in[0, \boldsymbol{T}]$, given by the conditions

$$
\begin{gather*}
u_{h}^{0}=I_{h} u^{0} \tag{3.21}\\
u_{h}^{k+1} \in V_{h}, \quad t_{k} \in[0, \boldsymbol{T}), \tag{3.22}\\
\frac{1}{\tau_{k}}\left(u_{h}^{k+1}-u_{h}^{k}, v_{h}\right)+b_{h}\left(u_{h}^{k}, v_{h}\right)+\nu\left(\left(u_{h}^{k+1}, v_{h}\right)\right)_{h}=\left(g^{k+1}, v_{h}\right)_{h} \tag{3.23}\\
\forall v_{h} \in V_{h}, \quad t_{k} \in[0, \boldsymbol{T})
\end{gather*}
$$

where $g^{k}=g\left(\cdot, t_{k}\right)$. The function u_{h}^{k} is the approximate solution at time t_{k}.
As we see, the scheme defined above is semiimplicit. The diffusion linear term is treated in an implicit way, whereas the nonlinear convective terms are discretized explicitly in order to obtain an easily solvable system of algebraic equations on every time level.

Properties of the numerical flux. In what follows we use the following assumptions:

1. $H=H(y, z, \boldsymbol{n})$ is locally Lipschitz-continuous with respect to y, z : for any $M>0$ there exists a constant $c(M)>0$ such that

$$
\begin{gather*}
\left|H(y, z, \boldsymbol{n})-H\left(y^{*}, z^{*}, \boldsymbol{n}\right)\right| \leqslant c(M)\left(\left|y-y^{*}\right|+\left|z-z^{*}\right|\right) \tag{3.24}\\
\forall y, y^{*}, z, z^{*} \in[-M, M], \forall \boldsymbol{n} \in \mathcal{S} .
\end{gather*}
$$

2. H is consistent:

$$
\begin{equation*}
H(u, u, \boldsymbol{n})=\sum_{s=1}^{2} f_{\mathcal{s}}(u) n_{s} \forall u \in \mathbb{R}, \quad \forall \boldsymbol{n}=\left(n_{1}, n_{2}\right) \in \mathcal{S} . \tag{3.25}
\end{equation*}
$$

3. H is conservative:

$$
\begin{equation*}
H(y, z, \boldsymbol{n})=-H(z, y,-\boldsymbol{n}) \forall y, z \in \mathbb{R}, \quad \forall \boldsymbol{n} \in \mathcal{S} . \tag{3.26}
\end{equation*}
$$

4. H is monotone in the following sense: For a given fixed number $M>0$ the function $H(y, z, \boldsymbol{n})$ is nonincreasing with respect to the second variable z on the set

$$
\begin{equation*}
\mathcal{M}_{M}=\{(y, z, \boldsymbol{n}) ; y, z \in[-M, M], \quad \boldsymbol{n} \in \mathcal{S}\} . \tag{3.27}
\end{equation*}
$$

In [2] the following results are proved:
Lemma 1. Problem (3.21)-(3.23) has the following properties:

1. The bilinear forms $(\cdot, \cdot)_{h}$ and $((\cdot, \cdot))_{h}$ are scalar products on V_{h}.
2. For each $u_{h} \in X_{h}, b_{h}\left(u_{h}, \cdot\right)$ is a linear continuous form on V_{h}.
3. If $i \in J$ and $T \in \mathcal{T}_{h}$ is a triangle for which the midpoint $Q_{i} \in T$, then

$$
\begin{equation*}
\left|T \cap D_{i}\right|=\frac{1}{3}|T| \tag{3.28}
\end{equation*}
$$

4. The scalar product $(\cdot, \cdot)_{h}$ can be expressed with the aid of numerical integration using the centres Q_{T}^{i} of sides of triangles $T \in \mathcal{T}_{h}$ as integration points:

$$
\begin{equation*}
(u, v)_{h}=\frac{1}{3} \sum_{T \in \mathcal{T}_{h}}|T| \sum_{j=1}^{3} u\left(Q_{T}^{j}\right) v\left(Q_{T}^{j}\right)=\left(L_{h} u, L_{h} v\right), \quad u, v \in X_{h} \tag{3.29}
\end{equation*}
$$

5. We have

$$
\begin{gather*}
\left\|v_{h}\right\|_{L^{2}(\Omega)}=\left\|L_{h} v_{h}\right\|_{L^{2}(\Omega)}, \quad v_{h} \in X_{h} \tag{3.30}\\
\left(u_{h}, v_{h}\right)=\left(u_{h}, v_{h}\right)_{h}, \quad u_{h}, v_{h} \in X_{h} \tag{3.31}
\end{gather*}
$$

6. Problem (3.22)-(3.23) has a unique solution u_{h}^{k+1}.

4. Stability and consistency

Our aim will be to investigate the behaviour of the error $e_{h}^{k}=u\left(t_{k}\right)-u_{h}^{k}$. To this end, let us consider a system $\left\{\mathcal{T}_{h}\right\}_{h \in\left(0, h_{0}\right)}\left(h_{0}>0\right)$ of triangulations of the domain Ω, set $\tau=\boldsymbol{T} / r$ for an integer $r>1$ and define the partition of the interval $[0, \boldsymbol{T}]$ formed by time instants $t_{k}=k \tau, k=0,1, \ldots, r$. In what follows, the symbols $c, c_{1}, c_{2}, \ldots, \tilde{c}, \hat{c}, \ldots$ will denote constants independent of h, τ, ν, whereas C, C_{1}, \ldots are independent of h, τ, but dependent on ν.

We introduce the following assumptions:

1. Let the system $\left\{\mathcal{T}_{h}\right\}_{h \in\left(0, h_{0}\right)}$ be regular, i.e., there exists $\vartheta_{0}>0$ such that

$$
\begin{equation*}
\theta_{h} \geqslant \vartheta_{0}>0 \forall h \in\left(0, h_{0}\right) . \tag{4.1}
\end{equation*}
$$

2. The triangulations $\mathcal{T}_{h}, h \in\left(0, h_{0}\right)$, are of weakly acute type:

$$
\begin{equation*}
\text { the magnitude of all angles of all } T \in \mathcal{T}_{h}, \quad h \in\left(0, h_{0}\right), \tag{4.2}
\end{equation*}
$$ is less than or equal to $\pi / 2$.

3. The inverse assumption is satisfied: There exists $c_{1}>0$ such that

$$
\begin{equation*}
\frac{h}{h(T)} \leqslant c_{1} \forall T \in \mathcal{T}_{h}, \quad \forall h \in\left(0, h_{0}\right) \tag{4.3}
\end{equation*}
$$

In view of [4], Remark 3.1.3, assumptions (4.1) and (4.3) imply the existence of a constant $c_{2}>0$ such that

$$
\begin{equation*}
h^{2} \leqslant c_{2}|T| \forall T \in \mathcal{T}_{h} \quad \forall h \in\left(0, h_{0}\right) \tag{4.4}
\end{equation*}
$$

We summarize some results from [2] and derive some important estimates.

4.1. L^{∞}-stability.

In virtue of (2.9) and (2.10), $u^{0} \in C(\bar{\Omega})$ and $g \in C\left(\bar{Q}_{\boldsymbol{T}}\right)$. Hence, there exist constants \widetilde{M} and \widetilde{K} such that

$$
\begin{equation*}
\widetilde{M}:=\left\|u^{0}\right\|_{L^{\infty}(\Omega)}, \quad \widetilde{K}:=\|g\|_{L^{\infty}\left(Q_{T}\right)}<\infty \tag{4.5}
\end{equation*}
$$

Let us put

$$
\begin{equation*}
M^{*}=\widetilde{M}+\boldsymbol{T} \widetilde{K}, \quad M=3 M^{*} . \tag{4.6}
\end{equation*}
$$

Theorem 1. If $\tau>0$ and $h \in\left(0, h_{0}\right)$ satisfy the stability condition

$$
\begin{equation*}
\tau c\left(M^{*}\right)\left|\partial D_{i}\right| \leqslant\left|D_{i}\right|, \quad i \in J \tag{4.7}
\end{equation*}
$$

where $c\left(M^{*}\right)$ is the constant from (3.24), then

$$
\begin{equation*}
\left\|u_{h}^{k}\right\|_{L^{\infty}(\Omega)} \leqslant M, \quad t_{k} \in[0, \boldsymbol{T}] . \tag{4.8}
\end{equation*}
$$

Proof. See [2], Theorem 2.

Lemma 2. Assumptions (4.1), (4.3) and the consequence (4.4) imply that there exists a constant $c_{3}>0$ such that

$$
\begin{equation*}
\left|D_{i}\right| /\left|\partial D_{i}\right| \geqslant c_{3} h \forall i \in J, \quad \forall h \in\left(0, h_{0}\right) . \tag{4.9}
\end{equation*}
$$

Proof. See [2], Lemma 3 .
Remark1. Let us note that the condition

$$
\begin{equation*}
0 \leqslant \tau \leqslant c_{3} c\left(M^{*}\right)^{-1} h \tag{4.10}
\end{equation*}
$$

together with (4.9) imply (4.7). Hence, the stability condition (4.7) can be replaced by condition (4.10), which means that $\tau=O(h)$.

4.2. Consistency.

Lemma 3 (Discrete Friedrich's inequality). There exists a constant \hat{c}_{1} independent of h such that

$$
\begin{equation*}
\left\|u_{h}\right\|_{L^{2}(\Omega)} \leqslant \hat{c}_{1}\left\|u_{h}\right\|_{X_{h}}, \quad u_{h} \in V_{h}, \quad h \in\left(0, h_{0}\right) . \tag{4.11}
\end{equation*}
$$

Proof. In [45], Chap. I, §4, Proposition 4.13 or [11], Lemma 8.9.92, this lemma is proved provided Ω is convex. For the case of a general polygonal domain, see [10].

Lemma 4. The interpolation operator I_{h} defined by (3.10) has the following properties:

$$
\begin{equation*}
\text { If } \varphi \in V \text { then } I_{h} \varphi \in V_{h} . \tag{4.12}
\end{equation*}
$$

Let $\varphi \in H^{k+1}(\Omega)$, where $k=0$ or 1 . Then for $h \in\left(0, h_{0}\right)$ we have

$$
\begin{gather*}
\left\|\varphi-I_{h} \varphi\right\|_{X_{h}} \leqslant c_{6} h^{k}\|\varphi\|_{H^{k+1}(\Omega)} \tag{4.13}\\
\left\|\varphi-I_{h} \varphi\right\|_{L^{2}(\Omega)} \leqslant c_{7} h^{k+1}\|\varphi\|_{H^{k+1}(\Omega)} \tag{4.14}\\
\left\|I_{h} \varphi\right\|_{X_{h}} \leqslant c_{8}\|\varphi\|_{H^{1}(\Omega)} \tag{4.15}\\
\varphi \in H^{1}(\Omega) \Rightarrow\left\|\varphi-I_{h} \varphi\right\|_{X_{h}} \rightarrow 0 \text { as } h \rightarrow 0 \tag{4.16}
\end{gather*}
$$

with $c_{6}>0, c_{7}>0, c_{8}>0$ independent of φ and h.
Proof. See [11], Lemma 8.9.81.

Lemma 5. There exist constants $c_{10}>0$ and $c_{11}>0$ such that for any $h \in\left(0, h_{0}\right)$ we have

$$
\begin{gather*}
\left\|v_{h}-L_{h} v_{h}\right\|_{L^{2}(\Omega)} \leqslant c_{10} h\left\|v_{h}\right\|_{X_{h}}, \quad v_{h} \in X_{h} \tag{4.17}\\
\left|\left(g^{k}, v_{h}\right)-\left(g^{k}, v_{h}\right)_{h}\right| \leqslant c_{11} h\left\|g^{k}\right\|_{W^{1, q}(\Omega)}\left\|v_{h}\right\|_{X_{h}}, \quad v_{h} \in V_{h} \tag{4.18}
\end{gather*}
$$

If $M>0$ and $\kappa \in(0,1)$, then there exists a constant $\tilde{c}=\tilde{c}(M, \kappa)$ such that

$$
\begin{align*}
& \left|\tilde{b}_{h}\left(u_{h}, v_{h}\right)-b_{h}\left(u_{h}, v_{h}\right)\right| \leqslant \tilde{c} h^{1-\kappa}\left(\left\|u_{h}\right\|_{X_{h}}^{2}+\left\|u_{h}\right\|_{X_{h}}\right)\left\|v_{h}\right\|_{X_{h}} \tag{4.19}\\
& \forall u_{h} \in V_{h} \cap L^{\infty}(\Omega), \quad\left\|u_{h}\right\|_{L^{\infty}(\Omega)} \leqslant M \forall v_{h} \in V_{h}, \quad h \in\left(0, h_{0}\right),
\end{align*}
$$

where the forms \tilde{b}_{h} and b_{h} are defined by (3.13) and (3.20), respectively.
Proof. See [2], Lemma 6.

Lemma 6. If $M>0$, then there exist constants $c^{*}=c^{*}(M)$ and $c_{1}^{*}=c_{1}^{*}(M)$ such that

$$
\begin{align*}
& \left|b_{h}\left(u_{h}, v_{h}\right)\right| \leqslant \tag{4.20}\\
& \mid c^{*}\left\|u_{h}\right\|_{L^{\infty}(\Omega)}\left\|v_{h}\right\|_{X_{h}}, \\
& \\
& \quad b_{h}\left(u_{h}, v_{h}\right) \mid \leqslant c_{1}^{*}\left\|u_{h}\right\|_{X_{h}}\left\|v_{h}\right\|_{L^{2}(\Omega)},\left\|u_{h}\right\|_{L^{\infty}(\Omega)} \leqslant M, v_{h} \in V_{h}, \quad h \in\left(0, h_{0}\right) .
\end{align*}
$$

Proof. For the proof of (4.20), see [2], Lemma 7. Here we prove (4.21). By (3.20), (3.25) and the relation $\sum_{j \in s(i)} \boldsymbol{n}_{i j} \ell_{i j}=0$ valid for $i \in J^{\circ}$, for $u \in X_{h}$ such that $\|u\|_{L^{\infty}(\Omega)} \leqslant M$ and $v \in V_{h}$, we have

$$
\begin{align*}
b_{h}(u, v)= & \sum_{i \in J} v\left(Q_{i}\right) \sum_{j \in s(i)} H\left(u\left(Q_{i}\right), u\left(Q_{j}\right), \boldsymbol{n}_{i j}\right) \ell_{i j} \tag{4.22}\\
& -\sum_{i \in J} v\left(Q_{i}\right) \sum_{j \in s(i)} H\left(u\left(Q_{i}\right), u\left(Q_{i}\right), \boldsymbol{n}_{i j}\right) \ell_{i j} .
\end{align*}
$$

If $i \in J$ and $j \in s(i)$, then we denote by $T^{i j}$ the triangle from \mathcal{T}_{h} such that $\Gamma_{i j} \subset T^{i j}$. It is easy to see that

$$
\begin{gather*}
\left|Q_{i}-Q_{j}\right| \leqslant \frac{h}{2}, \quad \ell_{i j} \leqslant \frac{2}{3} h \tag{4.23}\\
\left|u\left(Q_{i}\right)-u\left(Q_{j}\right)\right| \leqslant \frac{h}{2}\left|\left(\left.\nabla u\right|_{T^{i j}}\right)\right| .
\end{gather*}
$$

From (3.24), (4.22), (4.23) and (4.4) we find that

$$
\begin{align*}
\left|b_{h}(u, v)\right| & \leqslant c(M) \sum_{i \in J}\left|v\left(Q_{i}\right)\right| \sum_{j \in s(i)}\left|u\left(Q_{i}\right)-u\left(Q_{j}\right)\right| \ell_{i j} \tag{4.24}\\
& \leqslant c(M) \sum_{i \in J}\left|v\left(Q_{i}\right)\right| \sum_{j \in s(i)}\left|\left(\left.\nabla u\right|_{T^{i j}}\right)\right| \frac{h^{2}}{3} \\
& \leqslant \frac{c_{2}}{3} c(M) \sum_{i \in J}\left|v\left(Q_{i}\right)\right| \sum_{j \in s(i)}\left|T^{i j}\right|\left|\left(\left.\nabla u\right|_{T^{i j}}\right)\right| .
\end{align*}
$$

Since each $T \in \mathcal{T}_{h}$ appears in (4.24) as some $T^{i j}$ at most six times and $v\left(Q_{i}\right)=$ $\left.L_{h} v\right|_{D_{i}}$, we have

$$
\left|b_{h}(u, v)\right| \leqslant 2 c_{2} c(M) \sum_{T \in \mathcal{T}_{h}} \int_{T}|\nabla u|\left|L_{h} v\right| \mathrm{d} x
$$

Using the Cauchy inequality, (3.14), (3.29) and (3.30), we finally conclude that

$$
\left|b_{h}(u, v)\right| \leqslant 2 c_{2} c(M)\left(\sum_{T \in \mathcal{T}_{h}} \int_{T}|\nabla u|^{2} \mathrm{~d} x\right)^{1 / 2}\left\|L_{h} v\right\|_{L^{2}(\Omega)}=2 c_{2} c(M)\|u\|_{X_{h}}\|v\|_{L^{2}(\Omega)},
$$

which we wanted to prove.

4.3. A priori estimates.

Theorem 2. There exist constants $\hat{c}>0$ and $\hat{c}_{0}>0$ independent of h, τ, m and ν such that

$$
\begin{gather*}
\max _{t_{k} \in[0, \boldsymbol{T}]}\left\|u_{h}^{k}\right\|_{L^{2}(\Omega)} \leqslant \hat{c}, \tag{4.25}\\
\tau \sum_{k=0}^{m}\left\|u_{h}^{k}\right\|_{X_{h}}^{2} \leqslant \hat{c}_{0}\left(\nu^{-2}+\nu^{-1}\right), \quad m \in\{0, \ldots, r\}, \tag{4.26}
\end{gather*}
$$

for all $\tau, h>0$ satisfying the conditions $h \in\left(0, h_{0}\right)$ and (4.7).
Proof. Estimate (4.25) is a consequence of Theorem 1 and the inequality $\left\|u_{h}^{k}\right\|_{L^{2}(\Omega)} \leqslant|\Omega|^{1 / 2}\left\|u_{h}^{k}\right\|_{L^{\infty}(\Omega)}$, where $|\Omega|$ is the area of Ω. Estimate (4.26) is obtained in the same way as in the proof of Theorem 4 from [2].

Theorem 3. There exists a constant $C_{1}>0, C_{1}=O\left(\nu^{-\frac{3}{2}}\right)$, independent of h and τ such that

$$
\begin{equation*}
\left\|u_{h}^{k}\right\|_{X_{h}} \leqslant C_{1}, \quad t_{k} \in[0, \boldsymbol{T}] \tag{4.27}
\end{equation*}
$$

for $h \in\left(0, h_{0}\right)$ and $\tau>0$ satisfying (4.7).
Proof. Let $\tau>0$ and $h \in\left(0, h_{0}\right)$ satisfy condition (4.7). Since $(\cdot, \cdot)_{h}$ and $((\cdot, \cdot))_{h}$ are scalar products on V_{h}, we can define a mapping $A_{h}: V_{h} \rightarrow V_{h}$ such that

$$
\begin{equation*}
\left(A_{h} \varphi_{h}, v_{h}\right)_{h}=\left(\left(\varphi_{h}, v_{h}\right)\right)_{h}, \quad v_{h} \in V_{h} . \tag{4.28}
\end{equation*}
$$

Substituting $v_{h}:=A_{h} u_{h}^{k}$ in (3.23) with $k:=k-1$ and using (4.28), we find that

$$
\begin{equation*}
\left(\left(u_{h}^{k}-u_{h}^{k-1}, u_{h}^{k}\right)\right)_{h}+\tau b_{h}\left(u_{h}^{k-1}, A_{h} u_{h}^{k}\right)+\tau \nu\left(A_{h} u_{h}^{k}, A_{h} u_{h}^{k}\right)_{h}=\tau\left(g^{k}, A_{h} u_{h}^{k}\right)_{h} . \tag{4.29}
\end{equation*}
$$

Now, the relations

$$
2((z-v, z))_{h}=\|z\|_{X_{h}}^{2}-\|v\|_{X_{h}}^{2}+\|z-v\|_{X_{h}}^{2},
$$

(3.29) and (2.9) imply that

$$
\begin{align*}
& \left\|u_{h}^{k}\right\|_{X_{h}}^{2}-\left\|u_{h}^{k-1}\right\|_{X_{h}}^{2}+\left\|u_{h}^{k}-u_{h}^{k-1}\right\|_{X_{h}}^{2}+2 \tau \nu\left\|A_{h} u_{h}^{k}\right\|_{L^{2}(\Omega)}^{2} \tag{4.30}\\
& \quad=2 \tau\left(g^{k}, A_{h} u_{h}^{k}\right)_{h}-2 \tau b_{h}\left(u_{h}^{k-1}, A_{h} u_{h}^{k}\right) \\
& \quad \leqslant 2 c_{12} \tau\|g\|_{C\left([0, T], W^{1, q}(\Omega)\right)}\left\|A_{h} u_{h}^{k}\right\|_{L^{2}(\Omega)}-2 \tau b_{h}\left(u_{h}^{k-1}, A_{h} u_{h}^{k}\right)
\end{align*}
$$

By (4.21) and Theorem 1 we have

$$
\begin{equation*}
\left|b_{h}\left(u_{h}^{k-1}, A_{h} u_{h}^{k}\right)\right| \leqslant c_{1}^{*}\left\|u_{h}^{k-1}\right\|_{X_{h}}\left\|A_{h} u_{h}^{k}\right\|_{L^{2}(\Omega)} \tag{4.31}
\end{equation*}
$$

Substituting this estimate into (4.30) and using Young's inequality, we find that

$$
\begin{align*}
& \left\|u_{h}^{k}\right\|_{X_{h}}^{2}-\left\|u_{h}^{k-1}\right\|_{X_{h}}^{2}+\left\|u_{h}^{k}-u_{h}^{k-1}\right\|_{X_{h}}^{2}+2 \tau \nu\left\|A_{h} u_{h}^{k}\right\|_{L^{2}(\Omega)}^{2} \tag{4.32}\\
& \quad \leqslant 2 c_{12} \tau\|g\|_{C\left([0, T], W^{1, q}(\Omega)\right)}\left\|A_{h} u_{h}^{k}\right\|_{L^{2}(\Omega)}+2 \tau c_{1}^{*}\left\|u_{h}^{k-1}\right\|_{X_{h}}\left\|A_{h} u_{h}^{k}\right\|_{L^{2}(\Omega)} \\
& \quad \leqslant 2 \tau \nu\left\|A_{h} u_{h}^{k}\right\|_{L^{2}(\Omega)}^{2}+\frac{\tau c_{13}}{\nu}\left(\|g\|_{C\left([0, T], W^{1, q}(\Omega)\right)}^{2}+\left\|u_{h}^{k-1}\right\|_{X_{h}}^{2}\right)
\end{align*}
$$

where $c_{13}=\max \left(c_{12}^{2},\left(c_{1}^{*}\right)^{2}\right)$. Hence,
(4.33) $\left\|u_{h}^{k}\right\|_{X_{h}}^{2}-\left\|u_{h}^{k-1}\right\|_{X_{h}}^{2}+\left\|u_{h}^{k}-u_{h}^{k-1}\right\|_{X_{h}}^{2} \leqslant \frac{\tau c_{13}}{\nu}\left(\|g\|_{C\left([0, T], W^{1, q}(\Omega)\right)}^{2}+\left\|u_{h}^{k-1}\right\|_{X_{h}}^{2}\right)$.

The summation of (4.33) over $k=1, \ldots, m, t_{m} \in(0, \boldsymbol{T}]$, and estimate (4.26) yield

$$
\begin{align*}
& \left\|u_{h}^{m}\right\|_{X_{h}}^{2}-\left\|u_{h}^{0}\right\|_{X_{h}}^{2}+\sum_{k=1}^{m}\left\|u_{h}^{k}-u_{h}^{k-1}\right\|_{X_{h}}^{2} \tag{4.34}\\
& \quad \leqslant \frac{c_{13} \boldsymbol{T}}{\nu}\|g\|_{C\left([0, \boldsymbol{T}], W^{1, q}(\Omega)\right)}^{2}+\frac{c_{13}}{\nu} \tau \sum_{k=1}^{m}\left\|u_{h}^{k-1}\right\|_{X_{h}}^{2} \\
& \leqslant c_{14}\left(\frac{1}{\nu}+\frac{1}{\nu^{2}}+\frac{1}{\nu^{3}}\right) \\
& \quad c_{14}=\max \left(\boldsymbol{T} c_{13}\|g\|_{C\left([0, \boldsymbol{T}], W^{1, q}(\Omega)\right)}^{2}, c_{13} \widehat{c}_{0}\right) .
\end{align*}
$$

From this and the estimate

$$
\begin{equation*}
\left\|u_{h}^{0}\right\|_{X_{h}}^{2}=\left\|I_{h} u_{0}\right\|_{X_{h}}^{2} \leqslant c_{8}\left\|u^{0}\right\|_{H^{1}(\Omega)}^{2} \tag{4.35}
\end{equation*}
$$

(cf. (4.15)) we finally obtain (4.27) with C_{1} such that

$$
\begin{equation*}
C_{1}^{2}=c_{8}\left\|u^{0}\right\|_{H^{1}(\Omega)}^{2}+c_{14}\left(\frac{1}{\nu}+\frac{1}{\nu^{2}}+\frac{1}{\nu^{3}}\right) \leqslant \bar{c}_{14} \frac{1}{\nu^{3}} . \tag{4.36}
\end{equation*}
$$

5. Truncation error

Let us suppose that the exact solution $u:(0, \boldsymbol{T}) \rightarrow V$ of problem (2.13)-(2.15) satisfies the conditions
a) $\quad u \in L^{\infty}\left(0, \boldsymbol{T} ; H^{2}(\Omega) \cap W^{1, \infty}(\Omega)\right)$,
b) $\quad u^{\prime} \in L^{\infty}\left(0, \boldsymbol{T} ; L^{2}(\Omega)\right)$,
c) $\quad u^{\prime \prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$.

By u^{\prime} and $u^{\prime \prime}$ we denote the first and second derivatives of the mapping $u:(0, \boldsymbol{T}) \rightarrow$ V. The above assumptions imply that $u \in C^{1}\left([0, \boldsymbol{T}] ; L^{2}(\Omega)\right) \cap C\left(\bar{Q}_{\boldsymbol{T}}\right)$. We set $\widehat{M}=\|u\|_{L^{\infty}\left(Q_{\boldsymbol{T}}\right)}<\infty$. In what follows we write $u^{k}=u\left(t_{k}\right)=u\left(\cdot, t_{k}\right)$. For simplicity we put

$$
\begin{align*}
& c_{26}=\|u\|_{L^{\infty}\left(0, \boldsymbol{T} ; H^{2}(\Omega)\right)}, \tag{5.2}\\
& c_{27}=\left\|u^{\prime}\right\|_{L^{\infty}\left(0, \boldsymbol{T} ; L^{2}(\Omega)\right)}, \\
& c_{28}=\left\|u^{\prime \prime}\right\|_{L^{\infty}\left(0, \boldsymbol{T} ; L^{2}(\Omega)\right)} .
\end{align*}
$$

Let us investigate the truncation error.
Lemma 7. The form

$$
\begin{equation*}
\hat{b}(u, v)=\sum_{T \in \mathcal{T}_{h}} \int_{T} \sum_{s} f_{s}(u) \frac{\partial v}{\partial x_{s}} \mathrm{~d} x, \quad u \in L^{\infty}(\Omega), v \in X_{h} \tag{5.3}
\end{equation*}
$$

is locally Lipschitz-continuous: For $\widehat{M}>0$ there exists a constant $\tilde{c}_{4}=\tilde{c}_{4}(\widehat{M})$ such that

$$
\begin{gather*}
\left|\hat{b}\left(z, v_{h}\right)-\hat{b}\left(\widetilde{z}, v_{h}\right)\right| \leqslant \tilde{c}_{4}\|z-\widetilde{z}\|_{L^{2}(\Omega)}\left\|v_{h}\right\|_{X_{h}} \tag{5.4}\\
\forall z, \widetilde{z} \in L^{\infty}(\Omega),\|z\|_{L^{\infty}(\Omega)},\|\widetilde{z}\|_{L^{\infty}(\Omega)} \leqslant \widehat{M} \forall v_{h} \in X_{h} .
\end{gather*}
$$

Proof. By the definition of $\hat{b},(2.8)$ and the Cauchy inequality, we find that for z, \widetilde{z}, v_{h} with the above properties we have

$$
\begin{aligned}
\left|\hat{b}\left(z, v_{h}\right)-\hat{b}\left(\widetilde{z}, v_{h}\right)\right| & =\left|\sum_{T \in \mathcal{T}_{h}} \int_{T}\left(\int_{0}^{1} \sum_{s=1}^{2} f_{s}^{\prime}(\widetilde{z}+t(z-\widetilde{z})) \mathrm{d} t\right)(z-\widetilde{z}) \frac{\partial v_{h}}{\partial x_{s}} \mathrm{~d} x\right| \\
& \leqslant \sqrt{2} \max _{\xi \in[-\widehat{M}, \widehat{M}], s=1,2}\left|f_{s}^{\prime}(\xi)\right|\|z-\widetilde{z}\|_{L^{2}(\Omega)}\left\|v_{h}\right\|_{X_{h}}
\end{aligned}
$$

which is (5.4), where

$$
\begin{equation*}
\tilde{c}_{4}=\sqrt{2} \max _{\xi \in[-\widehat{M}, \widehat{M}], s=1,2}\left|f_{s}^{\prime}(\xi)\right| . \tag{5.5}
\end{equation*}
$$

Lemma 8. Under assumptions (5.1), for $t_{k} \in[0, \boldsymbol{T})$ we have

$$
\begin{align*}
\left|\left(u^{k+1}-u^{k}, v_{h}\right)-\tau\left(u^{\prime}\left(t_{k+1}\right), v_{h}\right)\right| & \leqslant c_{15} \tau^{2}\left\|v_{h}\right\|_{X_{h}}, \quad v_{h} \in V_{h} \tag{5.6}\\
\left\|u^{k+1}-u^{k}\right\|_{L^{2}(\Omega)} & \leqslant c_{16} \tau \tag{5.7}\\
\left|\tilde{b}_{h}\left(u^{k+1}, v_{h}\right)-\tilde{b}_{h}\left(u^{k}, v_{h}\right)\right| & \leqslant c_{17}(\tau+h)\left\|v_{h}\right\|_{X_{h}}, \quad v_{h} \in V_{h} \tag{5.8}
\end{align*}
$$

with $c_{15}=c_{15}(u), c_{16}=c_{16}(u)$ and $c_{17}=c_{17}(u)$.
Proof. a) The proof of (5.6) is based on the following result (see [11], §8.2, or [24]): If $\eta:(0, \boldsymbol{T}) \rightarrow L^{2}(\Omega)$ is such that $\eta, \eta^{\prime} \in L^{1}\left(0, \boldsymbol{T} ; L^{2}(\Omega)\right)$ and $v \in L^{2}(\Omega)$, then $\left(\eta^{\prime}, v\right) \in L^{1}(0, \boldsymbol{T})$ and

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}}\left(\eta^{\prime}(t), v\right) \mathrm{d} t=\left(\eta\left(t_{2}\right)-\eta\left(t_{1}\right), v\right), \quad t_{1}, t_{2} \in[0, \boldsymbol{T}] \tag{5.9}
\end{equation*}
$$

This and (5.1) imply that

$$
\begin{equation*}
\left(u\left(t_{k+1}\right)-u\left(t_{k}\right), v\right)=\int_{t_{k}}^{t_{k+1}}\left(u^{\prime}(t), v\right) \mathrm{d} t \tag{5.10}
\end{equation*}
$$

and hence,

$$
\begin{equation*}
\left(u^{k+1}-u^{k}, v\right)-\tau\left(u^{\prime}\left(t_{k+1}\right), v\right)=\int_{t_{k}}^{t_{k+1}}\left(u^{\prime}(t)-u^{\prime}\left(t_{k+1}\right), v\right) \mathrm{d} t \tag{5.11}
\end{equation*}
$$

Since $u^{\prime \prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$, we have

$$
\begin{equation*}
\left(u^{\prime}(t)-u^{\prime}\left(t_{k+1}\right), v\right)=\int_{t_{k+1}}^{t}\left(u^{\prime \prime}(\vartheta), v\right) \mathrm{d} \vartheta \tag{5.12}
\end{equation*}
$$

and thus,

$$
\begin{equation*}
\int_{t_{k}}^{t_{k+1}}\left(u^{\prime}(t)-u^{\prime}\left(t_{k+1}\right), v\right) \mathrm{d} t=\int_{t_{k}}^{t_{k+1}}\left(\int_{t_{k+1}}^{t}\left(u^{\prime \prime}(\vartheta), v\right) \mathrm{d} \vartheta\right) \mathrm{d} t \tag{5.13}
\end{equation*}
$$

This, (5.10)-(5.12), the Cauchy inequality, assumption (5.1) c) and (5.2) imply that

$$
\begin{align*}
\left|\left(u^{k+1}-u^{k}, v\right)-\tau\left(u^{\prime}\left(t_{k+1}\right), v\right)\right| & \leqslant \tau^{2}\left\|u^{\prime \prime}\right\|_{L^{\infty}\left(0, \boldsymbol{T} ; L^{2}(\Omega)\right)}\|v\|_{L^{2}(\Omega)} \tag{5.14}\\
& =\tau^{2} c_{28}\|v\|_{L^{2}(\Omega)}
\end{align*}
$$

Now, we substitute $v:=v_{h} \in V_{h}$, use (4.11) and obtain (5.6) with $c_{15}=c_{28} \hat{c}_{1}$.
b) Since $u^{\prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$, we can write

$$
\left\|u^{k+1}-u^{k}\right\|_{L^{2}(\Omega)}=\left\|\int_{t_{k}}^{t_{k+1}} u^{\prime}(t) \mathrm{d} t\right\|_{L^{2}(\Omega)} \leqslant \tau\left\|u^{\prime}\right\|_{L^{\infty}\left(0, \boldsymbol{T} ; L^{2}(\Omega)\right)}=\tau c_{27}
$$

which yields (5.7) with $c_{16}=c_{27}$.
c) In view of the definition of \tilde{b}_{h} in (3.13), we can write

$$
\begin{align*}
\left|\tilde{b}_{h}\left(u^{k+1}, v_{h}\right)-\tilde{b}_{h}\left(u^{k}, v_{h}\right)\right|= & \left|\sum_{T \in \mathcal{T}_{h}} \int_{T} \sum_{s=1}^{2}\left(\frac{\partial f_{s}\left(u^{k+1}\right)}{\partial x_{s}}-\frac{\partial f_{s}\left(u^{k}\right)}{\partial x_{s}}\right) v_{h} \mathrm{~d} x\right| \tag{5.15}\\
= & \mid \sum_{T \in \mathcal{T}_{h}} \int_{\partial T} \sum_{s=1}^{2}\left(f_{s}\left(u^{k+1}\right)-f_{s}\left(u^{k}\right)\right) n_{s} v_{h} \mathrm{~d} S \\
& \left.-\sum_{T \in \mathcal{T}_{h}} \int_{T} \sum_{s=1}^{2}\left(f_{s}\left(u^{k+1}\right)-f_{s}\left(u^{k}\right)\right) \frac{\partial v_{h}}{\partial x_{s}} \mathrm{~d} x \right\rvert\, \\
\leqslant & \left|\sum_{T \in \mathcal{T}_{h}} \int_{\partial T} \sum_{s=1}^{2}\left(f_{s}\left(u^{k+1}\right)-f_{s}\left(u^{k}\right)\right) n_{s} v_{h} \mathrm{~d} S\right| \\
& +\left|\hat{b}\left(u^{k+1}, v_{h}\right)-\hat{b}\left(u^{k}, v_{h}\right)\right|
\end{align*}
$$

The first part of the right-hand side in inequality (5.15) can be written in the form

$$
\begin{equation*}
R_{1}:=\left|\sum_{T \in \mathcal{T}_{h}} \sum_{j=1}^{3} \int_{S_{T}^{j}} \sum_{s=1}^{2}\left(f_{s}\left(u^{k+1}\right)-f_{s}\left(u^{k}\right)\right)\left(n_{T}^{j}\right)_{s} v_{h} \mathrm{~d} S\right|, \tag{5.16}
\end{equation*}
$$

where $S_{T}^{j} \subset \partial T$ are sides of $T, j=1,2,3$, and $\left(n_{T}^{j}\right)_{s}$ is the s-th component of the unit outer normal to ∂T on S_{T}^{j}. Now we use the assertion of Lemma 8.9.85 from [11]:

$$
\begin{gather*}
\left|\sum_{T \in \mathcal{T}_{h}} \sum_{j=1}^{3} \int_{S_{T}^{j}}\left(n_{T}^{j}\right)_{s} v_{h} \varphi \mathrm{~d} S\right| \leqslant c_{18} h\|\varphi\|_{H^{1}(\Omega)}\left\|v_{h}\right\|_{X_{h}} \tag{5.17}\\
s=1,2 \forall \varphi \in H^{1}(\Omega) \forall v_{h} \in V_{h}, \quad h \in\left(0, h_{0}\right)
\end{gather*}
$$

This and (5.1) yield the estimate of (5.16):

$$
\begin{align*}
R_{1} & \leqslant c_{18} h \sum_{s=1}^{2}\left\|f_{s}\left(u^{k+1}\right)-f_{s}\left(u^{k}\right)\right\|_{H^{1}(\Omega)}\left\|v_{h}\right\|_{X_{h}} \tag{5.18}\\
& \leqslant c_{18} h \max _{\substack{\xi \in[-\widehat{-1, \widehat{M}]} \\
s=1,2}}\left|f_{s}^{\prime}(\xi)\right|\left(\left\|u^{k}\right\|_{H^{1}(\Omega)}+\left\|u^{k+1}\right\|_{H^{1}(\Omega)}\right)\left\|v_{h}\right\|_{X_{h}} \\
& \leqslant c_{19} h\left\|v_{h}\right\|_{X_{h}}, \\
c_{19} & =c_{18} \max _{\substack{\xi \in[-\widehat{M}, \widehat{M}] \\
s=1,2}}\left|f_{s}^{\prime}(\xi)\right| 2 c_{26} . \tag{5.19}
\end{align*}
$$

The second term on the right-hand side of (5.15) is estimated with the aid of (5.4) and (5.7):

$$
\left|\hat{b}\left(u^{k+1}, v_{h}\right)-\hat{b}\left(u^{k}, v^{h}\right)\right| \leqslant \tilde{c}_{4} c_{16} \tau\left\|v_{h}\right\|_{X_{h}} .
$$

This and (5.18) already yield (5.8) with $c_{17}=\max \left(c_{19}, \tilde{c}_{4} c_{16}\right)$.
Using the above results, we get an estimate of the truncation error.

Theorem 4. Under assumptions (5.1) we have

$$
\begin{align*}
\left(u_{h}^{k+1}-\right. & \left.u^{k+1}, v_{h}\right)-\left(u_{h}^{k}-u^{k}, v_{h}\right) \tag{5.20}\\
& +\tau\left[\tilde{b}_{h}\left(u_{h}^{k}, v_{h}\right)-\tilde{b}_{h}\left(u^{k}, v_{h}\right)\right]+\tau \nu\left(\left(u_{h}^{k+1}-u^{k+1}, v_{h}\right)\right)_{h} \\
= & -\tau \varepsilon_{1}\left(h, u^{k+1}, v_{h}\right)-\tau \varepsilon_{2}\left(\tau, h, u^{k}, u^{k+1}, v_{h}\right) \\
& +\tau \varepsilon_{3}\left(h, u_{h}^{k}, v_{h}\right)+\tau \varepsilon_{4}\left(h, v_{h}\right), \quad v_{h} \in V_{h}, t_{k} \in[0, \boldsymbol{T})
\end{align*}
$$

where $\varepsilon_{1}, \ldots, \varepsilon_{4}$ (defined in the proof) satisfy the estimates

$$
\begin{align*}
\left|\varepsilon_{1}\left(h, u^{k+1}, v_{h}\right)\right| & \leqslant c_{20} h\left\|v_{h}\right\|_{X_{h}}, \tag{5.21}\\
\left|\varepsilon_{2}\left(\tau, h, u^{k}, u^{k+1}, v_{h}\right)\right| & \leqslant c_{22}(\tau+h) h\left\|u^{k+1}\right\|_{H^{2}(\Omega)}\left\|v_{h}\right\|_{X_{h}} \tag{5.22}\\
\left|\varepsilon_{3}\left(h, u_{h}^{k}, v_{h}\right)\right| & \leqslant \tilde{c} h^{1-\kappa}\left(\left\|u_{h}^{k}\right\|_{X_{h}}^{2}+\left\|u_{h}^{k}\right\|_{X_{h}}\right)\left\|v_{h}\right\|_{X_{h}}, \tag{5.23}\\
\left|\varepsilon_{4}\left(h, v_{h}\right)\right| & \leqslant c_{11} h\left\|g^{k}\right\|_{W^{1, q}(\Omega)}\left\|v_{h}\right\|_{X_{h}}, \tag{5.24}
\end{align*}
$$

where $\kappa \in(0,1)$ follows from Lemma 5.
Proof. In virtue of (5.1), equation (2.1) is satisfied a.e. in Ω for each $t \in(0, \boldsymbol{T})$. We multiply (2.1) by $v_{h} \in V_{h}$ and integrate over Ω at the time level t_{k+1}. In this way we obtain the relation

$$
\begin{equation*}
\left(u^{\prime}\left(t_{k+1}\right), v_{h}\right)+\tilde{b}_{h}\left(u^{k+1}, v_{h}\right)+\nu\left(\Delta u^{k+1}, v_{h}\right)=\left(g^{k+1}, v_{h}\right) . \tag{5.25}
\end{equation*}
$$

Further,

$$
\begin{align*}
\left(\Delta u^{k+1}, v_{h}\right) & =\sum_{T \in \mathcal{T}_{h}} \int_{T} \Delta u^{k+1} v_{h} \mathrm{~d} x \tag{5.26}\\
& =\sum_{T \in \mathcal{T}_{h}} \int_{\partial T}\left(\nabla u^{k+1} \cdot \boldsymbol{n}\right) v_{h} \mathrm{~d} S-\sum_{T \in \mathcal{T}_{h}} \int_{T} \nabla u^{k+1} \cdot \nabla v_{h} \mathrm{~d} x \\
& =\sum_{T \in \mathcal{T}_{h}} \int_{\partial T}\left(\nabla u^{k+1} \cdot \boldsymbol{n}\right) v_{h} \mathrm{~d} S-\left(\left(u^{k+1}, v_{h}\right)\right)_{h}
\end{align*}
$$

Due to (5.17), for

$$
\varepsilon_{1}\left(h, u^{k+1}, v_{h}\right):=\nu \sum_{T \in \mathcal{T}_{h}} \int_{\partial T}\left(\nabla u^{k+1} \cdot \boldsymbol{n}\right) v_{h} \mathrm{~d} S
$$

we find that

$$
\begin{align*}
\left|\varepsilon_{1}\left(h, u^{k+1}, v_{h}\right)\right| & \leqslant \nu c_{18} h \sum_{s=1}^{2}\left\|\frac{\partial u^{k+1}}{\partial x_{s}}\right\|_{H^{1}(\Omega)}\left\|v_{h}\right\|_{X_{h}} \tag{5.27}\\
& \leqslant \nu \sqrt{2} c_{18} h\left\|u^{k+1}\right\|_{H^{2}(\Omega)}\left\|v_{h}\right\|_{X_{h}} .
\end{align*}
$$

We put $c_{20}=\sqrt{2} c_{18} c_{26}$.
Setting

$$
\begin{align*}
\varepsilon_{2}\left(\tau, h, u^{k}, u^{k+1}, v_{h}\right):= & \frac{1}{\tau}\left(u^{k+1}-u^{k}, v_{h}\right)-\left(u^{\prime}\left(t_{k+1}\right), v_{h}\right) \tag{5.28}\\
& +\left[\tilde{b}_{h}\left(u^{k}, v_{h}\right)-\tilde{b}_{h}\left(u^{k+1}, v_{h}\right)\right],
\end{align*}
$$

we can write relation (5.25) in the form

$$
\begin{align*}
& \left(u^{k+1}-u^{k}, v_{h}\right)+\tau \tilde{b}_{h}\left(u^{k}, v_{h}\right)+\tau \nu\left(\left(u^{k+1}, v_{h}\right)\right)_{h} \tag{5.29}\\
& \quad=\tau\left(g^{k+1}, v_{h}\right)+\tau \varepsilon_{2}\left(\tau, h, u^{k}, u^{k+1}, v_{h}\right)+\tau \varepsilon_{1}\left(h, u^{k+1}, v_{h}\right)
\end{align*}
$$

The estimate of $\varepsilon_{2}\left(\tau, h, u^{k}, u^{k+1}, v_{h}\right)$ follows from (5.6) and (5.8):

$$
\begin{equation*}
\left|\varepsilon_{2}\left(\tau, h, u^{k}, u^{k+1}, v_{h}\right)\right| \leqslant c_{22}(\tau+h)\left\|v_{h}\right\|_{X_{h}}, \quad c_{22}=c_{15}+c_{17} . \tag{5.30}
\end{equation*}
$$

By (3.23), for the approximate solution we have

$$
\begin{equation*}
\left(u_{h}^{k+1}-u_{h}^{k}, v_{h}\right)+\tau b_{h}\left(u_{h}^{k}, v_{h}\right)+\tau \nu\left(\left(u_{h}^{k+1}, v_{h}\right)\right)_{h}=\tau\left(g^{k+1}, v_{h}\right)_{h}, \quad v_{h} \in V_{h} \tag{5.31}
\end{equation*}
$$

which can be rewritten as

$$
\begin{align*}
& \left(u_{h}^{k+1}-u_{h}^{k}, v_{h}\right)+\tau \tilde{b}_{h}\left(u_{h}^{k}, v_{h}\right)+\tau \nu\left(\left(u_{h}^{k+1}, v_{h}\right)\right)_{h} \tag{5.32}\\
& = \\
& \quad \tau\left(g^{k+1}, v_{h}\right)+\tau\left[\tilde{b}_{h}\left(u_{h}^{k}, v_{h}\right)-b_{h}\left(u_{h}^{k}, v_{h}\right)\right] \\
& \quad+\tau\left[\left(g^{k+1}, v_{h}\right)_{h}-\left(g^{k+1}, v_{h}\right)\right] .
\end{align*}
$$

We set

$$
\begin{equation*}
\varepsilon_{3}\left(h, u_{h}^{k}, v_{h}\right)=\tilde{b}_{h}\left(u_{h}^{k}, v_{h}\right)-b_{h}\left(u_{h}^{k}, v_{h}\right) \tag{5.33}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{4}\left(h, v_{h}\right)=\left(g^{k+1}, v_{h}\right)_{h}-\left(g^{k+1}, v_{h}\right) \tag{5.34}
\end{equation*}
$$

It is seen from (4.19) and (4.18) that

$$
\begin{equation*}
\left|\varepsilon_{3}\left(h, v_{h}^{k}, v_{h}\right)\right| \leqslant \tilde{c} h^{1-\kappa}\left(\left\|u_{h}^{k}\right\|_{X_{h}}^{2}+\left\|u_{h}^{k}\right\|_{X_{h}}\right)\left\|v_{h}\right\|_{X_{h}} \tag{5.35}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\varepsilon_{4}\left(h, v_{h}\right)\right| \leqslant c_{11} h\left\|g^{k}\right\|_{W^{1, q}(\Omega)}\left\|v_{h}\right\|_{X_{h}} \tag{5.36}
\end{equation*}
$$

Now we subtract (5.29) from (5.32) and obtain (5.20). From (5.27), (5.30), (5.35) and (5.36) we conclude that (5.21)-(5.24) hold.

6. ERror EStimates

We denote by

$$
\begin{equation*}
e_{h}^{k}=u_{h}^{k}-u^{k} \tag{6.1}
\end{equation*}
$$

the error of the method at time $t=t_{k}$. Obviously, $e_{h}^{k} \in V_{h} \oplus V=\left\{v_{h}+v ; v_{h} \in V_{h}\right.$, $v \in V\} \subset X_{h} \oplus H^{1}(\Omega)$. Our goal is to estimate e_{h}^{k} in a suitable norm in terms of h and τ. The error in the space-time cylinder $Q_{\boldsymbol{T}}$ can be characterized by a continuous piecewise linear function $e:[0, \boldsymbol{T}] \rightarrow V_{h} \oplus V$ such that

$$
\begin{equation*}
e\left(t_{k}\right)=e_{h}^{k} \quad \text { for } \quad t_{k} \in[0, \boldsymbol{T}] . \tag{6.2}
\end{equation*}
$$

In Lemma 4 some properties of the interpolation operator I_{h}, defined by (3.10), were formulated. They can be generalized in the following way:

Lemma 9. For each $v \in X_{h} \oplus H^{1}(\Omega)$ the following inequalities hold:
a) $\quad\left\|v-I_{h} v\right\|_{L^{2}(\Omega)} \leqslant c_{23} h\|v\|_{X_{h}}$,
b) $\quad\left\|v-I_{h} v\right\|_{X_{h}} \leqslant c_{24}\|v\|_{X_{h}}$,
c) $\quad\left\|I_{h} v\right\|_{X_{h}} \leqslant c_{25}\|v\|_{X_{h}}$,
where c_{23}, c_{24}, c_{25} are constants independent of h and v.
Proof. Since $\left.v\right|_{T} \in H^{1}(T)$ for each T, it follows from the general approximation finite element properties ([4], Theorem 3.1.4) and assumption (3.1) that

$$
\begin{aligned}
\left\|v-I_{h} v\right\|_{L^{2}(T)} & \leqslant c h|v|_{H^{1}(T)}, \\
\left\|v-I_{h} v\right\|_{H^{1}(T)} & \leqslant c|v|_{H^{1}(T)}
\end{aligned}
$$

with c independent of v, T and h. This immediately yields (6.3).

For our further considerations, because of the control of some terms, we introduce the "inverse stability assumption"

$$
\begin{equation*}
h \leqslant \tilde{\tilde{c}} \tau \tag{6.4}
\end{equation*}
$$

with a constant \tilde{c} independent of h and τ. Hence, $h=O(\tau)$. This condition seems to be non-standard, but we can meet it also in other works concerned with the numerical solution of evolution problems, as e.g. [39], $\S 4.2,5.1$ or [31].

Now we come to the fundamental result.

Theorem 5. Let assumptions (2.8)-(2.10), (3.1), (3.2), (3.24)-(3.27), (4.1)(4.3) be satisfied. Further, let $\left\{u_{h}^{k}\right\}_{t_{k}=k \tau \in[0, \boldsymbol{T}]}$ be the approximate solution of problem (2.13)-(2.15) obtained with the aid of the discrete problem (3.21)-(3.23). Let the exact solution u of (2.13)-(2.15) satisfy conditions (5.1). Moreover, we assume that $u^{0} \in H^{2}(\Omega)$ and set

$$
\begin{align*}
\|e\|_{h, \tau, L^{2}}^{2} & :=\tau \sum_{k=0}^{r}\left\|e_{h}^{k}\right\|_{L^{2}(\Omega)}^{2}, \quad \tau=\boldsymbol{T} / r \tag{6.5}\\
\|e\|_{h, \tau, \nu, X_{h}}^{2} & :=\tau \nu \sum_{k=0}^{r-1}\left\|e_{h}^{k+1}\right\|_{X_{h}}^{2} .
\end{align*}
$$

Let $\kappa \in(0,1 / 2)$. Then there exist constants $C_{2}=O\left(\nu^{-6} \exp (2 \boldsymbol{T c} / \nu)\right)$ and $C_{3}=$ $O\left(\nu^{-7} \exp (2 \boldsymbol{T} \mathbf{c} / \nu)\right)$ such that
a) $\|e\|_{h, \tau, L^{2}}^{2} \leqslant C_{2} h^{2(1-\kappa)}$,
b) $\quad\|e\|_{h, \tau, \nu, X_{h}}^{2} \leqslant C_{3} h^{1-2 \kappa}$
for all $h \in\left(0, h_{0}\right)$ and $\tau>0$ satisfying conditions (4.10), (6.4) and $2 \mathbf{c} \tau \leqslant \nu$, where $\mathbf{c}>0$ is the constant appearing in the proof.

Proof. Let $h \in\left(0, h_{0}\right)$ and $\tau>0$ satisfy conditions (4.10) and (6.4). Then condition (4.7) is satisfied. From (6.1) and (5.20) we obtain the relation

$$
\begin{align*}
& \left(e_{h}^{k+1}, v_{h}\right)-\left(e_{h}^{k}, v_{h}\right)+\tau \nu\left(\left(e_{h}^{k+1}, v_{h}\right)\right) h_{h} \tag{6.7}\\
& = \\
& \quad-\tau\left[\tilde{b}_{h}\left(u_{h}^{k}, v_{h}\right)-\tilde{b}_{h}\left(u^{k}, v_{h}\right)\right]-\varepsilon_{1}\left(\tau, u^{k}, u^{k+1}, v_{n}\right) \\
& \quad-\tau \varepsilon_{2}\left(h, u^{k+1}, v_{h}\right)+\tau \varepsilon_{3}\left(h, u_{h}^{k}, v_{h}\right)+\tau \varepsilon_{4}\left(h, v_{h}\right) .
\end{align*}
$$

Let us set $v_{h}:=I_{h} e_{h}^{k+1}$. Denoting by I the identity operator $(I \varphi=\varphi)$, we get

$$
\begin{align*}
\left(e_{h}^{k+1},\right. & \left.e_{h}^{k+1}\right)-\left(e_{h}^{k}, e_{h}^{k+1}\right)+\tau \nu\left(\left(e_{h}^{k+1}, e_{h}^{k+1}\right)\right)_{h} \tag{6.8}\\
= & -\tau\left[\tilde{b}_{h}\left(u_{h}^{k}, I_{h} e_{h}^{k+1}\right)-\tilde{b}_{h}\left(u^{k}, I_{h} e_{h}^{k+1}\right)\right] \\
& \quad-\tau \varepsilon_{1}\left(h, u^{k+1}, I_{h} e_{h}^{k+1}\right)-\tau \varepsilon_{2}\left(\tau, h, u^{k}, u^{k+1}, I_{h} e_{h}^{k+1}\right) \\
& \quad-\tau \varepsilon_{3}\left(h, u_{h}^{k}, I_{h} e_{h}^{k+1}\right)+\tau \varepsilon_{4}\left(h, I_{h} e_{h}^{k+1}\right)+\left(e_{h}^{k+1},\left(I-I_{h}\right) e_{h}^{k+1}\right) \\
& \quad-\left(e_{h}^{k},\left(I-I_{h}\right) e_{h}^{k+1}\right)+\tau \nu\left(\left(e_{h}^{k+1},\left(I-I_{h}\right) e_{h}^{k+1}\right)\right){ }_{h} .
\end{align*}
$$

From (6.1) it follows that $\left(I-I_{h}\right) e_{h}^{k+1}=I_{h} u^{k+1}-u^{k+1}$. Hence, by assumption (5.1) and Lemma 4 we have

$$
\begin{align*}
\left\|\left(I-I_{h}\right) e_{h}^{k+1}\right\|_{L^{2}(\Omega)} & \leqslant c_{7} h^{2}\left\|u^{k+1}\right\|_{H^{2}(\Omega)} \tag{6.9}\\
\left\|\left(I-I_{h}\right) e_{h}^{k+1}\right\|_{X_{h}} & \leqslant c_{6} h\left\|u^{k+1}\right\|_{H^{2}(\Omega)} \tag{6.10}
\end{align*}
$$

Now we can write (6.8) in the form

$$
\begin{align*}
\left\|e_{h}^{k+1}\right\|_{L^{2}(\Omega)}^{2} & -\left\|e_{h}^{k}\right\|_{L^{2}(\Omega)}^{2}+\left\|e_{h}^{k+1}-e_{h}^{k}\right\|_{L^{2}(\Omega)}^{2}+2 \tau \nu\left\|e_{h}^{k+1}\right\|_{X_{h}}^{2} \tag{6.11}\\
& \leqslant \sigma(1)+\sigma(2)+\ldots+\sigma(6)+\tau \sigma(7)
\end{align*}
$$

where

$$
\begin{align*}
& \sigma(1)=\left|\tau \varepsilon_{1}\left(h, u^{k+1}, I_{h} e_{h}^{k+1}\right)\right|, \tag{6.12}\\
& \sigma(2)=\left|\tau \varepsilon_{2}\left(\tau, u^{k}, u^{k+1}, I_{h} e_{h}^{k+1}\right)\right|, \\
& \sigma(3)=\left|\tau \varepsilon_{3}\left(h, u_{h}^{k}, I_{h} e_{h}^{k+1}\right)\right|, \\
& \sigma(4)=\left|\tau \varepsilon_{4}\left(h, I_{h} e_{h}^{k+1}\right)\right|, \\
& \sigma(5)=\left|\left(e_{h}^{k+1},\left(I-I_{h}\right) e_{h}^{k+1}\right)-\left(e_{h}^{k},\left(I-I_{h}\right) e_{h}^{k+1}\right)\right|, \\
& \sigma(6)=\left|\tau \nu\left(\left(e_{h}^{k+1},\left(I-I_{h}\right) e_{h}^{k+1}\right)\right)\right| \\
& \sigma(7)=\left|\tilde{b}_{h}\left(u_{h}^{k}, I_{h} e_{h}^{k+1}\right)-\tilde{b}_{h}\left(u^{k}, I_{h} e_{h}^{k+1}\right)\right| .
\end{align*}
$$

Let us estimate these terms. From (4.10), (5.1), (5.21)-(5.24), (6.1), (6.3) and (6.4) we find that

$$
\begin{align*}
& \sigma(1) \leqslant \nu c_{20} c_{25} \tau h\left\|e_{h}^{k+1}\right\|_{X_{h}}, \tag{6.13}\\
& \sigma(2) \leqslant c_{22} c_{25} \tau(\tau+h)\left\|u^{k+1}\right\|_{H^{2}(\Omega)}\left\|e_{h}^{k+1}\right\|_{X_{h}} \leqslant c_{29} \tau h\left\|e_{h}^{k+1}\right\|_{X_{h}}, \\
& \sigma(3) \leqslant c_{25} \tilde{c} \tau h^{1-\kappa}\left(\left\|u_{h}^{k}\right\|_{X_{h}}^{2}+\left\|u_{h}^{k}\right\|_{X_{h}}\right)\left\|e_{h}^{k+1}\right\|_{X_{h}} \\
& \sigma(4) \leqslant c_{11} c_{25} \tau h\left\|g^{k}\right\|_{W^{1, q}(\Omega)}\left\|e_{h}^{k+1}\right\|_{X_{h}} \leqslant c_{30} \tau h\left\|e_{h}^{k+1}\right\|_{X_{h}} \\
& \quad c_{29}=c_{22} c_{25}\left(1+c_{3} c\left(M^{*}\right)^{-1}\right) c_{26}, \\
& \quad c_{30}=c_{11} c_{25}\left\|g^{k}\right\|_{W^{1, q}(\Omega)} .
\end{align*}
$$

Furthermore, the Cauchy inequality, (6.9), (6.10), Young's inequality and (6.4) imply that

$$
\begin{align*}
\sigma(5) & \leqslant\left\|e_{h}^{k+1}-e_{h}^{k}\right\|_{L^{2}(\Omega)}\left\|\left(I-I_{h}\right) e_{h}^{k+1}\right\|_{L^{2}(\Omega)} \tag{6.14}\\
& \leqslant c_{7} h^{2}\left\|e_{h}^{k+1}-e_{h}^{k}\right\|_{L^{2}(\Omega)}\left\|u^{k+1}\right\|_{H^{2}(\Omega)} \\
& \leqslant c_{7} c_{26} h^{2}\left\|e_{h}^{k+1}-e_{h}^{k}\right\|_{L^{2}(\Omega)}, \\
\sigma(6) & \leqslant c_{6} \tau \nu h\left\|e_{h}^{k+1}\right\|_{X_{h}}\left\|u^{k+1}\right\|_{H^{2}(\Omega)} \tag{6.15}\\
& \leqslant c_{31} \tau h \nu\left\|e_{h}^{k+1}\right\|_{X_{h}}, \quad c_{31}=c_{6} c_{26} .
\end{align*}
$$

By (3.13),

$$
\begin{aligned}
\sigma(7)= & \left|\sum_{T \in \mathcal{T}_{h}} \int_{T} \sum_{s=1}^{2}\left(f_{s}^{\prime}\left(u_{h}^{k}\right) \frac{\partial u_{h}^{k}}{\partial x_{s}}-f_{s}^{\prime}\left(u^{k}\right) \frac{\partial u^{k}}{\partial x_{s}}\right) I_{h} e_{h}^{k+1} \mathrm{~d} x\right| \\
\leqslant & \left|\sum_{T \in \mathcal{T}_{h}} \int_{T} \sum_{s=1}^{2}\left(f_{s}^{\prime}\left(u_{h}^{k}\right)-f_{s}^{\prime}\left(u^{k}\right)\right) \frac{\partial u^{k}}{\partial x_{s}} I_{h} e_{h}^{k+1} \mathrm{~d} x\right| \\
& +\left|\sum_{T \in \mathcal{T}_{h}} \int_{T} \sum_{s=1}^{2} f_{s}^{\prime}\left(u_{h}^{k}\right)\left(\frac{\partial u_{h}^{k}}{\partial x_{s}}-\frac{\partial u^{k}}{\partial x_{s}}\right) I_{h} e_{h}^{k+1} \mathrm{~d} s\right|
\end{aligned}
$$

Using the bound (4.8), assumption (5.1), and a similar process as in the proof of Lemma 8, we find that
(6.16) $\quad \sigma(7) \leqslant c_{32}\left(\left\|e_{h}^{k}\right\|_{L^{2}(\Omega)}+\left\|e_{h}^{k}\right\|_{X_{h}}\right)\left\|I_{h} e_{h}^{k+1}\right\|_{L^{2}(\Omega)}$,

$$
c_{32}=\max \left(\|u\|_{L^{\infty}\left(0, \boldsymbol{T} ; W^{1, \infty}(\Omega)\right)} \max _{\substack{\xi \in[\widehat{\widehat{M}, \widehat{M}]} \\ s=1,2}}\left|f_{s}^{\prime \prime}(\xi)\right|, \max _{\substack{\xi \in[-\widehat{M}, \widehat{M}] \\ s=1,2}}\left|f_{s}^{\prime}(\xi)\right|\right) .
$$

This and (6.3) a) imply that

$$
\begin{align*}
\sigma(7) \leqslant & c_{33}\left(\left\|e_{h}^{k}\right\|_{L^{2}(\Omega)}+\left\|e_{h}^{k}\right\|_{X_{h}}\right)\left(\left\|e_{h}^{k+1}\right\|_{L^{2}(\Omega)}+h\left\|e_{h}^{k+1}\right\|_{X_{h}}\right) \tag{6.17}\\
& c_{33}=c_{32} \max \left(c_{23}, 1\right)
\end{align*}
$$

By (4.25), (4.27) and properties (5.1) of the solution of the continuous problem,

$$
\begin{equation*}
\left\|e_{h}^{k}\right\|_{L^{2}(\Omega)}=\left\|u^{k}-u_{h}^{k}\right\|_{L^{2}(\Omega)} \leqslant\left\|u^{k}\right\|_{L^{2}(\Omega)}+\left\|u_{h}^{k}\right\|_{L^{2}(\Omega)} \leqslant c_{26}+\hat{c}=: c_{34} \tag{6.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|e_{h}^{k}\right\|_{X_{h}}=\left\|u^{k}-u_{h}^{k}\right\|_{X_{h}} \leqslant\left|u^{k}\right|_{H^{1}(\Omega)}+\left\|u_{h}^{k}\right\|_{X_{h}} \leqslant c_{26}+C_{1}(\nu)=: \widehat{C}(\nu) \tag{6.19}
\end{equation*}
$$

where, in view of (4.36),

$$
\begin{equation*}
C_{1}(\nu) \leqslant \sqrt{\bar{c}_{14}} \frac{1}{\nu^{3 / 2}} \Rightarrow \widehat{C}(\nu)=O\left(\nu^{-3 / 2}\right) . \tag{6.20}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\sigma(7) \leqslant & c_{35}\left(\left\|e_{h}^{k}\right\|_{L^{2}(\Omega)}\left\|e_{h}^{k+1}\right\|_{L^{2}(\Omega)}+\left\|e_{h}^{k}\right\|_{X_{h}}\left\|e_{h}^{k+1}\right\|_{L^{2}(\Omega)}\right. \tag{6.21}\\
& \left.+(h+h \widehat{C}(\nu))\left\|e_{h}^{k+1}\right\|_{X_{h}}\right), \quad c_{35}=c_{33} \max \left(1, c_{34}\right)
\end{align*}
$$

Now, using Young's inequality in (6.21), we have
(6.22) $\quad \tau \sigma(7) \leqslant \tau c_{35} \nu\left\|e_{h}^{k}\right\|_{L^{2}(\Omega)}^{2}+\frac{\tau c_{35}}{4 \nu}\left\|e_{h}^{k+1}\right\|_{L^{2}(\Omega)}^{2}+\frac{\tau c_{35}^{2}}{4 \nu}\left\|e_{h}^{k+1}\right\|_{L^{2}(\Omega)}^{2}$

$$
\begin{aligned}
& +\tau \nu\left\|e_{h}^{k}\right\|_{X_{h}}^{2}+\frac{\tau \nu}{4}\left\|e_{h}^{k+1}\right\|_{X_{h}}^{2}+\frac{\tau}{\nu} C(\nu) h^{2} \\
\leqslant & \tau \mathbf{c} \nu\left\|e_{h}^{k}\right\|_{L^{2}(\Omega)}^{2}+\frac{\tau \mathbf{c}}{\nu}\left\|e_{h}^{k+1}\right\|_{L^{2}(\Omega)}^{2} \\
& +\tau \nu\left\|e_{h}^{k}\right\|_{X_{h}}^{2}+\frac{\tau \nu}{4}\left\|e_{h}^{k+1}\right\|_{X_{h}}^{2}+\frac{\tau}{\nu} C(\nu) h^{2}
\end{aligned}
$$

with $\mathbf{c}=\max \left(c_{35},\left(c_{35}+c_{35}^{2}\right) / 4\right)$ and $C(\nu)=c_{35}^{2}(1+\widehat{C}(\nu))^{2}$. Further, for $\sigma(1), \ldots, \sigma(6)$ we again use Young's inequality, (6.15), (6.4) and (4.27). Then we obtain estimates

$$
\begin{align*}
\sigma(1) \leqslant & c_{36} \tau h^{2}+\frac{\tau \nu}{8}\left\|e_{h}^{k+1}\right\|_{X_{h}}^{2}, \quad c_{36}=2\left(c_{20} c_{25}\right)^{2} \tag{6.23}\\
\sigma(2)+\sigma(4) \leqslant & \frac{c_{37} \tau h^{2}}{\nu}+\frac{\tau \nu}{8}\left\|e_{h}^{k+1}\right\|_{X_{h}}^{2}, \quad c_{37}=2\left(c_{29}+c_{30}\right)^{2} \\
\sigma(3) \leqslant & c_{25}^{2} \frac{\tilde{c}^{2} \tau}{\nu} h^{2(1-\kappa)}\left(\left\|u_{h}^{k}\right\|_{X_{h}}^{2}+\left\|u_{h}^{k}\right\|_{X_{h}}\right)^{2}+\frac{\tau \nu}{4}\left\|e_{h}^{k+1}\right\|_{X_{h}}^{2} \\
\leqslant & c_{40} \frac{\tau}{\nu} h^{2(1-\kappa)}\left(\nu^{-6}+\nu^{-4.5}+\nu^{-3}\right)+\frac{\tau \nu}{4}\left\|e_{h}^{k+1}\right\|_{X_{h}}^{2} \\
& c_{40}:=c_{25}^{2} \tilde{c}^{2} \max \left(\bar{c}_{14}^{2}, 2 \bar{c}_{14}^{3}, \bar{c}_{14}^{2}\right) \\
\sigma(5) \leqslant & \frac{c_{7}^{2} c_{26}^{2}}{4} h^{4}+\left\|e_{h}^{k+1}-e_{h}^{k}\right\|_{L^{2}(\Omega)}^{2} \leqslant c_{41} \tau h^{3}+\left\|e_{h}^{k+1}-e_{h}^{k}\right\|_{L^{2}(\Omega)}^{2}, \\
& c_{41}:=\frac{c_{7}^{2} c_{26}^{2}}{4} \tilde{\tilde{c}}, \\
\sigma(6) \leqslant & c_{31}^{2} \tau \nu h^{2}+\frac{\tau \nu}{4}\left\|e_{h}^{k+1}\right\|_{X_{h}}^{2}
\end{align*}
$$

Now, estimates (6.11), (6.22) and (6.23) imply that

$$
\begin{align*}
& \left\|e_{h}^{k+1}\right\|_{L^{2}(\Omega)}^{2}-\left\|e_{h}^{k}\right\|_{L^{2}(\Omega)}^{2}+\tau \nu\left\|e_{h}^{k+1}\right\|_{X_{h}}^{2} \tag{6.24}\\
& \leqslant \\
& \quad \tau \mathbf{c} \nu\left\|e_{h}^{k}\right\|_{L^{2}(\Omega)}^{2}+\frac{\tau \mathbf{c}}{\nu}\left\|e_{h}^{k+1}\right\|_{L^{2}(\Omega)}^{2}+\frac{\tau}{\nu} C(\nu) h^{2} \\
& \quad+\tau \nu\left\|e_{h}^{k}\right\|_{X_{h}}^{2}+c_{36} \tau h^{2}+\frac{c_{37} \tau h^{2}}{\nu} \\
& \quad+\frac{c_{40} \tau}{\nu} h^{2(1-\kappa)}\left(\nu^{-6}+\nu^{-4.5}+\nu^{-3}\right)+c_{41} \tau h^{3}+c_{31}^{2} \tau \nu h^{2}
\end{align*}
$$

which gives

$$
\begin{align*}
&\left(1-\frac{\tau \mathbf{c}}{\nu}\right)\left\|e_{h}^{k+1}\right\|_{L^{2}(\Omega)}^{2}+\tau \nu\left\|e_{h}^{k+1}\right\|_{X_{h}}^{2} \tag{6.25}\\
& \leqslant(1+\tau \mathbf{c} \nu)\left\|e_{h}^{k}\right\|_{L^{2}(\Omega)}^{2}+\tau \nu\left\|e_{h}^{k}\right\|_{X_{h}}^{2}+\frac{\tau}{\nu} C(\nu) h^{2}+c_{36} \tau h^{2}+\frac{c_{37} \tau h^{2}}{\nu} \\
&+\frac{c_{40} \tau h^{2(1-\kappa)}}{\nu}\left(\nu^{-6}+\nu^{-4.5}+\nu^{-3}\right)+c_{41} \tau h^{3}+c_{31}^{2} \tau \nu h^{2} .
\end{align*}
$$

Using the inverse stability condition (6.4), we obtain

$$
\begin{align*}
\left(1-\frac{\tau \mathbf{c}}{\nu}\right)\left\|e_{h}^{k+1}\right\|_{L^{2}(\Omega)}^{2}+\tau \nu\left\|e_{h}^{k+1}\right\|_{X_{h}}^{2} \leqslant & (1+\tau \mathbf{c} \nu)\left\|e_{h}^{k}\right\|_{L^{2}(\Omega)}^{2} \tag{6.26}\\
& +\tau \nu\left\|e_{h}^{k}\right\|_{X_{h}}^{2}+\tau^{2} q(\nu, h)
\end{align*}
$$

where
(6.27) $q(\nu, h):=\left[\frac{\tilde{\tilde{c}} C(\nu)}{\nu} h+\frac{c_{37} \tilde{\tilde{c}} h}{\nu}+c_{36} \tilde{\tilde{c}} h+\frac{c_{40} \tilde{\tilde{c}}}{\nu} h^{1-2 \kappa}\left(\nu^{-6}+\nu^{-4.5}+\nu^{-3}\right)\right.$

$$
\begin{aligned}
& \left.+c_{41} \tilde{\tilde{c}} h^{2}+c_{31}^{2} \tilde{\tilde{c}} \nu h\right] \\
\leqslant & h^{1-2 \kappa}\left[\frac{C(\nu) \tilde{\tilde{c}}}{\nu} h_{0}^{2 \kappa}+\frac{c_{37} \tilde{\tilde{c}} h_{0}^{2 \kappa}}{\nu}+c_{36} \tilde{\tilde{c}} h_{0}^{2 \kappa}+\frac{c_{40} \tilde{\tilde{c}}}{\nu}\left(\nu^{-6}+\nu^{-4.5}+\nu^{-3}\right)\right. \\
& \left.+c_{41} \tilde{\tilde{c}} h_{0}^{1+2 \kappa}+c_{31}^{2} \tilde{\tilde{c}} \nu h_{0}^{2-\kappa}\right]
\end{aligned}
$$

for $h \in\left(0, h_{0}\right)$.
Now, we sum (6.26) over $k=0, \ldots, m\left(t_{m} \in[0, \boldsymbol{T})\right)$, which results in

$$
\begin{align*}
& \left(1-\frac{\tau \mathbf{c}}{\nu}\right) \sum_{k=0}^{m}\left\|e_{h}^{k+1}\right\|_{L^{2}(\Omega)}^{2}+\tau \nu \sum_{k=0}^{m}\left\|e_{h}^{k+1}\right\|_{X_{h}}^{2} \tag{6.28}\\
& \quad \leqslant(1+\tau \mathbf{c} \nu) \sum_{k=0}^{m}\left\|e_{h}^{k}\right\|_{L^{2}(\Omega)}^{2}+\tau \nu \sum_{k=0}^{m}\left\|e_{h}^{k}\right\|_{X_{h}}^{2}+\tau \boldsymbol{T} q(\nu, h) .
\end{align*}
$$

This implies that

$$
\begin{align*}
(1 & \left.-\frac{\tau \mathbf{c}}{\nu}\right) \sum_{k=0}^{m}\left\|e_{h}^{k+1}\right\|_{L^{2}(\Omega)}^{2}+\tau \nu\left\|e_{h}^{m+1}\right\|_{X_{h}}^{2} \tag{6.29}\\
& \leqslant(1+\tau \mathbf{c} \nu) \sum_{k=0}^{m}\left\|e_{h}^{k}\right\|_{L^{2}(\Omega)}^{2}+\tau \nu\left\|e_{h}^{0}\right\|_{X_{h}}^{2}+\tau \boldsymbol{T} q(\nu, h) .
\end{align*}
$$

Let us denote

$$
\begin{equation*}
\xi_{m}=\sum_{k=0}^{m}\left\|e_{h}^{k}\right\|_{L^{2}(\Omega)}^{2} \tag{6.30}
\end{equation*}
$$

Then

$$
\begin{align*}
& \left(1-\frac{\tau \mathbf{c}}{\nu}\right)\left(\xi_{m+1}-\left\|e_{h}^{0}\right\|_{L^{2}(\Omega)}^{2}\right)+\tau \nu\left\|e_{h}^{m+1}\right\|_{X_{h}}^{2} \tag{6.31}\\
& \quad \leqslant(1+\tau \mathbf{c} \nu) \xi_{m}+\tau \nu\left\|e_{h}^{0}\right\|_{X_{h}}^{2}+\tau \boldsymbol{T} q(\nu, h) .
\end{align*}
$$

Using the estimates

$$
\begin{align*}
\left\|e_{h}^{0}\right\|_{X_{h}} & =\left\|u^{0}-I_{h} u^{0}\right\|_{X_{h}} \leqslant c_{6}\left\|u^{0}\right\|_{H^{2}(\Omega)} h=\sqrt{c_{37}} h, \tag{6.32}\\
\left\|e_{h}^{0}\right\|_{L_{2}} & =\left\|u^{0}-I_{h} u^{0}\right\|_{L_{2}} \leqslant c_{7}\left\|u^{0}\right\|_{H^{2}(\Omega)} h^{2} \\
& \leqslant c_{7}(\tilde{\tilde{c}} \tau)^{1 / 2} h^{3 / 2}\left\|u^{0}\right\|_{H^{2}(\Omega)}=\sqrt{c_{38}} \tau^{1 / 2} h^{3 / 2}
\end{align*}
$$

and assuming that $\mathbf{c} \tau / \nu \leqslant 1 / 2$ (see the assumptions of the theorem), we get from (6.31) and (6.30) that

$$
\begin{equation*}
\xi_{m+1} \leqslant \frac{1+\tau \mathbf{c} \nu}{1-\tau \mathbf{c} / \nu} \xi_{m}+\frac{\tau \boldsymbol{T} q(\nu, h)}{1-\tau \mathbf{c} / \nu}+c_{38} \tau h^{3}+\frac{c_{37} \tau \nu h^{2}}{1-\tau \mathbf{c} / \nu} \tag{6.34}
\end{equation*}
$$

If we set

$$
\begin{equation*}
A=\frac{1+\tau \mathbf{c} \nu}{1-\tau \mathbf{c} / \nu} \tag{6.35}
\end{equation*}
$$

the relation (6.34) can be written as

$$
\begin{equation*}
\xi_{m+1} \leqslant A \xi_{m}+\tau\left[\frac{q(\nu, h) \boldsymbol{T}}{1-\tau \mathbf{c} / \nu}+c_{38} h^{3}+\frac{c_{37} \nu h^{2}}{1-\tau \mathbf{c} / \nu}\right] \tag{6.36}
\end{equation*}
$$

From this we obtain

$$
\begin{equation*}
\xi_{m} \leqslant A^{m} \xi_{0}+\frac{A^{m}-1}{A-1} \tau\left[\frac{q(\nu, h) \boldsymbol{T}}{1-\tau \mathbf{c} / \nu}+c_{38} h+\frac{c_{37} \nu h^{2}}{1-\tau \mathbf{c} / \nu}\right] \tag{6.37}
\end{equation*}
$$

In virtue of the inequality $\tau \mathbf{c} / \nu \leqslant 1 / 2$, we have

$$
A \leqslant 1+2 \tau \mathbf{c}(\nu+1 / \nu) \leqslant \exp \left(2 \tau \mathbf{c}\left(\nu+\frac{1}{\nu}\right)\right)
$$

Hence,
(6.38) $\quad \xi_{m} \leqslant \exp \left(2 m \mathbf{c} \tau\left(\nu+\frac{1}{\nu}\right)\right) \xi_{0}$

$$
\begin{aligned}
& +\frac{\exp (2 m \mathbf{c} \tau(\nu+1 / \nu))-1}{\mathbf{c}\left(\nu^{2}+1\right)(\nu-\mathbf{c} \tau)^{-1}}\left[q(\nu, h) \boldsymbol{T}+c_{38} h+c_{37} \nu h^{2}\right] \\
\leqslant & \xi_{0} \exp \left(2 \boldsymbol{T} \boldsymbol{c}\left(\nu+\frac{1}{\nu}\right)\right) \\
& +\frac{\nu}{\mathbf{c}\left(\nu^{2}+1\right)}\left(\exp \left(2 \boldsymbol{T} \boldsymbol{c}\left(\nu+\frac{1}{\nu}\right)\right)-1\right)\left[q(\nu, h) \boldsymbol{T}+c_{38} h+c_{37} \nu h^{2}\right] .
\end{aligned}
$$

Further, due to the relation (6.33) we have

$$
\begin{aligned}
\xi_{0} \exp \left(2 \boldsymbol{T} \boldsymbol{c}\left(\nu+\frac{1}{\nu}\right)\right) & =\left\|e_{h}^{0}\right\|_{L^{2}(\Omega)}^{2} \exp \left(2 \boldsymbol{T} \mathbf{c}\left(\nu+\frac{1}{\nu}\right)\right) \\
& \leqslant c_{38} \exp \left(2 \boldsymbol{T} \boldsymbol{c}\left(\nu+\frac{1}{\nu}\right)\right) \tau h^{3} \\
& =: C^{*}(\nu) \tau h^{3}
\end{aligned}
$$

and we conclude from (6.38) that

$$
\begin{equation*}
\xi_{m} \leqslant C^{*}(\nu) \tau h^{3}+\widetilde{C}(\nu)\left[q(\nu, h) \boldsymbol{T}+c_{38} h^{3}+c_{37} \nu h^{2}\right] \tag{6.39}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{C}(\nu)=\frac{\nu}{\mathbf{c}\left(\nu^{2}+1\right)}\left(\exp \left(2 \boldsymbol{T} \boldsymbol{c}\left(\nu+\frac{1}{\nu}\right)\right)-1\right) \tag{6.40}
\end{equation*}
$$

Due to (6.5) and (6.30),

$$
\begin{equation*}
\|e\|_{h, \tau, L^{2}(\Omega)}^{2}=\tau \xi_{r} . \tag{6.41}
\end{equation*}
$$

From this and (6.39) we find that

$$
\|e\|_{h, \tau, L^{2}(\Omega)}^{2} \leqslant C^{*}(\nu) \tau^{2} h^{3}+\tau \widetilde{C}(\nu)\left[q(\nu, h) \boldsymbol{T}+c_{38} h^{3}+c_{37} \nu h^{2}\right]
$$

Then, in view of (4.10), (6.20), (6.27) and the fact that $\widehat{C}(\nu)=O\left(\nu^{-3 / 2}\right), \widetilde{C}(\nu)=$ $O(\nu \exp (2 \boldsymbol{T} \mathbf{c} / \nu))$ and $q(\nu, h)=O\left(\nu^{-7}\right)$, we find that

$$
\|e\|_{h, \tau, L^{2}(\Omega)}^{2} \leqslant C_{2} h^{2(1-\kappa)}, \quad C_{2}=O\left(\nu^{-6} \exp (2 \boldsymbol{T} \mathbf{c} / \nu)\right)
$$

which yields estimate (6.6) a).

Now we establish estimate (6.6) b). From (6.28) we obtain

$$
\begin{align*}
& \left(1-\frac{\tau \mathbf{c}}{\nu}\right)\left\|e_{h}^{m+1}\right\|_{L^{2}(\Omega)}^{2}+\tau \nu\left\|e_{h}^{m+1}\right\|_{X_{h}}^{2} \tag{6.42}\\
& \quad \leqslant \mathbf{c} \tau\left(\frac{1}{\nu}+\nu\right) \sum_{k=0}^{m}\left\|e_{h}^{k}\right\|_{L^{2}(\Omega)}^{2}+\left\|e_{k}^{0}\right\|_{L^{2}(\Omega)}^{2}+\tau \nu\left\|e_{h}^{0}\right\|_{X_{h}}^{2}+\tau \boldsymbol{T} q(\nu, h)
\end{align*}
$$

As above we assume that $2 \mathbf{c} \tau \leqslant \nu$. Then (6.42) implies that

$$
\tau \nu\left\|e_{h}^{m+1}\right\|_{X_{h}}^{2} \leqslant \mathbf{c} \tau\left(\frac{1}{\nu}+\nu\right) \sum_{\nu=0}^{M}\left\|e_{h}^{k}\right\|_{L^{2}(\Omega)}^{2}+\left\|e_{h}^{0}\right\|_{L^{2}(\Omega)}^{2}+\tau \nu\left\|e_{h}^{0}\right\|_{X_{h}}+\tau \boldsymbol{T} q(\nu, h) .
$$

Now the summation of this inequality over $m=0, \ldots, r-1$, estimates of $\left\|e_{h}^{0}\right\|_{L^{2}(\Omega)}$ and $\left\|e_{h}^{0}\right\|_{X_{h}}$, (6.6) a) and (6.27) immediately yield (6.6) b).

Remark 2. a) The above results can be extended to the case when $\Omega \subset \mathbb{R}^{3}$ is a bounded polyhedral domain and q from (2.9) is greater than three. The maximum principle can be applied in this case on the basis of the results from [32].
b) There are some open questions and problems: the proof of error estimates for other combined finite volume-finite element schemes (fully explicit or implicit schemes, the method of fractional steps), the study of higher order schemes, the derivation of efficient a posteriori error estimates, and generalization to systems of equations.
c) Particularly interesting, but rather difficult, would be the investigation of the behaviour of the error in dependence on the coefficient ν. The behaviour of the constants C_{2} and C_{3} from the error estimates in Theorem 5 is rather pessimistic for small ν. It would be desirable to develop error estimates uniform with respect to ν. However, this has been obtained only in very few works analyzing simple problems under rather special assumptions when complete analytic behaviour of solutions is known ([1], [35] and citations in [39]).

7. Applications to viscous compressible flow

The main motivation for developing the combined finite volume-finite element schemes was the numerical simulation of viscous compressible high-speed flow. The goal was to construct a sufficiently efficient, robust and reliable method for the computation of complicated flow fields with shock waves, boundary layers and their interaction.

In what follows we describe a method combining barycentric finite volumes with nonconforming piecewise linear finite elements, applied to the solution of a high-
speed flow past a cascade of profiles modeling the flow in steam and gas turbines or compressors.

We consider gas flow in a space-time cylinder $Q_{\boldsymbol{T}}=\Omega \times(0, \boldsymbol{T})$, where $\Omega \subset \mathbb{R}^{2}$ is a bounded domain representing the region occupied by the fluid and $\boldsymbol{T}>0$.

The complete system of a viscous compressible flow consisting of the continuity equation, Navier-Stokes equations and the energy equation can be written in the dimensionless form

$$
\begin{equation*}
\frac{\partial w}{\partial t}+\sum_{s=1}^{2} \frac{\partial f_{s}(w)}{\partial x_{s}}=\sum_{s=1}^{2} \frac{\partial R_{s}(w, \nabla w)}{\partial x_{s}} \text { in } Q_{\boldsymbol{T}} \tag{7.1}
\end{equation*}
$$

Here

$$
\begin{gather*}
w=\left(w_{1}, w_{2}, w_{3}, w_{4}\right)^{\mathrm{T}}=\left(\varrho, \varrho v_{1}, \varrho v_{2}, e\right)^{\mathrm{T}}, \tag{7.2}\\
w=w(x, t), \quad x \in \Omega, \quad t \in(0, \boldsymbol{T}), \\
f_{s}(w)=\left(\varrho v_{s}, \varrho v_{s} v_{1}+\delta_{s 1} p, \varrho v_{s} v_{2}+\delta_{s 2} p,(e+p) v_{s}\right)^{\mathrm{T}}, \\
R_{s}(w, \nabla w)=\left(0, \tau_{s 1}, \tau_{s 2}, \tau_{s 1} v_{1}+\tau_{s 2} v_{2}+\frac{\gamma}{\operatorname{Re} \operatorname{Pr}} \frac{\partial \theta}{\partial x_{s}}\right)^{\mathrm{T}}, \\
\tau_{s r}=\frac{1}{\operatorname{Re}}\left[\left(\frac{\partial v_{s}}{\partial x_{r}}+\frac{\partial v_{r}}{\partial x_{s}}\right)-\frac{2}{3} \operatorname{div} \boldsymbol{v} \delta_{s r}\right], \quad s, r=1,2 .
\end{gather*}
$$

From thermodynamics we have

$$
\begin{equation*}
p=(\gamma-1)\left(e-\varrho|\boldsymbol{v}|^{2} / 2\right), \quad e=\varrho\left(\theta+|\boldsymbol{v}|^{2} / 2\right) . \tag{7.3}
\end{equation*}
$$

We use the standard notation for dimensionless quantities: t-time, x_{1}, x_{2} Cartesian coordinates in \mathbb{R}^{2}, ϱ-density, $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$-velocity vector with components v_{s} in the directions $x_{s}, s=1,2, p$-pressure, θ-absolute temperature, e total energy, $\tau_{s r}$-components of the viscous part of the stress tensor, $\delta_{s r}$-Kronecker delta, $\gamma>1$ —Poisson adiabatic constant, Re—Reynolds number, Pr-Prandtl number. We neglect the outer volume force. The functions f_{s}, called inviscid (Euler) fluxes, are defined in the set $D=\left\{\left(w_{1}, \ldots, w_{4}\right) \in \mathbb{R}^{4} ; w_{1}>0\right\}$. The viscous terms R_{s} are defined in $D \times \mathbb{R}^{8}$. (Due to physical reasons it is also suitable to require $p>0$.)

System (7.1), (7.3) is equipped with an initial condition

$$
\begin{equation*}
w(x, 0)=w^{0}(x), \quad x \in \Omega \tag{7.4}
\end{equation*}
$$

(which means that at time $t=0$ we prescribe, e.g., ϱ, v_{1}, v_{2} and θ) and boundary conditions. In the simulation of the flow past a cascade of profiles the region occupied by the fluid is represented by an infinitely connected plane domain $\widetilde{\Omega}$, bounded in one space direction (say x_{1}) and unbounded but periodic in the other direction $\left(x_{2}\right)$.

Assuming also the periodicity of the flow field, we can choose the computational domain Ω in the form of one period of the original domain $\widetilde{\Omega}$ (see Fig. 3). The boundary $\partial \Omega$ is formed by disjoint parts $\Gamma_{I}, \Gamma_{O}, \Gamma_{W}, \Gamma^{+}$and Γ^{-}. On Γ_{I}, Γ_{O} and Γ_{W}, representing the inlet, outlet and impermeable profile, respectively, we prescribe conditions
(i) $\varrho=\varrho^{*}, \quad v_{s}=v_{s}^{*}, \quad s=1,2, \quad \theta=\theta^{*} \quad$ on Γ_{I},
(ii) $v_{s}=0, \quad s=1,2, \quad \frac{\partial \theta}{\partial n}=0 \quad$ on Γ_{W},
(iii) $\quad \sum_{s=1}^{2} \tau_{s r} n_{s}=0, \quad r=1,2, \quad \frac{\partial \theta}{\partial n}=0 \quad$ on Γ_{O}.

Here $\partial / \partial n$ denotes the derivative in the direction of the unit outer normal $\boldsymbol{n}=$ $\left(n_{1}, n_{2}\right)^{\mathrm{T}}$ to $\partial \Omega ; w^{0}, \varrho^{*}, v_{s}^{*}$ and θ^{*} are given functions.

Moreover, the arcs Γ^{-}and Γ^{+}are piecewise linear artificial cuts such that

$$
\begin{equation*}
\Gamma^{+}=\left\{\left(x_{1}, x_{2}+\tau\right) ;\left(x_{1}, x_{2}\right) \in \Gamma^{-}\right\}, \tag{7.6}
\end{equation*}
$$

where $\tau>0$ is the width of one period of the cascade in the direction x_{2}. On $\Gamma^{ \pm}$we consider the periodicity condition

$$
\begin{equation*}
w\left(x_{1}, x_{2}+\tau, t\right)=w\left(x_{1}, x_{2}, t\right), \quad\left(x_{1}, x_{2}\right) \in \Gamma^{-} \tag{7.7}
\end{equation*}
$$

The same condition is imposed on the first-order derivatives of the vector function w.
Let us note that equations (7.1) and (7.3) are of hyperbolic-parabolic type and that nothing is known about the existence and uniqueness of the solution of problem (7.1), (7.3)-(7.5) and (7.7).

We carry out the discretization of system (7.1) similarly as in Section 2. Assuming that Ω is a polygonal domain, we denote by \mathcal{T}_{h} a triangulation of Ω and by Q_{i}, $i \in J$, the midpoints of the sides of all triangles $T \in \mathcal{T}_{h}$. We use nonconforming piecewise linear finite elements. This means that the components of the state vector are approximated by functions from the finite dimensional space X_{h} defined in (3.9). Further, we set $\boldsymbol{X}_{h}=\left[X_{h}\right]^{4}$ and
a) $\quad \boldsymbol{V}_{h}=\left\{\varphi_{h}=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right) \in \boldsymbol{X}_{h} ; \varphi_{i}\left(Q_{j}\right)=0\right.$ for midpoints Q_{j} lying on the part of $\partial \Omega$ where w_{i} satisfies the Dirichlet condition and φ_{h} satisfies the periodicity condition (7.7) \},
b) $\quad \boldsymbol{W}_{h}=\left\{w_{h} \in \boldsymbol{X}_{h}\right.$; its components satisfy the Dirichlet boundary conditions following from (7.5) and periodicity condition (7.7)\}.

Moreover, we consider a partition $0=t_{0}<t_{1}<\ldots$ of the interval $(0, \boldsymbol{T})$ and set $\tau_{k}=t_{k+1}-t_{k}$.

Multiplying (7.1) considered on a time level t_{k} by any $\varphi_{h} \in \boldsymbol{V}_{h}$, integrating over Ω, using Green's theorem, taking into account the boundary conditions (7.5) and the periodicity conditions (7.7) for w, φ_{h} and for the derivatives of w, we obtain the following integral identity:

$$
\begin{equation*}
\int_{\Omega} \frac{\partial w}{\partial t} \varphi_{h} \mathrm{~d} x+\int_{\Omega} \sum_{s=1}^{2} \frac{\partial f_{s}(w)}{\partial x_{s}} \varphi_{h} \mathrm{~d} x+\int_{\Omega} \sum_{s=1}^{2} R_{s}(w, \nabla w) \frac{\partial \varphi_{h}}{\partial x_{s}} \mathrm{~d} x=0 \tag{7.9}
\end{equation*}
$$

Now approximating the time derivative by the difference and the convective terms with fluxes f_{s} by a form b_{h} defined similarly as in (3.20) with the aid of the finite volume approach and evaluating the integrals with the aid of the quadrature formula using midpoints of sides as integration points, i.e.,

$$
\begin{equation*}
\int_{T} F \mathrm{~d} x \approx \frac{1}{3}|T| \sum_{i=1}^{3} F\left(Q_{T}^{i}\right) \tag{7.10}
\end{equation*}
$$

for $F \in C(T)$ and a triangle T with midpoints of sides $Q_{T}^{i}, i=1,2,3$, we arrive at the following scheme for the calculation of an approximate solution w_{h}^{k+1} on the $(k+1)$-st time level:
a) $w_{h}^{k+1} \in \boldsymbol{W}_{h}$,
b) $\quad\left(w_{h}^{k+1}, \varphi_{h}\right)_{h}=\left(w_{h}^{k}, \varphi_{h}\right)_{h}-\tau_{k}\left\{b_{h}\left(w_{h}^{k}, \varphi_{h}\right)+a_{h}\left(w_{h}^{k}, \varphi_{h}\right)\right\}$

$$
\forall \varphi_{h} \in \boldsymbol{V}_{h}
$$

Here

$$
\begin{equation*}
\left(w_{h}, \varphi_{h}\right)_{h}=\frac{1}{3} \sum_{T \in \mathcal{T}_{h}}|T| \sum_{i=1}^{3} w_{h}\left(Q_{T}^{i}\right) \varphi_{h}\left(Q_{T}^{i}\right), \quad w_{h}, \varphi_{h} \in \boldsymbol{X}_{h} \tag{7.12}
\end{equation*}
$$

and $a_{h}\left(w_{h}^{k}, \varphi_{h}\right)$ approximates the viscous terms of the form

$$
\int_{\Omega_{h}} \sum_{s=1}^{2} R_{s}\left(w_{h}^{k}, \nabla w_{h}^{k}\right) \frac{\partial \varphi_{h}}{\partial x_{s}} \mathrm{~d} x .
$$

Namely,

$$
\begin{align*}
a_{h}\left(w_{h}, \varphi_{h}\right)= & a_{h}^{1}\left(w_{h}, \varphi_{h}\right)+\ldots+a_{h}^{4}\left(w_{h}, \varphi_{h}\right), \quad a_{h}^{1} \equiv 0 \tag{7.13}\\
a_{h}^{2}\left(w_{h}, \varphi_{h}\right)= & \sum_{T \in \mathcal{T}_{h}}|T|\left\{\left.\left.2 \frac{\partial v_{h, 1}}{\partial x_{1}}\right|_{T} \frac{\partial \varphi_{h, 2}}{\partial x_{1}}\right|_{T}-\left.\left.\frac{2}{3}\left(\operatorname{div} \boldsymbol{v}_{h}\right)\right|_{T} \frac{\partial \varphi_{h, 2}}{\partial x_{1}}\right|_{T}\right. \\
& \left.+\left.\left(\left.\frac{\partial v_{h, 2}}{\partial x_{1}}\right|_{T}+\left.\frac{\partial v_{h, 1}}{\partial x_{2}}\right|_{T}\right) \frac{\partial \varphi_{h, 2}}{\partial x_{2}}\right|_{T}\right\} / \operatorname{Re}, \\
a_{h}^{3}\left(w_{h}, \varphi_{h}\right)= & \sum_{T \in \mathcal{T}_{h}}|T|\left\{\left.\left(\left.\frac{\partial v_{h, 2}}{\partial x_{1}}\right|_{T}+\left.\frac{\partial v_{h, 1}}{\partial x_{2}}\right|_{T}\right) \frac{\partial \varphi_{h, 3}}{\partial x_{1}}\right|_{T}\right. \\
& \left.+\left.\left.2 \frac{\partial v_{h, 2}}{\partial x_{2}}\right|_{T} \frac{\partial \varphi_{h, 3}}{\partial x_{2}}\right|_{T}-\left.\left.\frac{2}{3}\left(\operatorname{div} \boldsymbol{v}_{h}\right)\right|_{T} \frac{\partial \varphi_{h, 3}}{\partial x_{2}}\right|_{T}\right\} / \operatorname{Re}, \\
a_{h}^{4}\left(w_{h}, \varphi_{h}\right)= & \sum_{T \in \mathcal{T}_{h}}\left\{\left.\frac{1}{3}|T|\left(\left.\tau_{h, 11}\right|_{T} \sum_{i=1}^{3} v_{h, 1}\left(Q_{T}^{i}\right)+\left.\tau_{h, 12}\right|_{T} \sum_{i=1}^{3} v_{h, 2}\left(Q_{T}^{i}\right)\right) \frac{\partial \varphi_{h, 4}}{\partial x_{1}}\right|_{T}\right. \\
& +\left.\frac{1}{3}|T|\left(\left.\tau_{h, 21}\right|_{T} \sum_{i=1}^{3} v_{h, 1}\left(Q_{T}^{i}\right)+\left.\tau_{h, 22}\right|_{T} \sum_{i=1}^{3} v_{h, 2}\left(Q_{T}^{i}\right)\right) \frac{\partial \varphi_{h, 4}}{\partial x_{2}}\right|_{T} \\
& \left.+\left.\left.\frac{\gamma}{\operatorname{Re} \operatorname{Pr}}|T| \sum_{j=1}^{2} \frac{\partial \theta_{h}}{\partial x_{j}}\right|_{T} \frac{\partial \varphi_{h, 4}}{\partial x_{j}}\right|_{T}\right\}, \\
\left.\tau_{h, r s}\right|_{T}= & \left.\frac{1}{\operatorname{Re}}\left(\frac{\partial v_{h, r}}{\partial x_{s}}+\frac{\partial v_{h, s}}{\partial x_{r}}-\frac{2}{3} \operatorname{div} \boldsymbol{v}_{h} \delta_{r s}\right)\right|_{T}=\operatorname{const.}
\end{align*}
$$

By $v_{h, s}$ and θ_{h} we denote the functions from the space X_{h} approximating the velocity components and temperature. Moreover, b_{h} representing the approximation of the convective terms is expressed as

$$
\begin{array}{r}
b_{h}\left(w_{h}, \varphi_{h}\right)=\sum_{i \in J} \varphi_{h}\left(Q_{i}\right) \sum_{j \in S(i)} \sum_{\alpha=1}^{\beta_{i j}} H\left(w_{h}\left(Q_{i}\right), w_{h}\left(Q_{j}\right), \boldsymbol{n}_{i j}^{\alpha}\right) \ell_{i j}^{\alpha} \tag{7.14}\\
w_{h}, \varphi_{h} \in \boldsymbol{X}_{h}
\end{array}
$$

As H we use here the well-known Osher-Solomon numerical flux (cf. [38], [42], [15]).
From (7.14) we see that the used scheme is fully explicit. The reason is its simple algorithmization. However, its application is conditioned by the use of a suitable stability condition. Namely, the following condition has been used in practical computations:

$$
\begin{gather*}
\max \left\{\max _{i \in J} \frac{\tau_{k}}{\left|D_{i}\right|}\left|\partial D_{i}\right|\left(\max _{j \in S(i), \alpha=1, \ldots, \beta_{i j}} \varrho\left(\mathbb{P}\left(w_{i}^{k}, \boldsymbol{n}_{i j}^{\alpha}\right)\right)\right),\right. \tag{7.15}\\
\left.\max _{T \in \mathcal{T}_{h}} \frac{3}{4} \frac{h(T)}{\sigma(T)} \frac{\tau_{k}}{|T|} \frac{1}{\mathrm{Re}}\right\} \leqslant \mathrm{CFL} \approx 0.85
\end{gather*}
$$

where $\mathbb{P}(w, \boldsymbol{n})=\sum_{s=1}^{2}\left(D f_{s}(w) / D w\right) n_{s}, \varrho(\mathbb{P})=$ spectral radius of the matrix $\mathbb{P}, h(T)$ is the length of the maximal side of $T \in \mathcal{T}_{h}$ and $\sigma(T)$ is the radius of the largest circle inscribed into T. Condition (7.15) is obtained on the basis of linearization and in analogy with the scalar problem (for details see [28]).

The use of the semiimplicit (or implicit) version of scheme (7.11) would require the solution of a nonlinear algebraic system on each time level.

Another possible time discretization which we have applied with success is the inviscid-viscous operator splitting described, e.g., in [6], [13], [14], [15].

In order to get sufficiently accurate computational results with a good resolution of shock waves and boundary layers, it is suitable to apply an adaptive mesh refinement strategy. We have developed several adaptive techniques based on a shock indicator and error indicators, leading to satisfactory results (see, e.g., [6], [7], [12], [21], [29]).

Figure 3. Cascade of profiles with the computational domain Ω and the boundary parts $\Gamma_{I}, \Gamma_{O}, \Gamma_{W}$ and the artificial periodical cuts Γ^{+} and Γ^{-}.

Figure 4. The wind tunnel interferogram showing density isolines (Courtesy of the Institute of Thermomechanics, Academy of Science of Czech Republic, Prague).

Example 1. The method described was applied to the numerical simulation of the flow past a turbine cascade shown in Fig. 3. The goal was to obtain the steady state solution with the aid of the time stabilization for $t \rightarrow \infty$. The computational results are compared with a wind tunnel experiment (by courtesy of the Institute

of Thermomechanics of the Academy of Sciences of the Czech Republic in Prague, see [44]). The experiment and computations were performed for the following data: angle of attack $=19^{\circ} 18^{\prime}$, inlet Mach number $=0.32$, outlet Mach number $=1.18$, $\gamma=1.4$, Reynolds number $\operatorname{Re}=1.5 \cdot 10^{6}$, Prandtl number $\operatorname{Pr}=0.72$.

Fig. 4 represents the wind tunnel interferogram showing density isolines (see [44]). In Fig. 5 and Fig. 6 the final triangular and the corresponding barycentric mesh obtained with the aid of anisotropic mesh refinement ([6], [7]) are plotted, respectively. Fig. 7 shows the pressure distribution along the profile compared with the measurement. Further, Fig. 8 shows the computed density isolines. We see that a good agreement of computational results with experiment was achieved. Let us note that the inviscid-viscous operator splitting method ([6], [13], [14], [15]) gives nearly identical results.

Figure 7. Pressure distribution along the profile compared with measurement.

Figure 8. Density isolines.

References

[1] D. Adam, A. Felgenhauer, H.-G. Roos and M. Stynes: A nonconforming finite element method for a singularly perturbed boundary value problem. Computing 54 (1995), 1-25.
[2] Ph. Angot, V. Dolejší, M. Feistauer and J. Felcman: Analysis of a combined barycentric finite volume-nonconforming finite element method for nonlinear convection-diffusion problems. Appl. Math. 43 (1998), 263-310.
[3] P. Arminjon, A. Madrane: A mixed finite volume/finite element method for 2-dimensional compressible Navier-Stokes equations on unstructured grids. In: Hyperbolic Problems: Theory, Numerics, Applications (M. Fey, R. Jeltsch, eds.). Birkhäuser, Basel, 1999.
[4] P. G. Ciarlet: The Finite Elements Method for Elliptic Problems. Studies in Mathematics and its Applications, Vol. 4. North-Holland, Amsterdam, 1978.
[5] M. Crouzeix, P.-A. Raviart: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. 7 (1973), 33-75.
[6] V. Dolejš̌: Sur des méthodes combinant des volumes finis et des éléments finis pour le calcul d'écoulements compressibles sur des maillages non structurés. PhD Dissertation, Charles University Prague-L'Université Méditerranée Marseille, 1998.
[7] V. Dolejš̌: Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes. Comput. Vis. Sci. 1 (1998), 165-178.
[8] V. Dolejš̌́, P. Angot: Finite volume methods on unstructured meshes for compressible flows. In: Finite Volumes for Complex Applications (Problems and Perspectives), (F. Benkhaldoun, R. Vilsmeier, eds.). Hermes, Rouen, 1996, pp. 667-674.
[9] R. Eymand, T. Gallouët and R. Herbin: Finite Volume Methods. Technical Report 97-19, Centre de Mathématiques et d'Informatique. Université de Provence, Marseille, 1997.
[10] V. Dolejš̌́, M. Feistauer and J. Felcman: On the discrete Friedrichs inequality for nonconforming finite elements. Numer. Funct. Anal. Optim. 20 (1999), 437-447.
[11] M. Feistauer: Mathematical Methods in Fluid Dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics 67. Longman Scientific \& Technical, Harlow, 1993.
[12] M. Feistauer, V. Dolejš̌́, J. Felcman and A. Kliková: Adaptive mesh refinement for problems of fluid dynamics. In: Proc. of Colloquium Fluid Dynamics '99 (P. Jonáš, V. Uruba, eds.). Institute of Thermomechanics, Academy of Sciences, Prague, 1999, pp. 53-60.
[13] M. Feistauer, J. Felcman: Convection-diffusion problems and compressible NavierStokes equations. In: The Mathematics of Finite Elements and Applications (J.R. Whiteman, ed.). John Wiley \& Sons, 1997, pp. 175-194.
[14] M. Feistauer, J. Felcman and V. Dolejší: Numerical simulation of compresssible viscous flow through cascades of profiles. Z. Angew. Math. Mech. 76 (1996), 297-300.
[15] M. Feistauer, J. Felcman and M. Lukáčová: Combined finite elements-finite volume solution of compressible flow. J. Comput. Appl. Math. 63 (1995), 179-199.
[16] M. Feistauer, J. Felcman and M. Lukáčová: On the convergence of a combined finite volume-finite element method for nonlinear convection-diffusion problems. Numer. Methods Partial Differential Equations 13 (1997), 163-190.
[17] M. Feistauer, J. Felcman, M. Lukáčová and G. Warnecke: Error estimates of a combined finite volume-finite element method for nonlinear convection-diffusion problems. SIAM J. Numer. Anal. 36 (1999), 1528-1548.
[18] M. Feistauer, J. Slavik and P. Stupka: On the convergence of the combined finite volume-finite element method for nonlinear convection-diffusion problems. II. Explicit schemes. Numer. Methods Partial Differential Equations 15 (1999), 215-235.
[19] J. Felcman: Finite volume solution of the inviscid compressible fluid flow. Z. Angew. Math. Mech. 72 (1992), 513-516.
[20] J. Felcman, V. Dolejši: Adaptive methods for the solution of the Euler equations in elements of the blade machines. Z. Angew. Math. Mech. 76 (1996), 301-304.
[21] J. Felcman, V. Dolejši and M. Feistauer: Adaptive finite volume method for the numerical solution of the compressible Euler equations. In: Computational Fluid Dynamics '94 (J. Périaux, S. Wagner, E. H. Hirschel and R. Piva, eds.). John Wiley \& Sons, Stuttgart, 1994, pp. 894-901.
[22] J. Felcman, G. Warnecke: Adaptive computational methods for gas flow. In: Proceedings of the Prague Mathematical Conference (K. Segeth, ed.). ICARIS, Prague, 1996, pp. 99-104.
[23] J. Fořt, M. Huněk, K. Kozel and M. Vavřincová: Numerical simulation of steady and unsteady flows through plane cascades. In: Numerical Modeling in Continuum Mechanics II (R. Ranacher, M. Feistauer and K. Kozel, eds.). Faculty of Mathematics and Physics, Charles Univ., Prague, 1995, pp. 95-102.
[24] H. Gajewski, K. Gröger and K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974.
[25] T. Ikeda: Maximum principle in finite element models for convection-diffusion phenomena. In: Mathematics Studies 76, Lecture Notes in Numerical and Applied Analysis Vol. 4. North-Holland, Amsterdam-New York-Oxford, 1983.
[26] C. Johnson: Finite element methods for convection-diffusion problems. In: Computing Methods in Engineering and Applied Sciences V. (R. Glowinski, J. L. Lions, eds.). North-Holland, Amsterdam, 1981.
[27] C. Johnson: Numerical Solution of Partial Differential Equations. Cambridge University Press, Cambridge, 1988.
[28] A. Kliková: Finite Volume-Finite Element Solution of Compressible Flow. Doctoral Thesis. Charles University Prague, 2000.
[29] A. Kliková, M. Feistauer and J. Felcman: Adaptive methods for problems of fluid dynamics. In: Software and Algorithms of Numerical Mathematics '99 (J. Holenda, I. Marek, eds.). West-Bohemian University, Pilsen, 1999.
[30] D. Kröner: Numerical Schemes for Conservation Laws. Wiley \& Teuner, Chichester, 1997.
[31] D. Kröner, M. Rokyta: Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions. SIAM J. Numer. Anal. 31 (1994), 324-343.
[32] M. Křižek, Qun Lin: On diagonal dominance of stiffness matrices in 3D. East-West J. Numer. Math. 3 (1993), 59-69.
[33] M. Křižek, P. Neittaanmäki: Finite Element Approximation of Variational Problems and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 50. Longman Scientific \& Technical, Harlow, 1990.
[34] A. Kufner, O. John and S. Fučík: Function Spaces. Academia, Prague, 1977.
[35] J. M. Melenk and C. Schwab: The hp streamline diffusion finite element method for convection dominated problems in one space dimension. East-West J. Numer. Math. 7 (1999), 31-60.
[36] K. W. Morton: Numerical Solution of Convection-Diffusion Problems. Chapman \& Hall, London, 1996.
[37] K. Ohmori, T. Ushijima: A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations. RAIRO Anal. Numér. 18 (1984), 309-322.
[38] S. Osher, F. Solomon: Upwind difference schemes for hyperbolic systems of conservation laws. Math. Comp. 38 (1982), 339-374.
[39] H.-G. Roos, M. Stynes and L. Tobiska: Numerical Methods for Singularly Perturbed Differential Equations. Springer Series in Computational Mathematics, Vol. 24. Springer-Verlag, Berlin, 1996.
[40] F. Schieweck, L. Tobiska: A nonconforming finite element method of upstream type applied to the stationary Navier-Stokes equation. RAIRO Modél. Math. Anal. Numér. 23 (1989), 627-647.
[41] C. Schwab: p- and hp-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics. Clarendon Press, Oxford, 1998.
[42] S. P. Spekreijse: Multigrid Solution of the Steady Euler Equations. Centrum voor Wiskunde en Informatica, Amsterdam, 1987.
[43] G. Strang: Variational crimes in the finite element method. In: The Mathematical Foundations of the Finite Element Method (A.K. Aziz, ed.). Academic Press, New York, 1972, pp. 689-710.
[44] M. Štastný, P. Šafařik: Experimental analysis data on the transonic flow past a plane turbine cascade. ASME Paper 90-GT-313. New York, 1990.
[45] R. Temam: Navier-Stokes Equations. North-Holland, Amsterdam-New York-Oxford, 1979.
[46] L. Tobiska: Full and weighted upwind finite element methods. In: Splines in Numerical Analysis Mathematical Research Volume, Vol. 32 (J. W. Schmidt, H. Spath, eds.). Akademie-Verlag, Berlin, 1989.
[47] G. Vijayasundaram: Transonic flow simulation using an upstream centered scheme of Godunov in finite elements. J. Comp. Phys. 63 (1986), 416-433.
[48] G. Zhou: A local L^{2}-error analysis of the streamline diffusion method for nonstationary convection-diffusion systems. RAIRO Modél. Math. Anal. Numér. 29 (1995), 577-603.
[49] G. Zhou, R. Rannacher: Pointwise superconvergence of streamline diffusion finiteelement method. Numer. Methods Partial Differential Equations 12 (1996), 123-145.

Authors' addresses: Vít Dolejší, Miloslav Feistauer, Jiř̌̌ Felcman, Institute of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 18675 Praha 8, Czech Republic, e-mail: \{dolejsi, feist, felcman\}@karlin.mff.cuni.cz; Alice Kliková, Centre for Theoretical Study, Charles University, Jilská 1, 11000 Praha 1, Czech Republic, e-mail: klikova@cts.cuni.cz.

[^0]: * This research has been supported by the Grants No. 201/99/0267, No. 201/02/0684 and No. 201/00/D116 of the Grant Agency of the Czech Republic and the Grant No. MSM 113200007.

