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LINEAR CONFORM TRANSFORMATION:

ERRORS IN BOTH COORDINATE SYSTEMS*

Lubomír Kubáček, Ludmila Kubáčková and Jan Ševčík, Olomouc
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Abstract. Linear conform transformation in the case of non-negligible errors in both
coordinate systems is investigated. Estimation of transformation parameters and their
statistical properties are described. Confidence ellipses of transformed nonidentical points
and cross covariance matrices among them and identical points are determined. Some
simulation for a verification of theoretical results are presented.
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1. Introduction

Many problems lead to the necessity to transform coordinates of some points from
one coordinate system to another. Parameters of the transformation can be deter-

mined on the basis of an n-tuple of points with coordinates given in both coordinate
systems. Frequently the linear conform transformation has been used. A transfor-

mation of photogrammetry shots into cadastral maps may serve as an example.

The linear conform transformation (Helmert transformation) in its standard ver-

sion has been derived under the assumption that non-negligible random errors occur
at points of the coordinate system into which the transformation is performed; points

of the inverse image coordinate system are assumed to be errorless. Statistical prop-
erties of such transformation are investigated, e.g., in [1], [2], [3].

*This work was supported by the Grant No. 201/99/0327 of the Grant Agency of the
Czech Republic and by the Council of Czech Government J14/98:153100011.
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Nevertheless, the situations when the standard deviations of errors in coordinates

of both systems are of the same order is frequent; in this case the standard proce-
dure cannot be considered to be optimal. Several approaches were investigated for
searching such situations, e.g. in [4], [6]. A simple example of some problems of this

procedure is shown in Chapter 6.

The aim of the paper is to present a relatively simple and simultaneously approx-
imately optimal solution of the latter situation.

2. Notation and auxiliary statements

A point whose coordinates are known in both coordinate systems is called an
identical point.

Actual coordinates of the i-th identical point in System I are given by a vector
ηI,i = (ϕI,i, ψI,i)′ (′ denotes transposition), the coordinates of the same point in

System II are given by a vector ηII,i = (ϕII,i, ψII,i)′.
Let us suppose that n identical points are at our disposal for the Helmert trans-

formation

(2.1) ηII,i =

(
β1
β2

)
+

(
β3 β4

−β4 β3

)
ηI,i, i = 1, . . . , n,

characterized by the parameters β1, β2, β3, β4.

Instead of the vectors of actual coordinates ηI,i (System I), i = 1, . . . , n, and ηII,i

(System II), i = 1, . . . , n, only estimators of them are at our disposal.

These estimators have the form of random vectors YI ∼ (ηI ,ΣYI ) and YII ∼
(ηII ,ΣYII ); (ηI = (η′I,1, . . . ,η

′
I,n)

′ is the mean value of the random vector YI ,

i.e. E(YI) = ηI = (η′I,1, . . . ,η
′
I,n)

′, andΣYI is its covariance matrix var(YI) = ΣYI ;
analogously E(YII) = ηII = (η′II,1, . . . ,η

′
II,n)

′ and var(YII) = ΣYII ).

The random vectors YI and YII are supposed to be stochastically independent

and the matrices ΣYI and ΣYII to be positive definite (i.e. regular).
The problem to determine the optimum estimators of the unknown transformation

parameters and the transformed coordinates of the identical points simultaneously
with the corrections of the coordinates within System II caused by the fact that they

are not errorless, leads to an application of the following statement.

Lemma 2.1. Consider the model of a direct incomplete measurement of the

vector parameter

(2.2) Y ∼ (η,Σ),
(

η

β

)
∈
{(

η

β

)
: b+B1η +B2β = 0

}
,
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where Y is a k1-dimensional observation vector, the unknown vector parameter is
formed by a k1-dimensional directly observed parameter η and a k2-dimensional

parameter β, which is not directly observed by the vector Y, Σ is a positive definite
matrix, b a known q-dimensional vector, B1 a given q × k1 matrix, B2 a given
q × k2 matrix (it occurs in the vector condition only). If the ranks r(B1,B2) and
r(B2) of the matrices (B1,B2) and B2, respectively, satisfy the conditions

r(B1,B2) = q < k1 + k2, r(B2) = k2 < q,

the best linear unbiased estimator of the vectors η and β is

(
η̂(Y)
β̂(Y)

)
=

(
I−ΣB′1Q1,1B1

−Q2,1B1

)
Y +

(−ΣB′1Q1,1b
−Q2,1b

)
,

where I is the k1 × k1 identical matrix,

(
Q1,1 Q1,2
Q2,1 Q2,2

)
=

(
B1ΣB′1 B2
B′2 0

)−1

and the covariance matrix of this estimator is

var

(
η̂(Y)
β̂(Y)

)
=

(
Σ−ΣB′1Q1,1B1Σ −ΣB′1Q1,2

−Q2,1B1Σ −Q2,2

)
.

�����. Cf. pages 138–143 in [9]. �

Lemma 2.2. Under the assumptions of Lemma 2.1 we have

Q1,1 = (B1ΣB′1 +B2B
′
2)
−1

− (B1ΣB′1 +B2B′2)−1B2[B′2(B1ΣB′1 +B2B′2)−1B2]−1

×B′2(B1ΣB′1 +B2B′2)−1,
Q1,2 = Q′2,1 = (B1ΣB

′
1 +B2B

′
2)
−1B2[B′2(B1ΣB

′
1 +B2B

′
2)
−1B2]−1,

Q2,2 = I− [B′2(B1ΣB′1 +B2B′2)−1B2]−1.

�����. It is based on the statement on the Pandora-Box matrix in [10], [5]

and [7], p. 172 and on the assumption on the ranks of the matrices Σ, (B1,B2)
and B2. �
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3. Estimation of the transformation parameters βi

and the coordinates of the identical points

The above formulated transformation problem can be written in the form

(
YI

YII

)
∼
[(

ηI

ηII

)
,

(
ΣYI 0
0 ΣYII

)]
,(3.1)




ηI

ηII

β


 ∈








ηI

ηII

β


 ;
(
1⊗ I; ηI ;

[
I⊗

(
0 1

−1 0

)]
ηI

)
β − ηII = 0



 .

Here 1 = (1, . . . , 1)′ (n-dimensional) and ⊗ denotes the Kronecker multiplication of
matrices.

The constraints are nonlinear and thus we need some good approximations ηI,0,
β3,0 and β4,0 of the vector ηI and the parameters β3 and β4, respectively, such

that the vectors δηIδβ3 and δηIδβ4 can be neglected (δηI = ηI − ηI,0, δβ3 =
β3 − β3,0, δβ4 = β4 − β4,0), in order that the constraints could be linearized.

The aim is to determine estimators of the vectors ηI , ηII and β on the basis of
the vectors YI and YII . If we denote

b = ηI,0β3,0 +

[
I⊗

(
0 1

−1 0

)]
ηI,0β4,0,

B1 =
(
β3,0I+ β4,0

[
I⊗

(
0 1

−1 0

)]
,−I

)
= (C,−I),

B2 =
(
1⊗

(
1 0

0 1

)
,ηI,0,

[
I⊗

(
0 1

−1 0

)]
ηI,0

)
,

then the linearized version of the transformation problem (3.1) can be rewritten in

the form
(
YI − ηI,0

YII

)
∼
[(

δηI

ηII

)
,

(
ΣYI 0
0 ΣYII

)]
,(3.2)




δηI

ηII

β1
β2

δβ3
δβ4



∈








δηI

ηII

β1
β2

δβ3
δβ4



: b+ (C,−I)

(
δηI

ηII

)
+B2




β1

β2
δβ3

δβ4


 = 0





.

It is reasonable to choose the approximation ηI,0, β3,0 and β4,0 in such a way that
b = 0.
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A more detailed investigation what “a good approximation” of ηI,0, β3,0 and β4,0
means is given in [11].

The next statement follows from Lemma 2.1.

Theorem 3.1. The best linear unbiased estimators of

δηI , ηII and (β1, β2, δβ3, δβ4)′

are

δ̂ηI(YI ,YII) = (I−TηI ,I ,TηI ,II)

(
YI − ηI,0

YII

)
+ t1,(3.3)

η̂II(YI ,YII) = (TηII ,I , I−TηII ,II)

(
YI − ηI,0

YII

)
+ t2(3.4)

and

(3.5)




β̂1(YI ,YII)
β̂2(YI ,YII)

δ̂β3(YI ,YII)
δ̂β4(YI ,YII)


 = (Tβ,I ,Tβ,II)

(
YI − ηI,0

YII

)
+ t3,

where

(3.6)

TηI ,I = ΣYIC
′Q1,1C, TηI ,II = ΣYIC

′Q1,1,
TηII ,I = ΣYIIQ1,1C, TηII ,II = ΣYIIQ1,1,
Tβ,I = −Q2,1C, Tβ,II = Q2,1,

and

t1 = −ΣYIC
′Q1,1b, t2 = ΣYIIQ1,1b, t3 = −Q2,1b.

Corollary 3.2. The covariance matrix of the estimator

(η̂′I(YI ,YII), η̂
′
II(YI ,YII), β̂

′(YI ,YII))
′

is

var




η̂I

η̂II

β̂


 =




var(η̂I) cov(η̂I , η̂II) cov(η̂I , β̂)
cov(η̂II , η̂I) var(η̂II) cov(η̂II , β̂)

cov(β̂, η̂I) cov(β̂, η̂II) var(β̂)


 ,
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where

var(η̂I) = (I−TηI ,I)ΣYI (I−TηI ,I)′ +TηI ,IIΣYIIT
′
ηI ,II ,

cov(η̂I , η̂II) = (I−TηI ,I)ΣYIT
′
ηII ,I +TηI ,IIΣYII (I−TηII ,II)

′,

cov(η̂I , β̂) = (I−TηI ,I)ΣYIT
′
β,I +TηI ,IIΣYIIT

′
β,II ,

var(η̂II) = TηII ,IΣYIT
′
ηII ,I + (I−TηII ,II)ΣYII (I−TηII ,II)′,

cov(η̂II , β̂) = TηII ,IΣYIT
′
β,I + (I−TηII ,II)ΣYIIT

′
β,II ,

var(β̂) = Tβ,IΣYIT
′
β,I +Tβ,IIΣYIIT

′
β,II .

4. Accuracy characteristics of transformed points

Identical points characterized in System II before the transformation by the vec-
tor YII are characterized by the vector η̂II after the transformation. Its accuracy is

now characterized by the matrix

var(η̂II) = TηII ,IΣYIT
′
ηII ,I + (I−TηII ,II)ΣYII (I−TηII ,II)′,

cf. Corollary 3.2.

Beside the identical points there exist also nonidentical points in System II and

a similar situation can occur also in System I. By the nonidentical points we mean
the points whose coordinates (or their measurements) are known only in one system

(instead of the identical ones whose coordinates (or again their measurements) are
known in both systems).

The point field of identical and nonidentical points of System I is thus characterized
by the random vector

(4.1)

(
YI

XI

)
∼
[(

ηI

ξI

)
,

(
ΣYI ΣYI ,XI

ΣXI ,YI ΣXI

)]

and analogously in System II

(4.2)

(
YII

XII

)
∼
[(

ηII

ξII

)
,

(
ΣYII ΣYII ,XII

ΣXII ,YII ΣXII

)]
.
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In the simplest case the resulting point field of System II is characterized by the

vector



η̂II

XII

1⊗
(
β1
β̂2

)
+

[
I⊗

(
β̂3 β̂4

−β̂4 β̂3

)]
XI


(4.3)

∼







ηII

ξII

1⊗
(
β1
β2

)
+

[
I⊗

(
β3 β4

−β4 β3

)]
ξI +RXI


 ,



C1,1 C1,2 C1,3
C2,1 C2,2 C2,3
C3,1 C3,2 C3,3





 ,

where

RXI =

{
I⊗

[(
(e(4)3 )

′ (e(4)4 )
′

−(e(4)4 )′ (e
(4)
3 )

′

)
(I⊗ (Tβ,IΣYI ,XI ))

]}
vec(I),

e(4)3 = (0, 0, 1, 0)
′ and e(4)4 = (0, 0, 0, 1)

′.

������ 4.1. The final estimators (3.3), (3.4) and (3.5) are unbiased only within
the linear model (3.2). But the “reality” is described by the nonlinear model (3.1)

which consequently causes the existence of some bias of these estimators, i.e. that for
example E(η̂II) �= ηII but E(η̂II) = ηII + biasηII . Specifying the conditions under

which these biases are neglectable was the aim of the paper [11]. In the present
paper we suppose that these conditions are satisfied and this is why the biases are

not mentioned in the characteristics of the resulting point field (4.3). The same idea
will be used in the case of the field (5.2).

The matrices C1,1 = var(η̂II), C2,2 = ΣXII are already determined; the oth-
ers have to be determined for solving standard problems in the resulting point field

(e.g. to determine the standard deviation in the distance between a point whose coor-
dinates are given by a subvector η̂II,i of the vector η̂II and a point with coordinates

given by a subvector of the vector XII).
The following two statements will be used for solving the problem.

Lemma 4.1. Let the random vectorsYI , XI , YII and XII fulfil (4.1) and (4.2).
Let the vector functions f(YI ,YII) and g(YI ,XI ,YII) possess continuous second

derivatives and let the diagonal elements of all considered covariance matrices be

sufficiently small (in detail cf. [8]). Then

cov[f(YI ,YII),g(YI ,XI ,YII) = (∂f/∂η′I)ΣYI∂g
′/∂ηI + (∂f/∂η′I)ΣYI ,XI∂g

′/∂ξI

+ (∂f/∂η′II)ΣYII∂g
′/∂ηII ,
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where

∂f/∂η′I = (∂f(YI ,YII)/∂Y′I)|YI=ηI ,YII=ηII ,

{∂f/∂η′I}i,j = ∂fi/∂ηI,j, ∂g′/∂ξI = (∂g/∂ξ′I)
′, etc.

�����. It is based on procedures given in [8] and on neglecting the second and
higher derivatives in the Taylor series of the functions f(·, ··) and g(·, ··, · · ·). Further,
by virtue of the assumptions, cov(YI ,YII) = 0 and cov(YII ,XI) = 0. �

Theorem 4.2. The matrices Ci,j , i, j = 1, 2, 3, from (4.3) are given by the
relations

C1,1 = var(η̂II) = TηII ,IΣYIT
′
ηII ,I + (I−TηII ,II)ΣYII (I−TηII ,II)′,

C1,2 = cov(η̂II ,XII) = (I−TηII ,II)ΣYII ,XII = C
′
2,1,

C1,3 = TηII ,IΣYIT
′
β,I




1′ ⊗ I
ξ′I

ξ′I

[
I⊗

(
0 1

−1 0

)′]




+TηII ,IΣYI ,XI

[
I⊗

(
β3 β4

−β4 β3

)′]

+ (I−TηII ,II)ΣYIIT
′
β,II




1′ ⊗ I
ξ′I

ξ′I

[
I⊗

(
0 1

−1 0

)′]


 = C

′
3,1,

C2,2 = var(XII) = ΣXII ,

C2,3 = ΣXII ,YIIT
′
β,II




1′ ⊗ I
ξ′I

ξ′I

[
I⊗

(
0 1

−1 0

)′]


 = C

′
3,2,

C3,3 =
(
1⊗ I, ξI ,

[
I⊗

(
0 1

−1 0

)]
ξI

)
Tβ,IΣYIT

′
β,I




1′ ⊗ I
ξ′I

ξ′I

[
I⊗

(
0 1

−1 0

)′]




+

(
1⊗ I, ξI ,

[
I⊗

(
0 1

−1 0

)]
ξI

)

×Tβ,IIΣYIIT
′
β,II




1′ ⊗ I
ξ′I

ξ′I

[
I⊗

(
0 1

−1 0

)′]



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+

(
1⊗ I, ξI ,

[
I⊗

(
0 1

−1 0

)]
ξI

)
Tβ,IΣYI ,XI

[
I⊗

(
β3 β4

−β4 β3

)′]

+

[
I⊗

(
β3 β4

−β4 β3

)]
ΣXI ,YIT

′
β,1




1′ ⊗ I
ξ′I

ξ′I

[
I⊗

(
0 1

−1 0

)′]




+

[
I⊗

(
β3 β4

−β4 β3

)]
ΣXI

[
I⊗

(
β3 β4

−β4 β3

)′]
.

�����. The form of C1,1 follows from the relation

f(YI ,YII) = TηII ,I(YI − ηI,0) + (I−TηII ,II)YII + t2.

Since

C1,2 = cov(η̂II ,XII) = cov

[
(TηII ,I , I−TηII ,II)

(
YI − ηI,0

YII

)
,XII

]
,

obviously C1,2 = (I−TηII ,II)ΣYII ,XII .

Let

g(YI ,XI ,YII) = 1⊗
(
β̂1(YI ,YII)

β̂2(YI ,YII)

)

+

[
I⊗

(
β̂3(YI ,YII) β̂4(YI ,YII)

−β̂4(YI ,YII) β̂3(YI ,YII)

)]
XI .

Then

∂g/∂η′I =

(
1⊗ I, ξI ,

[
I⊗

(
0 1

−1 0

)]
ξI

)
Tβ,I ,

∂g/∂η′II =

(
1⊗ I, ξI ,

[
I⊗

(
0 1

−1 0

)]
ξI

)
Tβ,II

and

∂g/∂ξ′I = I⊗
(

β3 β4
−β4 β3

)
.
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Further,

∂f/∂η′I = TηII ,I , ∂f/∂η′II = I−TηII ,II .

The matrix C1,3 can be expressed in the form

C1,3 = cov(f(YI ,YII),g(YI ,XI ,YII))

= ∂f/∂η′I var(YI)∂g′/∂ηI + ∂f/∂η′II var(YII)∂g′/∂ηII

+ ∂f/∂η′IΣYI ,XI∂g
′/∂ξI .

Thus

C1,3 = TηII ,IΣYIT
′
β,I




1′ ⊗ I
ξ′I

ξ′I

[
I⊗

(
0 1

−1 0

)′]




+TηII ,IΣYI ,XI

[
I⊗

(
β3 β4

−β4 β3

)′]

+ (I−TηII ,II)ΣYIIT
′
β,II




1′ ⊗ I
ξ′I

ξ′I

[
I⊗

(
0 1

−1 0

)′]


 .

For determining the matrix

C2,3 = cov
(
XII ,1⊗

(
β̂1

β̂2

)
+

[
I⊗

(
β̂3 β̂4

−β̂4 β̂3

)]
XI

)
,

the relationship

C2,3 = ΣXII ,YII∂g
′/∂ηII = ΣXII ,YIIT

′
β,II




1′ ⊗ I
ξ′I

ξ′I

[
I⊗

(
0 1

−1 0

)′]




has to be applied. �
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The last step is to determine the matrix C3,3. In the analogous way we obtain

C3,3 =
∂g
∂η′I
ΣYI

∂g′

∂ηI
+

∂g
∂η′II

ΣYII

∂g′

∂ηII
+

∂g
∂η′I
ΣYI ,XI

∂g′

∂ξI

+
∂g
∂ξ′I
ΣXI ,YI

∂g′

∂ηI
+
∂g
∂ξ′I
ΣXI

∂g′

∂ξI

=

(
1⊗ I, ξI ,

[
I⊗

(
0 1

−1 0

)]
ξI

)

×Tβ,IΣYIT
′
β,I




1′ ⊗ I
ξ′I

ξ′I

[
I⊗

(
0 1

−1 0

)′]




+

(
1⊗ I, ξI ,

[
I⊗

(
0 1

−1 0

)]
ξI

)

×Tβ,IIΣYIIT
′
β,II




1′ ⊗ I
ξ′I

ξ′I

[
I⊗

(
0 1

−1 0

)′]




+

(
1⊗ I, ξI ,

[
I⊗

(
0 1

−1 0

)]
ξI

)

×Tβ,IΣYI ,XI

[
I⊗

(
β3 β4

−β4 β3

)′]

+

[
I⊗

(
β3 β4

−β4 β3

)]
ΣXI ,YIT

′
β,1




1′ ⊗ I
ξ′I

ξ′I

[
I⊗

(
0 1

−1 0

)′]




+

[
I⊗

(
β3 β4

−β4 β3

)]
ΣXI

[
I⊗

(
β3 β4

−β4 β3

)′]
.

�

5. Corrections of coordinates of the nonidentical points

The resulting point field and its characteristics of accuracy given by the matri-
ces Ci,j , i, j = 1, . . . , 3, do not respect the substitution of the vector YII by the

vector η̂II in the relations for the vector XII . To say it more precisely: the relative
position of the ith identical point, i.e.YII,i, and the jth nonidentical point, i.e.XII,j ,
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is given by the difference XII,j −YII,i. After the transformation this difference is

substituted by the difference XII,j− η̂II,i; the nearer is the jth nonidentical point to
the ith identical point, the more we feel a necessity to change the coordinates XII,j

into the corrected coordinates X̃II,j, which reflects the change of YII into η̂II .

A commonly accepted procedure is the following:
The domain, where the points given by the vector XII are located, is divided into

several disjoint domains in such a way that their boundaries are formed by polygons
of properly chosen identical points. For the sake of simplicity, let the polygon be

given by points YII,1, . . . ,YII,p which are relocated into points η̂II,1, . . . , η̂II,p. Let
the nonidentical points of the domain considered be XII,1, . . . ,XII,r.

The corrected positions of these nonidentical points, i.e. X̃II,1, . . . , X̃II,r, are given
by the formulae

(5.1) X̃II,j = XII,j +
p∑

i=1

f(si,j)(η̂II,i −YII,i)
p∑

i=1
f(si,j)

, j = 1, . . . , r,

where si,j is the horizontal distance between the ith identical point and the jth
nonidentical point and the function f(·) is chosen in such a way that

lim
si,j→0

f(sk,j)
p∑

i=1
f(si,j)

=

{
1 k = i,

0 k �= i.

This requirement can be satisfied e.g. by the functions f1(s) = 1/s, f2(s) =
1/s2, . . . , etc.

If the differences η̂II,i − YII,i cannot be neglected, then the above mentioned
corrections should be realized.

An analogous consideration is connected with the vectors YI , XI and η̂I if the
difference η̂I −YI cannot be neglected.

The above mentioned corrections of the vectors XI and XII lead to the resulting
point field




η̂II

X̃II

1⊗
(
β1
β̂2

)
+

[
I⊗

(
β̂3 β̂4

−β̂4 β̂3

)]
X̃I


(5.2)

∼







ηII

ξII

1⊗
(
β1
β2

)
+

[
I⊗

(
β3 β4

−β4 β3

)]
ξI +RX̃I


 ,



C1,1, D1,2 D1,3
D2,1 D2,2 D2,3
D3,1 D3,2 D3,3





 ,
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where

RX̃I
=

{
I⊗

[(
(e(4)3 )

′ (e(4)4 )
′

−(e(4)4 )′ (e
(4)
3 )

′

)
(I⊗W

]}
vec(I),

W = Tβ,IΣYI ,XI −Tβ,IΣYIT
′
ηI ,IU

′
YI ,XI

+Tβ,IIΣYIIT
′
ηI ,IIU

′
YI ,XI

,

and where the matrices Di,j must be determined. This is simple; it is sufficient to

realize that (5.1) leads to a linear transformation

X̃II = XII +UYII ,XII (η̂II −YII)

and

X̃I = XI +UYI ,XI (η̂I −YI).

In a way analogous to that given in the preceding section we can obtain expressions
for Di,j , e.g.

D2,2 = var{UYII ,XII [TηII ,I(YI − ηI,0) + (I−TηII ,II)YII ]

−UYII ,XIIYII +XII}

= var



[UYII ,XIITηII ,I ,UYII ,XII (I−TηII ,II)−UYII ,XII , I]



YI

YII

XII







= (UYII ,XIITηII ,I ,−UYII ,XIITηII ,II , I)

×



ΣYI 0 0
0, ΣYII ΣYII ,XII

0 ΣXII ,YII ΣXII






T′ηII ,IU
′
YII ,XII

−T′ηII ,IIU
′
YII ,XII

I


 .

Since these formulae are space consuming and the technique of their derivation is
clear, they are omitted here.

6. Numerical example

In this section a verification of the theoretical results is given.

As the model of the identical points let’s use the grid of the square whose sides
are 300 meters long. In System I we have located this square at the following points:

ηI,1 = (100, 100)′, ηI,2 = (400, 100)′, ηI,3 = (400, 400)′, ηI,4 = (100, 400)′
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and in System II, for easy verification of the results, we transformed its grid to the

points ηII,i satisfying the relation

ηII,i =

(
200

200

)
+

(
cos �3 sin �

3

− sin �

3 cos �3

)
ηI,i, i = 1, ..., 4.

These relations correspond to the Helmert transformation with parameters

β = (β1, β2, β3, β4) = (200, 200, cos �3 , sin
�

3 ).

As the model of the nonidentical points let us use the following one: ξI = (250, 200)
in System I and

ξII =

(
200
200

)
+

(
cos �3 sin �

3

− sin �

3 cos �3

)(
330
140

)

in System II.
So the actual values of all parameters which we are interested in are at our disposal.

Now we have to realize the simulation of the vectorsYI ,YII ,XI andXII and of their
covariance matrices ΣYI , ΣYII , ΣXI , ΣXII , ΣYI ,XI and ΣYII ,XII . The technique

is as follows:
At first let us choose two ancillary points in both the coordinate systems, e.g. P1 =

(0, 0) and P2 = (500, 0) whose coordinates we will consider to be errorless. Now we
can simulate the measurements ŝI and ŝII of at least 10 (= dimension of (Y′I ,X

′
I)
′)

various distances between all the mentioned points (identical, nonidentical and an-
cillary ones) sI and sII , respectively, in both systems. The actual values of sI and
sII , are known. They are obviously nonlinear functions of the coordinates (ηI , ξI)
and (ηII , ξII), respectively. So if we know their sufficiently precise approximations

(ηI,0, ξI,0) and (ηII,0, ξII,0), we can use the linearization

sI(ηI , ξI)
.
= sI(ηI,0, ξI,0) + FI

(
δηI

δξI

)
, FI =

∂sI
∂(η′I , ξ

′
I)
(ηI,0, ξI,0).

Analogously for sII .

Now we can gain the measurements ŝI and ŝII by generating normally distributed
errors with zero mean values and with dispersions σ2I and σ

2
II , on the linearized

actual values sI and sII , respectively, i.e.

ŝI ∼N
(
sI,0 + FI

(
δηI

δξI

)
, σ2II

)
, ŝII ∼ N

(
sII,0 + FII

(
δηII

δξII

)
, σ2III

)
,

where sI,0 = sI(ηI,0, ξI,0) and sII,0 = sII(ηII,0, ξII,0).
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Now as the simulations of YI , XI and of their covariance matrices we can take

(
YI

XI

)
= (F′IFI)

−1F′I(ŝI − sI,0) +

(
ηI,0

ξI,0

)
,(6.1)

cov

(
YI

XI

)
=

(
ΣYI ΣYI ,XI

ΣXI ,YI ΣXI

)
= σ2I (F

′
IFI)

−1.

Analogously for YII and XII .

These are our data. Now let us try to determine some optimum estimators of
the transformation parameters β and the coordinates of the identical points in both

systems, i.e. ηI and ηII .
Standard solution of this problem which is based on the assumption of errorless

coordinates in System I, i.e. on the assumption that YI = ηI , leads to an easy linear
regression model

(6.2) YII ∼N(Xβ, ΣYII ),

where

(6.3) X =




1 0 x1 y1
0 1 y1 −x1
. . . . . . . . . . . .

1 0 xn yn

0 1 yn −xn



, β =




β1
β2

β3
β4


 .

It is well known that the best linear unbiased estimators of the vectors β and ηII

(= Xβ) within this model are

ˆ̂
β = (X′Σ−1YII

X)−1X′Σ−1YII
YII , var( ˆ̂β) = (X′Σ−1YII

X)−1,(6.4)

ˆ̂ηII = X
ˆ̂
β, var( ˆ̂ηII) = X(X′Σ−1YII

X)−1X′.(6.5)

The resulting point field can be characterized by the vector




ˆ̂ηII
˜̃XII

1⊗
( ˆ̂
β1
ˆ̂
β2

)
+

[
I⊗

( ˆ̂
β3

ˆ̂
β4

− ˆ̂β4 ˆ̂
β3

)]
ξI


(6.6)

∼







ηII

ξII

1⊗
(
β1
β2

)
+

[
I⊗

(
β3 β4

−β4 β3

)]
ξI


 ,



G1,1 G1,2 G1,3
G2,1 G2,2 G2,3
G3,1 G3,2 G3,3





 ,
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where ˜̃XII represents the correction of XII in the way given in Section 5 with respect
to ˆ̂ηII .

MatricesGi,j are very easy to obtain as this resulting point field is a linear function
of (Y′II ,X

′
II)

′.

As we have shortly mentioned in Introduction this procedure cannot be considered

optimal in the situations when non-negligible random errors of measurements exist
in both coordinate systems. The main problem with this algorithm is that it says

about its own results that they are more accurate than they are in reality. So we
can gain a false idea about the precision of these results which can consequently
make some problems for example when testing hypotheses about the transformation

parameters β or the coordinate vectors ηII . Accuracy of the final estimators (6.4)
and (6.5) can be represented for example by the confidence regions which cover the

actual values of unknown parameters β or ηII with probability (1−α)—for example
1−α = 0.95. This probability we usually call the level of the confidence region. But
if the construction of such a region is based on the model which neglects the errors
in System I the real level of this region is naturally lower. The estimations of these

levels can be computed by computer simulation.

During the test we generated the random errors in both systems with the following
16 combinations of dispersions:

σ2I = (0.1m)
2, (0.3m)2, (0.5m)2, (1m)2

σ2II = (0.1m)
2, (0.3m)2, (0.5m)2, (1m)2.

Then 1000 realizations of the confidence region of

a) the chosen grid of the square—for example ηII,2—using the results of standard
algorithm (SA),

b) the (β3, β4)′-representatives of the rotation and the changing of the scale—using
SA,

c) the ηII,2—using the results of the new algorithm from Section 3 (NA)

for each of these combinations on the theoretical level 1− α = 0.95 were made and
subsequently the empirical frequencies of the covering of the actual values of the

given vectors by the realized confidence region were counted. 1000 realizations are
rather enough to suppose that the acquired frequencies sufficiently approximate the

real levels of the confidence regions. The results which we obtained are shown in the
following tables:
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ηII,2 − SA
σ2I\σ2II 0.12 0.32 0.52 12

0.12 0.882 0.949 0.933 0.936

0.32 0.528 0.894 0.918 0.937

0.52 0.309 0.775 0.868 0.925

12 0.078 0.487 0.704 0.876

Table 1.

(β3, β4)′ − SA
σ2I\σ2II 0.12 0.32 0.52 12

0.12 0.772 0.949 0.937 0.941

0.32 0.300 0.804 0.892 0.942

0.52 0.128 0.616 0.799 0.922

12 0.031 0.253 0.498 0.800

Table 2.

ηII,2 −NA
σ2I\σ2II 0.12 0.32 0.52 12

0.12 0.950 0.957 0.944 0.955

0.32 0.953 0.949 0.951 0.950

0.52 0.946 0.950 0.951 0.960

12 0.952 0.954 0.952 0.955

Table 3.

It is evident that the real levels of the confidence regions in the case of the standard

algorithm strongly depend on the relation between σ2I and σII
2.

• If σ2I < σ2II , then the empirical level is getting near the value 0.95. The higher
is the ratio between the given dispersions the closer is this level to 0.95.

• If σ2I > σ2II , then these empirical levels are very low with a strong tendency to
fall as the ratio between the two dispersions increases. So in these situations

the accuracy of the final results is essentially lower than this algorithm asserts.

On the contrary, we can see—the third table—that the empirical levels of confi-
dence regions in the case of our new algorithm are on the theoretical values 1−α =

0.95, i.e. theoretical accuracy given by this algorithm nicely corresponds to the real
one. This can be a strong reason for using this algorithm instead of the standard

one.

Distance between two nonidentical points from different coordinate sys-
tems.
At the beginning of this section we have simulated the measurements of one non-

identical point in both systems XI and XII . Now we are interested in the estimation
of their mutual distance or better to say in the estimation of the vector which rep-

resents the difference between these two points and its characteristics.

To solve this problem we have to transform the nonidentical point from System I
into System II and then to use the information from
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1. the resulting point field (4.3) or,

2. the resulting point field (5.2) or,

3. the resulting point field (6.6).

Let’s denote

	d1 = XII − 1⊗
(
β̂1

β̂2

)
+

[
I⊗

(
β̂3 β̂4

−β̂4 β̂3

)]
XI ,

	d2 = X̃II − 1⊗
(
β̂1

β̂2

)
+

[
I⊗

(
β̂3 β̂4

−β̂4 β̂3

)]
X̃I ,

	d3 =
˜̃XII − 1⊗

( ˆ̂
β1
ˆ̂
β2

)
+

[
I⊗

( ˆ̂
β3

ˆ̂
β4

− ˆ̂β4 ˆ̂
β3

)]
ξI .

These vectors are the estimators of the vector distance which we are looking for.
If the vector 	d represents the actual value of this vector distance, i.e.

	d = ξII − 1⊗
(
β1

β2

)
+

[
I⊗

(
β3 β4

−β4 β3

)]
ξI ,

then it follows from (4.3), (5.2) and (6.6) that

	d1 ∼ (	d−RXI ,C2,2 +C3,3 −C2,3 −C3,2),(6.7)

	d2 ∼ (	d−RX̃I
,D2,2 +D3,3 −D2,3 −D3,2),

	d3 ∼ (	d,G2,2 +G3,3 −G2,3 −G3,2).

All the above mentioned terms are at our disposal.

	
�����. The actual vector of distance between ξI and ξII from the beginning
of this section is 	d = (−11.9615,−99.2820)′. Now let’s apply the estimators 	d1, 	d2
and 	d3. The results, i.e. the final estimators with their covariance matrices, for some
combinations of the dispersions σ2I and σ

2
II are given in the following three tables:

σ2I = (0.2m)
2, σ2II = (0.1m)

2

	d1 	d2 	d3
(−11.7807,−99.7473)′ (−11.7526,−99.7313)′ (−11.8147,−99.5187)′

var(	d1) var(	d2) var(	d3)

0.0524 0.0048 0.0449 0.0027 0.0143 −0.0007
0.0048 0.0275 0.0027 0.0267 −0.0007 0.0043

Table 4.

378



σ2I = (0.1m)
2, σ2II = (0.2m)

2

	d1 	d2 	d3
(−11.7900,−99.3816)′ (−11.7068,−99.3296)′ (−11.9958,−99.2057)′

var(	d1) var(	d2) var(	d3)

0.0844 0.0064 0.0630 −0.0018 0.0573 −0.0027
0.0064 0.0246 −0.0018 0.0225 −0.0027 0.0172

Table 5.

σ2I = (0.01m)
2, σ2II = (0.01m)

2

	d1 	d2 	d3
(−11.9779, −99.2797)′ (−11.9616, −99.2744)′ (−11.9668, −99.2850)′
var(	d1)× 10−3 var(	d2)× 10−3 var(	d3)× 10−3
0.2733 0.0229 0.2097 0.0021 0.1432 −0.0069
0.0229 0.1038 0.0021 0.0977 −0.0069 0.0430

Table 6.

In all the mentioned cases RXI and RX̃I
are of order 10−4 or lower and that’s

why they don’t play practically any role in this example.

������ 6.1. If we compare the covariance matrices of 	d1, 	d2 and 	d3 from the
previous tables we can see that the estimator 	d2 looks better than the estimator 	d1
which indicates that the idea about the correction of coordinates of the nonidentical
points from Section 5 was valid. The estimator 	d3 looks like the best from these
three but it is necessary to remember that this estimator was derived from ˆ̂ηII . In
this section we have shown that the theoretical precision of the estimator ˆ̂ηII does

not correspond to the real one and this is why the same problem naturally proceeds
to the estimator 	d3.
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