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Abstract. In this paper, we consider a 2nd order semilinear parabolic initial boundary
value problem (IBVP) on a bounded domain Ω ⊂ � N , with nonstandard boundary con-
ditions (BCs). More precisely, at some part of the boundary we impose a Neumann BC
containing an unknown additive space-constant α(t), accompanied with a nonlocal (inte-
gral) Dirichlet side condition.
We design a numerical scheme for the approximation of a weak solution to the IBVP

and derive error estimates for the approximation of the solution u and also of the unknown
function α.
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1. Introduction

We study a transient IBVP for a semilinear parabolic partial differential equation
of the second order of the type

(1)
∂u

∂t
−∆u = f(u) in (0, T )× Ω

along with an initial condition

(2) u(0) = u0 in Ω,
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and the boundary conditions

u = gDir in (0, T )× ΓDir,(3)

−∇u · ν − gRobu = gNeu in (0, T )× ΓNeu,

−∇u · ν = gnon + α in (0, T )× Γnon,∫

Γnon

u dγ = w.

Here, Ω ⊂ � N (N > 2) is a bounded domain with a Lipschitz continuous bound-
ary ∂Ω which is split into three mutually disjoint parts ΓDir, ΓNeu and Γnon. We

assume

(4) |Γnon| > 0, Γnon ∩ ΓDir = ∅,

i.e., Γnon and ΓDir are not adjacent. Further, we suppose that the function gDir can
be prolonged to the whole domain Ω in such a way that

g̃ ∈ L2((0, T ), H1(Ω)),
∂g̃

∂t
∈ L2((0, T ), L2(Ω)),(5)

g̃ =

{
0 in [0, T ]× Γnon,

gDir in [0, t]× ΓDir.

The right-hand side f and the data functions gNeu, gnon, gRob and w obey

∃C > 0: |f(x)− f(y)| 6 C|x− y|, ∀x, y ∈ �(6)

0 6 gRob 6 C, gNeu ∈ L2((0, T ), L2ΓNeu)), gnon ∈ L2((0, T ), L2(Γnon)),

w ∈ C([0, T ]).

Thus, the Dirichlet boundary condition is prescribed on ΓDir, and there is a Robin

type BC on ΓNeu. We consider nonstandard boundary conditions on the part Γnon.
Here, neither the solution nor the flux are prescribed pointwise. Instead, the time

dependent average of the solution over Γnon is given and the flux along Γnon has
to follow a prescribed shape function gnon, apart from an additive (unknown) time

function α which is independent of the space variable.
Such a type of IBVPs arises from some specific heat transfer problems, where at

one part of the boundary the average temperature at each time is prescribed, while
from other reasons one knows that the heat flux should follow a given shape up to

an additive space constant. The problem consists of finding the solution u(t) and
of determining the unknown function α(t) for all t ∈ [0, T ], in order to get the full
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description of the flux at Γnon. Of course, in a realistic model, the coefficients in the

differential equation depend on some material data functions. This is omitted here
in order to focus the attention on the nonlocal BC.
Various mathematical models containing nonlocal BCs can be found in literature,

e.g., in Friedman [6], p. 520 in the so called plasma problem; in the computation
of the electromagnetic losses in a lamination of an electric machine—see Van Keer,

Dupré and Melkebeek [15]; in Navier-Stokes equations cf. Heywood, Rannacher and
Turek [10]; or in the Stokes problem, cf. Bramble, Lee [3]. Further, nonstandard BCs

have also been studied in Andreucci and Gianni [1], De Schepper and Slodička [4],
[13]; Pao [9], Slodička [12], Van Keer and Slodička [17].

The IBVP (1)–(3) has already been considered by Van Keer and Slodička [16],
where the uniqueness of a weak solution has been shown. Moreover, the authors

have designed a numerical scheme for the approximation of an exact solution but
they did not discuss the existence of solution and the error analysis.

The main purpose of this paper is to show both the convergence of the algo-
rithm and to derive error estimates for the numerical scheme from Van Keer and

Slodička [15]. The time discretization is based on Rothe’s method, see Kačur [7]
or Rektorys [11]. After linearization, we are left with a recurrent system of linear

elliptic BVPs at each successive time point ti of a suitable time partitioning. We
use the ideas from De Schepper and Slodička [4] to prove the existence of a weak

solution ui at each time step ti.
Next, we establish a priori estimates for ui and αi, which is the main difficulty

because of the fact that the bounds for ui must be independent of αi. Later, using
the a priori estimates, we prove the convergence of the approximate solution, viz. a

Rothe’s function constructed in terms of all ui, to the exact one. The convergence
depends clearly on the properties of u0 and w. We derive formulae for practical

computation of αi which is an approximation of α(ti).

2. Time discretization

We denote by (w, z)M the usual L2 scalar product of any real or vector-valued
functions w and z on a set M , i.e., (w, z)M =

∫
M

wz. The corresponding norm

is introduced by ‖w‖0,M =
√

(w, w)M . Let H1(Ω) be the first-order Hilbert space
equipped with the usual norm

‖w‖2
1Ω = (w, w)Ω + (∇w,∇w)Ω = ‖w‖2

0,Ω + |w|21,Ω.

We introduce the following subspace of H1(Ω):

V = {ϕ ∈ H1(Ω); ϕ = 0 on ΓDir},
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which is endowed with the induced norm ‖ ·‖1,Ω from the space H1(Ω). If |ΓDir| > 0,
then one can also use the semi-norm | · |1,Ω instead of the norm.

The variational formulation of the IBVP (1)–(3) reads as:

Problem 1. Find a couple (u, α) such that
1. u ∈ C([0, T ], L2(Ω)) ∩ L∞((0, T ), H1(Ω)),
2. ∂u/∂t ∈ L2((0, T ), L2(Ω)),
3. u = gDir on (0, T )× ΓDir,

4. u(0) = u0,

5. α ∈ L2((0, T ))
and

(∂u(t)
∂t

, ϕ
)
Ω

+ (∇u(t),∇ϕ)Ω + (α(t), ϕ)Γnon + (gRob(t)u(t), ϕ)ΓNeu(7)

= (f(u(t)), ϕ)Ω − (gNeu(t), ϕ)ΓNeu − (gnon(t), ϕ)Γnon ,∫

Γnon

u(t) = w(t)

holds for all ϕ ∈ V and for almost all t ∈ [0, T ].

We divide the time interval [0, T ] into n equidistant subintervals (ti−1, ti) for
ti = iτ , where τ = T/n. We introduce the notation

zi = z(ti), δzi =
zi − zi−1

τ

for any function z. We are left with a recurrent system of linear elliptic BVPs at

each successive time point ti for i = 1, . . . , n:

Problem 2. Find a couple (ui, αi) ∈ H1(Ω)× � such that ui − g̃i ∈ V and

(δui, ϕ)Ω + (∇ui,∇ϕ)Ω + (αi, ϕ)Γnon + (gRobiui, ϕ)ΓNeu(8)

= (f(ui−1), ϕ)Ω − (gNeui , ϕ)ΓNeu − (gnoni , ϕ)Γnon ,∫

Γnon

ui = wi

holds for any ϕ ∈ V .

We recall that the initial datum u0 is given. The existence of a weak solution
(ui, αi) at each ti follows from De Schepper and Slodička [4]. We sketch the proof to

enhance the readability of the paper.

Consider the following two auxiliary problems at any time step ti:
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Find vi ∈ H1(Ω) such that vi − g̃i ∈ V ,

(vi

τ
, ϕ

)
Ω

+ (∇vi,∇ϕ)Ω + (gRobivi, ϕ)ΓNeu(9)

= (f(ui−1), ϕ)Ω − (gNeui , ϕ)ΓNeu − (gnoni , ϕ)Γnon +
(ui−1

τ
, ϕ

)
Ω

∀ϕ ∈ V.

Find zi ∈ H1(Ω) such that zi = 0 on ΓDir,

(10)
(zi

τ
, ϕ

)
Ω

+ (∇zi,∇ϕ)Ω + (gRobizi, ϕ)ΓNeu = −(1, ϕ)Γnon ∀ϕ ∈ V.

Both problems admit unique weak solutions vi, zi for all i = 1, . . . , n, which follows

from the Lax-Milgram lemma.
We define the integral operator P (h) =

∫
Γnon

h. We are looking for an αi satisfying

P (vi) + αiP (zi) = wi. Clearly

(11) αi =
wi − P (vi)

P (zi)
.

This choice gives rise to the solution (ui, αi) = (vi + αizi, αi) to the BVP 2, which
can be obtained by the principle of superposition.

3. A priori estimates

The main goal of this section is to establish suitable a priori estimates for ui

and αi, which allow us to prove the convergence in some functional spaces of the
approximate solution to the exact one. The crucial point in the technique of the

proof is a suitable choice of the test functions in the variational setting, which allows
us to separate both unknown functions ui and αi from each other.

Lemma 1. Let (4), (5), (6) and dw/dt ∈ L2((0, T )) be satisfied. Moreover, we
assume u0 ∈ L2(Ω). Then there exists a positive constant C such that

(i) ‖uj‖2
0,Ω +

j∑
i=1

‖ui − ui−1‖2
0,Ω +

j∑
i=1

|ui|21,Ωτ 6 C,

(ii)
∣∣∣

j∑
i=1

αiτ
∣∣∣ 6 C

for all j = 1, . . . , n.
���������

. (i) Let us fix a function Φ ∈ C∞(Ω) such that

(12) Φ =

{
0 on ΓDir,

1 on Γnon.
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The existence of such a function follows from Friedman [5], Lemma 5.1, because of

Γnon ∩ ΓDir = ∅.
By virtue of the fact that both ui − g̃i and wiΦ/|Γnon| belong to the space V , we

have ϕ = ui − g̃i − wiΦ/|Γnon| ∈ V . For such a choice of the test function we get

∫

Γnon

ϕ =
[∫

Γnon

ui

]
− wi −

∫

Γnon

g̃i = 0.

Therefore, setting ϕ = ui − g̃i − wiΦ/|Γnon| in (8a) we obtain

(δui, ui)Ω + (∇ui,∇ui)Ω + (gRobiui, ui)ΓNeu(13)

=
(
f(ui−1), ui − g̃i −

wi

|Γnon|
Φ

)
Ω
−

(
gNeui , ui − g̃i −

wi

|Γnon|
Φ

)
ΓNeu

−
(
gnoni , ui − g̃i −

wi

|Γnon|
Φ

)
Γnon

+
(
δui, g̃i +

wi

|Γnon|
Φ

)
Ω

+
(
∇ui,∇

[
g̃i +

wi

|Γnon|
Φ

])
Ω

+
(
gRobiui, g̃i +

wi

|Γnon|
Φ

)
ΓNeu

.

Let j ∈ {1, . . . , n}. Now we multiply the equation by the time step τ and sum it

up for i = 1, . . . , j, i.e., we integrate the equality with respect to the time. Then we
estimate the terms on the left-hand side from below, and the ones on the right-hand

side from above. We do it in a few steps.
Taking into account the non-negativity of the function gRob (see (6)), we estimate

the left-hand side of (13) from below as follows:

j∑

i=1

[(δui, ui)Ω + (∇ui,∇ui)Ω + (gRobiui, ui)ΓNeu ]τ(14)

> 1
2

[
‖uj‖2

0,Ω − ‖u0‖2
0,Ω +

j∑

i=1

‖ui − ui−1‖2
0,Ω +

j∑

i=1

|ui|21,Ωτ

]
.

We recall that the function f is globally Lipschitz continuous (see (6)). Applying
the Cauchy inequality to the term containing the function f , we get

∣∣∣∣
j∑

i=1

(
f(ui−1), ui − g̃i −

wi

|Γnon|
Φ

)
Ω
τ

∣∣∣∣(15)

6 C

[
1 +

j∑

i=0

‖ui‖2
0,Ωτ +

j∑

i=1

‖g̃i‖2
0,Ωτ +

j∑

i=1

w2
i τ

]

6 C

[
1 +

j∑

i=0

‖ui‖2
0,Ωτ

]
.
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Applying the well known inequality for real numbers |ab| 6 εa2 + Cεb
2 (here ε ∈ � +

and Cε = C(1/ε)), we deduce

∣∣∣∣
j∑

i=1

(
∇ui,∇

[
g̃i +

wi

|Γnon|
Φ

])
Ω
τ

∣∣∣∣ 6 ε

j∑

i=1

|ui|21,Ωτ + Cε

j∑

i=1

[
‖g̃i‖2

1,Ω + w2
i

]
τ(16)

6 ε

j∑

i=1

|ui|21,Ωτ + Cε.

For the boundary terms we use the Cauchy inequality, the trace theorem and obtain

∣∣∣∣
j∑

i=1

(
gNeui, ui − g̃i −

wi

|Γnon|
Φ

)
ΓNeu

τ

∣∣∣∣(17)

6 ε

j∑

i=1

∥∥∥ui − g̃i −
wi

|Γnon|
Φ

∥∥∥
2

0,ΓNeu

τ + Cε

j∑

i=1

‖gNeui‖2
0,ΓNeu

τ

6 Cε + Cε

j∑

i=1

[
‖g̃i‖2

0,∂Ω + w2
i

]
τ + ε

j∑

i=1

‖ui‖2
0,∂Ωτ

6 ε

j∑

i=1

|ui|21,Ωτ + Cε

j∑

i=1

‖ui‖2
0,Ωτ + Cε.

In the same way we deduce

∣∣∣∣
j∑

i=1

(
gnoni , ui − g̃i −

wi

|Γnon|
Φ

)
Γnon

τ

∣∣∣∣ 6 ε

j∑

i=1

|ui|21,Ωτ + Cε

j∑

i=1

‖ui‖2
0,Ωτ + Cε(18)

and

∣∣∣∣
j∑

i=1

(
gRobiui, g̃i +

wi

|Γnon|
Φ

)
ΓNeu

τ

∣∣∣∣ 6 ε

j∑

i=1

|ui|21,Ωτ + Cε

j∑

i=1

‖ui‖2
0,Ωτ + Cε.(19)

It remains to estimate the sum containing
(
δui, g̃i + wiΦ/|Γnon|

)
Ω
. First, we apply

the summation by parts and get

j∑

i=1

(
δui, g̃i +

wi

|Γnon|
Φ

)
Ω
τ =

(
uj , g̃j +

wj

|Γnon|
Φ

)
Ω
−

(
u0, g̃0 +

w0

|Γnon|
Φ

)
Ω

−
j∑

i=1

(
ui−1, δg̃i +

δwi

|Γnon|
Φ

)
Ω
τ.
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The assumption (5) gives g̃ ∈ C([0, T ], L2(Ω)), and similarly the fact dw/dt ∈
L2((0, T )) yields w ∈ C([0, T ]). Therefore, we get in the standard way

(20)

∣∣∣∣
j∑

i=1

(
δui, g̃i +

wi

|Γnon|
Φ

)
Ω
τ

∣∣∣∣ 6 ε‖uj‖2
0,Ω + Cε

[
1 +

j∑

i=1

‖ui‖2
0,Ωτ

]
.

Summarizing (13)–(20) we obtain

(1− ε)
[
‖uj‖2

0,Ω +
j∑

i=1

‖ui − ui−1‖2
0,Ω +

j∑

i=1

|ui|21,Ωτ

]
6 Cε

[
1 +

j∑

i=1

‖ui‖2
0,Ωτ

]
.

Now, we choose ε ∈ (0, 1) and apply Gronwall’s lemma to conclude the proof of
part (i).

(ii) Let us return to the identity (8a). We multiply it by the time step τ and sum
it up for i = 1 . . . , j. We arrive at (∀ϕ ∈ V )

(uj − u0, ϕ)Ω +
( j∑

i=1

∇uiτ,∇ϕ

)

Ω

+
( j∑

i=1

αiτ, ϕ

)

Γnon

+
( j∑

i=1

gRobiuiτ, ϕ

)

ΓNeu

=
( j∑

i=1

f(ui−1)τ, ϕ
)

Ω

−
( j∑

i=1

gNeuiτ, ϕ

)

ΓNeu

−
( j∑

i=1

gnoniτ, ϕ

)

Γnon

.

Inserting ϕ = Φ and using Lemma 1 (i), we conclude the proof in a straightforward
way. �

Stronger assumptions on the initial data u0 and on the BCs allow us to prove
better a priori estimates than those given in Lemma 1.

Lemma 2. Let (4), (5), (6) and dw/dt ∈ L2((0, T )) be satisfied. Moreover,
we assume u0 ∈ H1(Ω); ∂gRob/∂t, ∂gNeu/∂t ∈ L2((0, T ), L2(ΓNeu)); ∂gnon/∂t ∈
L2((0, T ), L2(Γnon)) and ∂g̃/∂t ∈ L2((0, T ), H1(Ω)). Then there exists a positive
constant C such that

(i)
j∑

i=1

‖δui‖2
0,Ωτ + |uj |21,Ω +

j∑
i=1

|ui − ui−1|21,Ω 6 C,

(ii)
j∑

i=1

α2
i τ 6 C

hold for all j = 1, . . . , n.
���������

. (i) We fix a function Φ satisfying (12). Using the fact that both ui − g̃i

and wiΦ/|Γnon| belong to the space V , we have

ϕ =
(
δui − δg̃i −

δwi

|Γnon|
Φ

)
τ ∈ V.
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For such a choice of the test function we get

∫

Γnon

ϕ = δ

([∫

Γnon

ui

]
− wi

)
τ −

∫

Γnon

(g̃i − g̃i−1) = 0.

Let j ∈ {1, . . . , n}. We set ϕ =
(
δui − δg̃i − δwi/|Γnon|

)
τ in (8a) and sum it up for

i = 1, . . . , j. We obtain

j∑

i=1

‖δui‖2
0,Ωτ +

j∑

i=1

(∇ui,∇[ui − ui−1])Ω +
j∑

i=1

(gRobiui, ui − ui−1)ΓNeu(21)

=
j∑

i=1

(f(ui−1), δui)Ωτ −
j∑

i=1

(
f(ui−1), δg̃i +

δwi

|Γnon|
Φ

)
Ω
τ

−
j∑

i=1

(gNeui , ui − ui−1)ΓNeu +
j∑

i=1

(
gNeui , δg̃i +

δwi

|Γnon|
Φ

)
ΓNeu

τ

−
j∑

i=1

(gnoni , ui − ui−1)Γnon +
j∑

i=1

(
gnoni , δg̃i +

δwi

|Γnon|
Φ

)
Γnon

τ

+
j∑

i=1

(
δui, δg̃i +

δwi

|Γnon|
Φ

)
Ω
τ +

j∑

i=1

(
∇ui,∇

[
δg̃i +

δwi

|Γnon|
Φ

])
Ω
τ

+
j∑

i=1

(
gRobiui, δg̃i +

δwi

|Γnon|
Φ

)
ΓNeu

τ.

Let {ai}∞i=1 and {bi}∞i=1 be any sequences of real numbers such that all bi are non-

negative. We start with an obvious identity

ai(ai − ai−1) =
1
2
[a2

i − a2
i−1 + (ai − ai−1)2],

which after summation gives

j∑

i=1

biai(ai − ai−1) =
1
2

j∑

i=1

bi[a2
i − a2

i−1 + (ai − ai−1)2]

=
1
2

j∑

i=1

bi(ai − ai−1)2 +
1
2

j∑

i=1

bi(a2
i − a2

i−1)

=
1
2

j∑

i=1

bi(ai − ai−1)2 +
1
2

[
bja

2
j − b0a

2
0 −

j∑

i=1

δbi ai−1τ

]

> 1
2

[
bja

2
j − b0a

2
0 −

j∑

i=1

δbi ai−1τ

]
.
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Therefore, using the Cauchy inequality, the trace theorem and Lemma 1 (i) we es-

timate the sum containing the Robin term (gRobiui, ui − ui−1)ΓNeu from below as
follows:

j∑

i=1

(gRobiui, ui − ui−1)ΓNeu > 1
2

∫

ΓNeu

gRobju
2
j −

1
2

∫

ΓNeu

gRob0u
2
0(22)

− 1
2

j∑

i=1

‖δgRobi‖2
0,ΓNeu

τ − 1
2

j∑

i=1

‖ui−1‖2
0,ΓNeu

τ

> − C − C‖u0‖2
0,ΓNeu

− C

j∑

i=0

‖ui‖2
0,ΓNeu

τ

> − C

j∑

i=1

‖ui‖2
1,Ωτ − C > −C.

The sums containing (gNeui , ui−ui−1)ΓNeu and (gnoni , ui−ui−1)Γnon can be estimated

in a similar way, thus we demonstrate it for one of them only. We use the summation
by parts, the trace theorem, Lemma 1 (i) and get

∣∣∣∣
j∑

i=1

(gNeui , ui − ui−1)ΓNeu

∣∣∣∣

=
∣∣∣∣
1
2
(gNeuj , uj)ΓNeu −

1
2
(gNeu0 , u0)ΓNeu −

1
2

j∑

i=1

(δgNeui , ui−1)ΓNeuτ

∣∣∣∣

6 Cε + ε‖uj‖2
0,ΓNeu

+ C

j∑

i=0

‖ui‖2
0,ΓNeu

τ

6 Cε + ε|uj |21,Ω + C

j∑

i=0

|ui|21,Ωτ

6 Cε + ε|uj |21,Ω.

The rest of the terms in (21) can be estimated in the standard way, thus we omit

the details. In the end we arrive at

(1− ε)
[ j∑

i=1

‖δui‖2
0,Ωτ + |uj |21,Ω +

j∑

i=1

|ui − ui−1|21,Ω

]
6 Cε.

Choosing a sufficiently small but positive ε, we conclude the proof of part (i).
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(ii) We choose ϕ = Φ/|Γnon| ∈ C∞(Ω) in (8a) and get

(
δui,

Φ
|Γnon|

)
Ω

+
(
∇ui,

∇Φ
|Γnon|

)
Ω

+ αi +
(
gRobiui,

Φ
|Γnon|

)
ΓNeu

=
(
f(ui−1),

Φ
|Γnon|

)
Ω
−

(
gNeui,

Φ
|Γnon|

)
ΓNeu

−
(
gnoni ,

Φ
|Γnon|

)
Γnon

.

Therefore, using the Cauchy inequality and the trace theorem we obtain

|αi| 6 C(1 + ‖δui‖0,Ω + ‖ui‖1,Ω + ‖ui−1‖0,Ω + ‖gNeui‖0,ΓNeu + ‖gnoni‖0,Γnon).

Hence
j∑

i=1

α2
i τ 6 C

(
1 +

j∑

i=1

‖δui‖2
0,Ωτ +

j∑

i=1

|ui‖2
1,Ωτ

)
6 C

takes place for any j = 1, . . . , n. �

4. Convergence of the scheme

Now, let us introduce piecewise linear in time function

un(0) = u0,

un(t) = ui−1 + (t− ti−1)δui for t ∈ (ti−1, ti],

and step functions αn, un

αn(0) = α0, αn(t) = αi,

un(0) = u0, un(t) = ui, for t ∈ (ti−1, ti].

Exactly in the same way we also define step functions gNeun
, gnonn

and gRobn
. Using

this notation we rewrite (8) into the form

(∂un(t)
∂t

, ϕ
)
Ω

+ (∇un(t),∇ϕ)Ω + (αn(t), ϕ)Γnon + (gRobn
(t)un(t), ϕ)ΓNeu(23)

= (f(un(t− τ)), ϕ)Ω − (gNeun
(t), ϕ)ΓNeu − (gnonn

(t), ϕ)Γnon ,∫

Γnon

un(t) = wn(t).

A priori estimates from Lemmas 1 and 2 rewritten in terms of un, un and αn assume
the form

(24) ‖un(t)‖1,Ω +
∫ T

0

∥∥∥∂un

∂t

∥∥∥
2

0,Ω
+

∫ T

0

α2
n 6 C ∀t ∈ [0, T ].
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The existence of a weak solution to the IBVP 1 is guaranteed by the next theorem.

Theorem 1 (convergence). Let the assumptions of Lemma 2 be fulfilled. Then
there exists a solution to the IBVP 1.

���������
. A priori estimates (24) together with Lemma 1.3.13 from Kačur [7]

imply the existence of a function u ∈ C([0, T ], L2(Ω)) ∩ L∞((0, T ), H1(Ω)) obeying
∂u/∂t ∈ L2((0, T ), L2(Ω)) and a subsequence of {un} (which we again denote by the
same symbol) for which

un → u in C([0, T ], L2(Ω)),(25)

∂un

∂t
⇀

∂u

∂t
in L2((0, T ), L2(Ω)),

un(t) ⇀ u(t) in H1(Ω) for all t ∈ [0, T ].

The inequality (see, e.g., Nečas [8], (I.1.10))

(26) ‖w‖2
0,∂Ω 6 ε‖w‖2

1,Ω + Cε‖w‖2
0,Ω

holds for arbitrary small positive ε. Thus, according to (25), we deduce

(27) un, un → u in L2((0, T ), L2(∂Ω)).

The reflexivity of the function space L2((0, T )) and the relation (24) imply the exis-
tence of such an α ∈ L2((0, T )) that

αn ⇀ α in L2((0, T ))

for a subsequence of αn which we denote by the same symbol as before.

Integrating (23) over the time interval (0, t) for any t ∈ [0, T ] and ϕ ∈ V , we
obtain

∫ t

0

(∂un

∂t
, ϕ

)
Ω

+
∫ t

0

(∇un,∇ϕ)Ω +
∫ t

0

(αn, ϕ)Γnon +
∫ t

0

(gRobn
un, ϕ)ΓNeu(28)

=
∫ t

0

(f(un(s− τ)), ϕ)Ω ds−
∫ t

0

(gNeun
, ϕ)ΓNeu −

∫ t

0

(gnonn
, ϕ)Γnon ,

∫ t

0

∫

Γnon

un =
∫ t

0

wn.

60



Now, we let n approach∞ in this equation. To do this we use the a priori estimates,
(25) and (27). We arrive at

∫ t

0

(∂u

∂t
, ϕ

)
Ω

+
∫ t

0

(∇u,∇ϕ)Ω +
∫ t

0

(α, ϕ)Γnon +
∫ t

0

(gRobu, ϕ)ΓNeu

=
∫ t

0

(f(u), ϕ)Ω −
∫ t

0

(gNeu, ϕ)ΓNeu −
∫ t

0

(gnon, ϕ)Γnon ,

∫ t

0

∫

Γnon

u =
∫ t

0

w.

Differentiating this with respect to the time t we obtain (7). Therefore, the couple

(u, α) is a solution to the IBVP 1.

5. Error estimates

The constructive character of Rothe’s method allows also to establish some error
estimates for the time discretization. The technique of the proof for the derivation

of the rate of convergence is more or less standard, but we must proceed carefully
by the choice of the appropriate test function, in order to split the coupling of the

solution u and the unknown function α. Therefore, we point out only the most
important steps in the proof.
The rate of convergence clearly depends on the properties of the data functions

appearing in the IBVP setting and also on the regularity of the initial data u0. We
needed u0 ∈ H1(Ω) in order to establish the existence of a solution of the IBVP 1.
Rothe’s method for standard semilinear parabolic problems gives the approximation
rate O(τ1/2) in the L2(Ω)-norm for u0 ∈ H1(Ω). We will get the same rate of
convergence for the nonstandard BCs, too. Moreover, we establish error estimate for
the approximation of the function α.

Theorem 2. Let the assumptions of Lemma 2 be fulfilled. Assume that the
functions gNeu, gnon, gRob, g̃ and w are globally Lipschitz continuous in the time

variable. Then,

(i) ‖u(t)− un(t)‖2
0,Ω +

∫ t

0
|u(s)− un(s)|21,Ω ds = O(τ),

(ii)
∣∣∫ t

0 [α− αn]
∣∣ = O(τ1/2)

take place for any t ∈ [0, T ].
���������

. (i) Let the function Φ obey (12). By the fact that both u−g̃−wΦ/|Γnon|
and un− g̃n −wnΦ/|Γnon| belong to the space V , also their difference is in V . First,
we subtract (23a) from (7a), then, we set

ϕ = u− un − g̃ + g̃n − (w − wn)
Φ

|Γnon|
,
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and in the end we integrate the equation over (0, t) for any t ∈ (0, T ). We recall
that for such a choice of the test function we have

∫
Γnon

ϕ = 0. The result can be
rewritten in the form

∫ t

0

(∂u

∂t
− ∂un

∂t
, u− un

)
Ω

+
∫ t

0

(∇[u− un],∇[u− un])Ω

+
∫ t

0

(gRob[u− un], u− un)ΓNeu

=
∫ t

0

(
f(u(s))− f(un(s− τ), u− un − g̃ + g̃n − (w − wn)

Φ
|Γnon|

)
Ω

+
∫ t

0

(
gNeun

− gNeu, u− un − g̃ + g̃n − (w − wn)
Φ

|Γnon|
)
ΓNeu

+
∫ t

0

(
gnonn

− gnon, u− un − g̃ + g̃n − (w − wn)
Φ

|Γnon|
)
Γnon

+
∫ t

0

(∂u

∂t
− ∂un

∂t
, g̃ − g̃n + (w − wn)

Φ
|Γnon|

)
Ω

+
∫ t

0

(
∇[u− un],∇

[
g̃ − g̃n + (w − wn)

Φ
|Γnon|

])
Ω

+
∫ t

0

(∇[un − un],∇[u− un])Ω

+
∫ t

0

(
gRob[u− un], g̃ − g̃n + (w − wn)

Φ
|Γnon|

)
ΓNeu

+
∫ t

0

(
gRob[un − un], u− un − g̃ + g̃n − (w − wn)

Φ
|Γnon|

)
ΓNeu

+
∫ t

0

(
[gRobn

− gRob]un, u− un − g̃ + g̃n − (w − wn)
Φ

|Γnon|
)
ΓNeu

.

We have chosen such a long form because it will be more convenient for the esti-
mation. Now, using the Cauchy and Young inequalities, the trace theorem and the

a priori estimates we arrive in a straightforward way at

‖u(t)− un(t)‖2
0,Ω + (1− ε)

∫ t

0

|u− un|21,Ω(29)

6 Cετ
2 + Cε

∫ t

0

‖u− un‖2
0,Ω + Cε

∫ t

0

|un − un|21,Ω

+ Cε

∫ t

0

(∂u

∂t
− ∂un

∂t
, g̃ − g̃n + (w − wn)

Φ
|Γnon|

)
Ω
.

The last two summands on the right-hand side can be estimated using Lemma 2 (i)

by Cτ . Therefore, fixing a sufficiently small positive ε and applying Gronwall’s
lemma we conclude the proof of part (i).
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(ii) We subtract (23a) from (7a), then we set ϕ = Φ/|Γnon|, where the function Φ
obeys (12), and in the end we integrate the equation over (0, t) for any t ∈ (0, T ).
We recall that for this choice of the test function we have

∫
Γnon

ϕ = 1. We obtain

∫ t

0

[α− αn] =
(
un(t)− u(t),

Φ
|Γnon|

)
Ω

+
∫ t

0

(
∇[un − u],

∇Φ
|Γnon|

)
Ω

(30)

+
∫ t

0

(
f(u(s))− f(un(s− τ),

Φ
|Γnon|

)
Ω

ds

+
∫ t

0

(
gNeun

− gNeu,
Φ

|Γnon|
)
ΓNeu

+
∫ t

0

(
gnonn

− gnon,
Φ

|Γnon|
)

Γnon

.

The rest of the proof can be easily obtained using Theorem 2 (i). �

6. Numerical experiments

In this section we present two examples of numerical realization the approximate

method which has been described above. The first is a linear problem while the
second has a nonlinear right-hand side.

The domain common for both examples is the unit square Ω = (0, 1)× (0, 1) and
the time interval is [0, 1]. The boundary ∂Ω is split into three parts ΓDir (right),
ΓNeu (top and bottom) and Γnon (left part of ∂Ω).
For the time discretization we have applied the method described in the previous

sections. For the numerical solution of the linear elliptic equation at each time step

we have used the mixed nonconforming finite element formulation. This is equivalent
to the mixed-hybrid method (see Arnold and Brezzi [2]). We explain very briefly the

main idea of this approximation.
Let us consider a regular triangulation Th (h denotes the mesh diameter) of the

domain Ω. On each element T ∈ Th we define three linear basis functions associated
with the edges of T , i.e., a basis function has the value 1 at the midpoint of one
edge and 0 at the midpoints of the other edges of one triangle. Further, we define
a bubble function on T , which is a polynomial function of the third order vanishing
on the boundary ∂T whose integral average value on T is 1. In this way we have
enriched the standard linear nonconforming space by bubbles, and we solve the linear

elliptic problem in this space replacing the velocity field q by its projection on the
Raviart-Thomas space RT0. For more details see Arnold and Brezzi [2].

We have chosen the time step τ = 0.01 and a fixed uniform mesh consisting of
9800 triangles for all computations.
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6.1. Example 1.
Let us consider the semilinear IBVP

∂u

∂t
−∆u = u2 − v2 +

∂v

∂t
−∆v in (0, 1)× Ω

u = v in (0, 1)× ΓDir,

−∇u · ν = −∇v · ν in (0, 1)× ΓNeu,

−∇u(t) · ν = −∇v(t) · ν − 1− t2 + α(t) in (0, 1)× Γnon,∫

Γnon

u(t) dγ =
t

2
+ t2 in (0, 1)× Γnon,

u(0) = v(0) in Ω,

where the couple (v, α) stands for the exact solution

v(t, x, y) = sin( � x) sin( � y) + ty + t2,

α(t) = 1 + t2.

The behavior of errors for αn and un(t) is depicted in Fig. 1.
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αn(t)-error L2(Ω)-error of un(t)
Figure 1. Example 1: The behaviour of errors for t ∈ [0, 1].

6.2. Example 2.
We consider the semilinear evolution problem

(1 + t)2
∂u

∂t
−∆u = eu − ev + (1 + t)2

∂v

∂t
−∆v in (0, 1)× Ω,

u = v in (0, 1)× ΓDir,

−∇u · ν = −∇v · ν in (0, 1)× ΓNeu,

−∇u(t) · ν = −∇v(t) · ν − sin( � t) + α(t) in (0, 1)× Γnon,∫

Γnon

u(t) dγ =
1− cos( � (1 + t))

� (1 + t)
in (0, 1)× Γnon,

u(0) = v(0) in Ω,
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with the exact solution (v, α) given as

v(t, x, y) = cos( � (1 + t)x) sin( � (1 + t)y),

α(t) = sin( � t).

The αn-error and the L2(Ω)-error for the approximate solution un(t) on [0, 1] for
different time steps is shown in Fig. 2.
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αn(t)-error L2(Ω)-error of un(t)
Figure 2. Example 2: The behaviour of errors for t ∈ [0, 1].
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