
Applications of Mathematics

Tomáš Vejchodský
Fully discrete error estimation by the method of lines for a nonlinear parabolic
problem

Applications of Mathematics, Vol. 48 (2003), No. 2, 129–151

Persistent URL: http://dml.cz/dmlcz/134523

Terms of use:
© Institute of Mathematics AS CR, 2003

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/134523
http://dml.cz


48 (2003) APPLICATIONS OF MATHEMATICS No. 2, 129–151

FULLY DISCRETE ERROR ESTIMATION BY THE METHOD

OF LINES FOR A NONLINEAR PARABOLIC PROBLEM*

� � � ����� � 	�
 � �  � � �
, Praha

(Received March 2, 2001)

Abstract. A posteriori error estimates for a nonlinear parabolic problem are introduced. A
fully discrete scheme is studied. The space discretization is based on a concept of hierarchical
finite element basis functions. The time discretization is done using singly implicit Runge-
Kutta method (SIRK). The convergence of the effectivity index is proven.
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1. Introduction

This article deals with numerical solution of parabolic partial differential equations
and in particular with error estimates. We will concentrate on the one-dimensional

problem only. We will study the error estimates and especially their convergence to
the true error.

The error estimate is a very important quantity because the numerical solution as
a product of a numerical method is worthless without some information about the

error. The error estimate gives us this information although it is only an approxi-
mation. And, moreover, most adaptive methods for solving parabolic equations are

based on estimates of this kind.
The inspiration for this article is in the work of Moore [9], where two fully dis-

crete schemes are described. These schemes differ in the time discretization. The

*The work was supported by the grant No. 201/01/1200 of the Grant Agency of the Czech
Republic.
This work won the Babuška prize 2000 in the student category.
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backward difference formula method (BDF) and the singly implicit Runge-Kutta

method (SIRK) are used. The case of SIRK scheme is treated only for the semilin-
ear (i.e., a(u) ≡ 1) problem in Moore [9]. We will examine a nonlinear equation.
In general, we use the notation of Moore [9]. In Section 2, the model problem

and its weak formulation are stated. The space discretization and the definition

of a semidiscrete solution is shown in Section 3. Definitions of semidiscrete error
estimates and of the effectivity index are given in Section 4. More details about the

semidiscrete problem can be found in Segeth [13]. In Section 5, the time discretization
is done using the SIRK method. A fully discrete solution is defined as well and some

auxiliary lemmas are proven. Finally, in Section 6, fully discrete error estimates are
described and convergence of the effectivity index is proven.

2. Model problem

We use the same model problem and the same notation as Moore [9] and

Segeth [13].

Consider the nonlinear equation

(2.1) ∂tu−∇(a(u)∇u) + f(u) = 0

for an unknown scalar function u(x, t) on a space interval x ∈ [c, d] and on a time
interval t ∈ (0, T ], where T > 0 is fixed. The symbols ∂t and ∇ denote the par-
tial derivatives ∂/∂t and ∂/∂x, respectively. The coefficients a and f are smooth
functions and, moreover, there exist constants µ, M and L which satisfy

0 < µ 6 a(s) 6 M for all s ∈ � ,(2.2)

|a(r) − a(s)| 6 L|r − s| for all r, s ∈ � ,(2.3)

|f(r)− f(s)| 6 L|r − s| for all r, s ∈ � .(2.4)

Thus, a is positive and bounded and both the coefficients satisfy the global Lipschitz

condition.

Let us introduce the homogeneous Dirichlet boundary condition

(2.5) u(c, t) = u(d, t) = 0, 0 6 t 6 T,

and the initial condition

(2.6) u(x, 0) = u0(x), c < x < d,
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where u0 is a given smooth function. We assume that the boundary and initial

conditions are consistent.

If f is constant, the existence and uniqueness of u follows immediately by applying

the well-known Kirchhoff transformation (see [6], [8]). For non-constant f we can
use the concept of pseudomonotone operators. The existence of u can be obtained

as a weak limit of Galerkin approximations. If some coercivity on f is assumed, e.g.,

(2.7) f(r)r > C2r
2 − C3 for all r ∈ � ,

where C2 > 0 and C3 ∈ � , see e.g. Roubíček [12], then the assumptions on a and f

are strong enough to ensure the existence of u. Sufficient conditions for uniqueness

can be derived from the theory of monotone operators (cf. [7], p. 183).

Denote by

(v, w) =
∫ d

c

v(x)w(x) dx

the L2 inner product and by ‖w‖0 the corresponding norm. Let Hk = Hk(c, d) stand
for the Sobolev space of functions whose generalized derivatives up to order k are in

L2(c, d), for an integer k > 0. The norm in this space is

‖w‖2
k =

k∑

i=0

∥∥∥∂iw

∂xi

∥∥∥
2

0
.

The case k = 1 is important for the weak formulation. We introduce the usual
subspace H1

0 = H1
0 (c, d) of functions w ∈ H1 satisfying the homogeneous Dirich-

let boundary conditions. The constants C, C1, C2, etc. are generic, i.e., they may

represent different constant quantities in different occurrences.

We will present a weak formulation of the above model problem. The finite element
discretization is based on this weak formulation.

A function v(x, t) is in space H1([0, T ], X), where X is a Banach space, if v(·, t) ∈
X and ∂tv(·, t) ∈ X for almost every t ∈ [0, T ] and if the term

∫ T

0

(‖v‖2
X + ‖∂tv‖2

X) dt

is finite.

We say that u(x, t) ∈ H1([0, T ], H1
0 (c, d)) is a weak solution of problem (2.1) with

conditions (2.5) and (2.6) if the identity

(2.8) (∂tu, v) + (a(u)∇u,∇v) + (f(u), v) = 0
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holds for almost every t ∈ (0, T ] and all functions v ∈ H1
0 , if u0 ∈ H1

0 and if the

identity

(2.9) (a(u0)∇u,∇v) = (a(u0)∇u0,∇v)

holds for t = 0 and all functions v ∈ H1
0 . Throughout the paper we assume that the

weak solution exists and is unique.

3. Discretization in space

Let us choose a positive integer p, which denotes the order of approximation. We
solve problem (2.1) with conditions (2.5) and (2.6) or, in the weak formulation, (2.8)

and (2.9), by the finite element method with a piecewise polynomial hierarchical
basis functions of degree p. We introduce a partition

c = x0 < x1 < . . . < xN−1 < xN = d

of the interval [c, d] into N subintervals (xj−1, xj), j = 1, . . . , N . We further put

hj = xj − xj−1, j = 1, . . . , N , and

h = max
j=1,...,N

hj .

Let this partition belong to the family of partitions which satisfies the so-called
inverse assumption, i.e., there exists a constant CG > 0 such that

(3.1) CGh 6 hj

holds for j = 1, 2, . . . , N .

We use the finite element concept described in Szabó, Babuška [14]. Let us con-
struct a finite dimensional subspace SN,p

0 ⊂ H1
0 in the following way. A function V

belongs to SN,p
0 if

V (x) =
N−1∑

j=1

Vj1ϕj1(x) +
N∑

j=1

p∑

k=2

Vjkϕjk(x),

where

(3.2) ϕj1(x) =





(x− xj−1)/hj , xj−1 6 x 6 xj ,

(xj+1 − x)/hj+1, xj 6 x 6 xj+1,

0 otherwise

for j = 1, . . . , N − 1,

(3.3) ϕjk(x) =

{
hj
−1

√
2(2k − 1)

∫ x

xj−1
Pk−1(y) dy, xj−1 6 x 6 xj ,

0 otherwise
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for j = 1, . . . , N and k = 2, . . . , p, and where Vjk are coefficients. The function Pk(y)
is the kth degree Legendre polynomial linearly scaled to the subinterval [xj−1, xj ].
Functions (3.2) and (3.3) form a hierarchical basis of the subspace SN,p

0 , see Szabó,
Babuška [14]. To express a function V (·, t) ∈ SN,p

0 for a fixed t ∈ [0, T ] in the
basis (3.2) and (3.3), we put Vjk(t) = Vjk , i.e.,

V (x, t) =
N−1∑

j=1

Vj1(t)ϕj1(x) +
N∑

j=1

p∑

k=2

Vjk(t)ϕjk(x).

We will also use the local inner product

(v, w)j =
∫ xj

xj−1

v(x)w(x) dx

and the corresponding local norm ‖v‖0,j .
�����������

3.1. Let assumption (3.1) holds. Then there exists a positive con-

stant C independent of h such that

(3.4) ‖∇θ(x)‖0 6 C
1
h
‖θ(x)‖0

holds for all θ ∈ SN,p
0 .

This is the so called inverse inequality, which can be found for example in Ciar-
let [4], p. 142.

To start the error analysis, we introduce an elliptic projection of the solution u.

Definition 3.1. A function uh(x, t) is called the elliptic projection of the solution
u(x, t) of problem (2.8) and (2.9) if uh ∈ H1([0, T ], SN,p

0 ), if the identity

(3.5) (a(u)∇uh,∇V ) = (a(u)∇u,∇V )

holds for almost every t ∈ (0, T ] and all functions V ∈ SN,p
0 , and if the identity

(a(u0)∇uh,∇V ) = (a(u0)∇u0,∇V )

holds for t = 0 and all functions V ∈ SN,p
0 . We further denote by

%(x, t) = u(x, t)− uh(x, t)

the error of the elliptic projection.
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The following lemma shows the standard important properties of the elliptic pro-

jection uh and its error.

Lemma 3.1. Let t ∈ [0, T ] be fixed. Let u(·, t) ∈ Hp+1 ∩H1
0 and uh(·, t) ∈ SN,p

0

be the elliptic projection. Then there exists a constant C(u), which does not depend
on t, such that

‖%‖0 + h‖∇%‖0 6 C(u)hp+1,(3.6)

‖∂t%‖0 6 C(u)hp+1,

‖∇uh‖∞ 6 C(u),(3.7)

where ‖ · ‖∞ is the L∞-norm.
����� �"!

. See Thomée [15], p. 211 and Moore [9]. �

We say that a function U(x, t) is the semidiscrete approximate solution of prob-
lem (2.8) and (2.9) if U ∈ H1([0, T ], SN,p

0 ), if the identity

(3.8) (∂tU, V ) + (a(U)∇U,∇V ) + (f(U), V ) = 0

holds for almost every t ∈ (0, T ] and all functions V ∈ SN,p
0 , and if the identity

(a(u0)∇U,∇V ) = (a(u0)∇u0,∇V )

holds for t = 0 and all functions V ∈ SN,p
0 .

Definition 3.2. Denote by

(3.9) e(x, t) = u(x, t)− U(x, t)

the error of the semidiscrete solution.

4. Semidiscrete error estimation

From formula (3.9) we have u = U +e. Putting this into (2.8) and (2.9), we obtain
the equation which motivates the following definitions, see e.g. Segeth [13].

Let us introduce the space ŜN,p+1
0 of functions V̂ (x) such that

V̂ (x) =
N∑

j=1

V̂jϕj,p+1(x).
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We are looking for the error estimates E in the space ŜN,p+1
0 , i.e.,

E(x, t) =
N∑

j=1

Ej(t)ϕj,p+1(x).

In the next definition we introduce four natural error estimates of the semidiscrete

solution U , which is supposed to be known.

Definition 4.1. The parabolic nonlinear error estimate (EPN) is defined by the

equation

(∂tE, V̂ )j + (a(U + E)∇E,∇V̂ )j = − (f(U + E), V̂ )j − (∂tU, V̂ )j(4.1)

− (a(U + E)∇U,∇V̂ )j .

The elliptic nonlinear error estimate (EEN) is defined by the equation

(4.2) (a(U + E)∇E,∇V̂ )j = −(f(U + E), V̂ )j − (∂tU, V̂ )j − (a(U + E)∇U,∇V̂ )j .

The parabolic linear (EPL) and elliptic linear error estimate (EEL) are defined by
the equations

(∂tE, V̂ )j + (a(U )∇E,∇V̂ )j = −(f(U), V̂ )j − (∂tU, V̂ )j − (a(U)∇U,∇V̂ )j(4.3)

and

(a(U)∇E,∇V̂ )j = −(f(U), V̂ )j − (∂tU, V̂ )j − (a(U)∇U,∇V̂ )j ,(4.4)

respectively. All these four equations hold for almost every t ∈ (0, T ], j = 1, . . . , N ,
and all functions V̂ ∈ ŜN,p+1

0 . The initial condition for EPN and EPL is given by

(a(u0)∇E,∇V̂ )j = (a(u0)∇(u0 − U),∇V̂ )j ,

t = 0, j = 1, . . . , N and all V̂ ∈ ŜN,p+1
0 .

We introduce so called effectivity index of the respective error estimator. Is is
ratio of error estimator to the exact error, i.e.,

ΘPN =
‖EPN‖1

‖e‖1
, ΘEN =

‖EEN‖1

‖e‖1
, ΘPL =

‖EPL‖1

‖e‖1
, and ΘEL =

‖EEL‖1

‖e‖1
.
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5. Fully discrete solution

The time discretization of the semidiscrete problem leads to a fully discrete scheme.

We can write the semidiscrete solution U as a linear combination of basis func-
tions (3.2) and (3.3) with coefficients depending on the time variable t. We can take

advantage of this fact and rewrite equation (3.8) as a system of ordinary differential
equations for these unknown coefficients. To obtain a fully discrete solution we have

to solve this system using some suitable numerical method.
We will investigate the singly implicit Runge-Kutta method (SIRK) which is de-

scribed e.g. in Butcher [2] and Burrage [3].
Let us denote by τ the length of the time step of the equidistant partition of the

time interval [0, T ] and by ti the nodes of this partition. Confine our attention to
one time step ti 6 t 6 ti + τ . Let us assume that there exists a positive constant C

such that τ = Ch. The stage s of the singly implicit Runge-Kutta method is chosen
to be s = p + 1. We denote by U`(x) = U(x, ti + c`τ) the approximation of the
solution in the respective SIRK stage, where c`, ` = 1, 2, . . . , p + 1, are given by the
SIRK method. Note that U0(x) = U(x, ti).
The solution U` ∈ SN,p

0 at every SIRK stage can be obtained by solving the
Galerkin problem

(5.1) (∂t,`U`, V ) + (a(U`)∇U`,∇V ) + (f(U`), V ) = 0

for all V ∈ SN,p
0 , ` = 1, . . . , p + 1. The symbol ∂t,`U` means

(5.2) ∂t,`U` =
1
τ

p+1∑

m=0

a`mUm, ` = 1, 2, . . . , p + 1,

where a`m are elements of the matrix A−1 and the matrix A defines the SIRK
method, see Moore and Flaherty [11]. We take the initial condition

(5.3) U(x, ti) = uh(x, ti),

where uh is the elliptic projection of the exact solution.
Relation (5.1) is a system of p+1 finite-dimensional nonlinear Galerkin problems,

which can be equivalently formulated in the form:

(5.4) find U ∈ [SN,p
0 ]p+1 such that F(U) = 0,

where F : [SN,p
0 ]p+1 → [SN,p

0 ]p+1 is defined by the Riesz theorem so that

(∂t,`U`, V ) + (a(U`)∇U`,∇V ) + (f(U`), V ) = (F`(U), V )
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holds for all V ∈ SN,p
0 and ` = 1, 2, . . . , p + 1. Note that [SN,p

0 ]p+1 is a Hilbert space

equipped with the inner product

(v,w)[SN,p
0 ]p+1 =

p+1∑

`=1

(v`, w`).

One of the stability conditions for the SIRK method is that the matrixA is positive
definite. Thus A−1 is also positive definite. This fact together with conditions (2.2)
and (2.7) ensures

p+1∑

`=1

(F`(U), U`) > ε > 0 for all U ∈ [SN,p
0 ]p+1, ‖U‖ = R,

where R > 0 is sufficiently large. The well known corollary of Brouwer’s fixed-
point theorem gives us existence of a solution of problem (5.4) and equivalently

of (5.1). This corollary of Brouwer’s fixed-point theorem can be found, e.g., in
Fučík, Kufner [5], Theorem 30.6, which in fact demands the assumption

R2

ε
(F(U),U)[SN,p

0 ]p+1 > (U,U)[SN,p
0 ]p+1 for all U ∈ [SN,p

0 ]p+1, ‖U‖ = R.

Let us define the local error

(5.5) e`(x) = u`(x)− U`(x), ` = 1, 2, . . . , p + 1,

and the error of elliptic projection

θ`(x) = uh
` (x) − U`(x), ` = 1, 2, . . . , p + 1,

where e`(x) stands for e(x, ti + c`τ), θ`(x) = θ(x, ti + c`τ). Note that the notation
with index ` is used also for other quantities, e.g., uh

` (x) = uh(x, ti + c`τ), %`, %̂`, η`,
etc.

The key role in our analysis is played by the transformation T introduced by
Butcher [2], and its inverse T−1:

(5.6) Tm` = L`−1(ξm), T−1
m` =

ξ`Lm−1(ξ`)
[(p + 1)Lp(ξ`)]2

, m, ` = 1, 2, . . . , p + 1,

where Lm denotes the Laguerre polynomial of degree m and ξ1, ξ2, . . . , ξp+1 are the

distinct zeros of Lp+1. The transformed quantities are denoted by a tilde:

(5.7) χ̃m =
p+1∑

`=1

T−1
m` χ`, χm =

p+1∑

`=1

Tm`χ̃`, m = 1, 2, . . . , p + 1.

The matrix A−1 can be turned to lower triangular using the transformation T .
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This fact, which can be found in Butcher [2] or in Moore and Flaherty [11], can be

expressed, e.g., in the component notation:

p+1∑

k=1

p+1∑

m=1

a`mTmkχ̃k =
1
λ

p+1∑

k=1

p+1∑

m=k

T`mχ̃k(5.8)

=
1
λ

p+1∑

m=1

m∑

k=1

T`mχ̃k, ` = 1, 2, . . . , p + 1,

where λ is the positive parameter connected with the SIRK method.
The following lemma solves the problem with the nonlinearity.

Lemma 5.1. Let Vm ∈ SN,p+1
0 , m = 1, 2, . . . , p + 1. Let a function a satisfy

the Lipschitz condition (2.3) with a constant L, and let U`(x), the solution of (5.1)
with (5.3), satisfy an analogue of the Lipschitz condition:

(5.9) |U`(x) − Um(x)| 6 CL|t0 + c`τ − t0 − cmτ | = CL|c` − cm|τ

for all `, m = 1, 2, . . . , p + 1 and for almost every x ∈ [c, d]. Then

p+1∑

`=1

p+1∑

m=1

T−1
r` T`m(a(U`)∇Vm,∇Vr) > µ‖∇Vr‖2

0 −∆TLCLCcτ

p+1∑

m6=r
m=1

‖∇Vm‖0‖∇Vr‖0,

where r = 1, 2, . . . , p + 1 and the constants ∆T and Cc depend just on p.
����� �"!

. Fix r = 1, 2, . . . , p + 1. Let us separate the double sum and adjust the
resulting sums using T−1

r` T`r > 0, (2.2) and the triangular inequality:

p+1∑

`=1

p+1∑

m=1

T−1
r` T`m(a(U`)∇Vm,∇Vr)(5.10)

=
p+1∑

`=1

T−1
r` T`r(a(U`)∇Vr,∇Vr) +

p+1∑

`=1

p+1∑

m6=r
m=1

T−1
r` T`m(a(U`)∇Vm,∇Vr)

> µ‖∇Vr‖2
0 −

p+1∑

m6=r
m=1

(∣∣∣
p+1∑

`=1

T−1
r` T`ma(U`)

∣∣∣ |∇Vm|, |∇Vr |
)

.

Now we have trouble only with the term
∣∣∣
p+1∑
`=1

T−1
r` T`ma(U`)

∣∣∣. Let us introduce the
notation

β` = βm,r
` = T−1

r` T`m.

We see that
p+1∑
`=1

β` = 0 because m 6= r. If β` = 0 held for ` = 1, 2, . . . , p + 1, we
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would have no trouble. Unfortunately and naturally, the definition of T and T−1,

see (5.6), implies β` 6= 0 for ` = 1, 2, . . . , p + 1. Thus, we can define nonempty sets
of indices

L+ = {` : β` > 0} and L− = {` : β` < 0}.
Let us define positive constant ∆T mr by

∆T mr =
∑

`∈L+

β` =
∑

`∈L−
−β`.

Let us find indices `Max, `Min ∈ {1, 2, . . . , p + 1} such that

a(U`Min) 6 a(U`) 6 a(U`Max) for all ` = 1, 2, . . . , p + 1.

The positivity of β` for ` ∈ L+ and −β` for ` ∈ L− implies
∑

`∈L+

β`a(U`)−
∑

`∈L−
(−β`)a(U`) 6 ∆T mr(a(U`Max)− a(U`Min)),(5.11)

−
∑

`∈L+

β`a(U`) +
∑

`∈L−
(−β`)a(U`) 6 ∆T mr(−a(U`Min) + a(U`Max)).(5.12)

Finally, using (5.11), (5.12), (2.3) and (5.9), we obtain

∣∣∣∣
p+1∑

`=1

β`a(U`)
∣∣∣∣ 6 ∆T mr|a(U`Max)− a(U`Min)| 6 ∆T mrL|U`Max − U`Min |(5.13)

6 ∆T mrLCL|t0 + c`Maxτ − t0 − c`Minτ | 6 ∆TLCLCcτ,

where
∆T = max

r 6=m
∆T mr and Cc = max

`,m=1,...,p+1
|c` − cm|.

We complete the proof applying (5.13) and the Schwarz inequality in (5.10). �

To simplify the notation we denote the time derivative ∂tu by ut.

Lemma 5.2. Let u`(x) ∈ Hp+1 ∩ H1
0 be the solution of (2.8) with (2.9) at

time instant ti + c`τ and let U`(x) ∈ SN,p
0 be the solution of (5.1) with (5.3) for

` = 1, 2, . . . , p + 1. Let U` satisfy (5.9).
Then there exist constants C and CT independent of h such that

‖e`‖1 6 Chp, ` = 1, 2, . . . , p + 1,(5.14)

‖θ`‖1 6 Chp+1, ` = 1, 2, . . . , p + 1,(5.15)

‖θ`‖0 6 CT

p+1∑

m=1

‖θ̃m‖0, ‖θ̃`‖0 6 CT

p+1∑

m=1

‖θm‖0, ` = 1, . . . , p + 1.(5.16)
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����� �"!
. Inequalities (5.16) are evident from the definition of transformed quan-

tities (5.7).

To prove inequalities (5.14) and (5.15) we employ equality (5.1), which can be
adjusted with help of (2.8) and (3.5), to obtain

(∂t,`θ`, V ) + (a(U`)∇θ`,∇V )

= − (∂t,`%`, V ) + (∂t,`u` − (ut)`, V ) + (f(U`)− f(u`), V )

+ ([a(U`)− a(u`)]∇uh
` ,∇V ), ` = 1, 2, . . . , p + 1.

We arrange the first two terms now. We use definition (5.2) of ∂t,`, the fact that

θ0(x) = θ(x, ti) = 0 due to (5.3), then we replace θm by the transformed quantity
θ̃m, see (5.7), and finally we apply formula (5.8) for the first term to obtain

1
λτ

p+1∑

m=1

T`m

m∑

k=1

(θ̃k, V ) +
p+1∑

m=1

T`m(a(U`)∇θ̃m,∇V ) = . . . , ` = 1, 2, . . . , p + 1,

where the terms on the right-hand side remain unchanged. We can multiply this
system of equations by the matrix T−1 from the left. This step can be exactly done

taking r = 1, 2, . . . , p + 1, multiplying each equation by T−1
r` and summing over `.

Taking V = θ̃r and rearranging slightly all terms, we obtain

‖θ̃r‖2
0 + λτ

p+1∑

`=1

p+1∑

m=1

T−1
r` T`m(a(U`)∇θ̃m,∇θ̃r)(5.17)

= −
r−1∑

k=1

(θ̃k, θ̃r) + λτ

p+1∑

`=1

T−1
r` [−(∂t,`%`, θ̃r) + (∂t,`u` − (ut)`, θ̃r)

+ (f(U`)− f(u`), θ̃r) + ([a(U`)− a(u`)]∇uh
` ,∇θ̃r)]

for r = 1, 2, . . . , p + 1.

Note that (2.4), the Schwarz and triangle inequalities, (3.7), (2.3) and (5.16) imply

|(f(U`)− f(u`), θ̃r)| 6 L(‖θ`‖0 + ‖%`‖0)‖θ̃r‖0

and

|([a(U`)− a(u`)]∇uh
` ,∇θ̃r)| 6 C(u)L

(
CT

p+1∑

m=1

‖θ̃m‖0 + ‖%`‖0

)
‖∇θ̃r‖0.
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Applying these inequalities, Lemma 5.1 and the Young inequality to (5.17), we

obtain

‖θ̃r‖2
0 + λτµ‖∇θ̃r‖2

0 6 C1

r−1∑

k=1

‖θ̃k‖2
0 + τ2C2

p+1∑

`=1

[
‖∂t,`%`‖2

0 + ‖∂t,`u` − (ut)`‖2
0(5.18)

+ ‖θ̃`‖2
0 + ‖%`‖2

0

]
+ τC3

p+1∑

`=1

(‖θ̃`‖2
0 + ‖%`‖2

0)

+ τ3C4

p+1∑

m6=r
m=1

‖∇θ̃m‖2
0

for r = 1, 2, . . . , p + 1.
We replace the last term using (3.4). Now we use the nonnegativity of the term

λτµ‖∇θ̃r‖2
0 and move the terms with θ̃ to the left-hand side to obtain

−(C1 + τ2C2 + τC34)
r−1∑

k=1

‖θ̃k‖2
0 + (1− τ2C2 − τC3)‖θ̃r‖2

0(5.19)

− (τ2C2 + τC34)
p+1∑

k=r+1

‖θ̃k‖2
0

6
p+1∑

`=1

(τ2C2

[
‖∂t,`%`‖2

0 + ‖∂t,`u` − (ut)`‖2
0 + ‖%`‖2

0

]
+ τC3‖%`‖2

0)

6 Cτ2p+3, r = 1, 2, . . . , p + 1.

In order to bound the right-hand part terms, we have used the results of Moore and
Flaherty [10]:

‖∂t,`u` − (ut)`‖0 6 C(u)hp+1,(5.20)

‖∂t,`%`‖0 6 C(u)hp+1,(5.21)

‖∂t,`%̂`‖0 6 C(u)hp+1,(5.22)

the result (3.6) and the assumption τ = Ch. Inequality (5.22) will be used later.

Relation (5.19) is a system of p + 1 inequalities. Our aim is to obtain a bound for
‖θ̃`‖0 for all ` = 1, 2, . . . , p+1. The matrix of this system is not lower triangular but
its elements in the upper triangle are small, i.e. of order O(τ). Thus, we can use
the Gaussian elimination to obtain a lower triangular matrix. The important fact is
that the diagonal elements are positive for a sufficiently small τ and the off-diagonal
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elements are negative or zero. Thus, every step in the Gaussian elimination is correct

and all inequalities are preserved. The resulting lower triangular system is

(5.23) (1− τ2C5 − τC6)‖θ̃r‖2
0 6 (C7 + τ2C8 + τC9)

r−1∑

k=1

‖θ̃k‖2
0 + Cτ2p+3

for r = 1, 2, . . . , p + 1. Using τ = Ch and solving (5.23) by forward substitution
yields

(5.24) ‖θ̃r‖0 6 Chp+3/2, r = 1, 2, . . . , p + 1.

Returning with (5.24) to (5.18), we obtain

‖∇θ̃r‖0 6 Chp+1, r = 1, 2, . . . , p + 1.

Using (5.16), we have

‖θr‖0 6 Chp+3/2, r = 1, 2, . . . , p + 1,(5.25)

‖∇θr‖0 6 Chp+1, r = 1, 2, . . . , p + 1.(5.26)

The inequality (5.14) is now easy:

‖e`‖1 6 ‖θ`‖1 + ‖%`‖1 6 Chp, ` = 1, 2, . . . , p + 1.

�

6. Fully discrete error estimation

The equations which define the semidiscrete error estimates (see Definition 4.1) can
be equivalently written as some systems of ordinary differential equations. Solving

this systems by the SIRK method we obtain the fully discrete estimates. The SIRK
method can be implemented using the discrete derivative ∂t,`.

Definition 6.1. The respective error estimates at ti + c`τ , ` = 1, 2, . . . , p + 1,
are obtained by solving the following systems of uncoupled problems. The system
for the parabolic nonlinear error estimate EPN,` = E` ∈ ŜN,p+1

0 , cf. (4.1), is

(∂t,`E`, V̂ )j + (a(U` + E`)∇E`,∇V̂ )j = − (f(U` + E`), V̂ )j − (∂t,`U`, V̂ )j(6.1)

− (a(U` + E`)∇U`,∇V̂ )j .
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The parabolic linear error estimate EPL,` = E` ∈ ŜN,p+1
0 is obtained by solving the

system, cf. (4.3):

(∂t,`E`, V̂ )j + (a(U`)∇E`,∇V̂ )j = − (f(U`), V̂ )j − (∂t,`U`, V̂ )j(6.2)

− (a(U`)∇U`,∇V̂ )j .

And finally, the elliptic linear error estimate EEL,` = E` ∈ ŜN,p+1
0 , cf. (4.4), is

obtained by solving

(6.3) (a(U`)∇E`,∇V̂ )j = −(f(U`), V̂ )j − (∂t,`U`, V̂ )j − (a(U`)∇U`,∇V̂ )j .

These equalities hold for all V̂ ∈ ŜN,p+1
0 , j = 1, 2, . . . , N and ` = 1, 2, . . . , p+1, with

(6.4) E0(x) = eh
0 (x),

where eh
0 (x) stands for eh(x, ti) and the definition of eh(x, t) follows.

Note that the existence and uniqueness of solutions of problems (6.1)–(6.3) is
ensured again by Brouwer’s fixed-point theorem.

Definition 6.2. The function eh(x, t) ∈ H1([0, T ], ŜN,p+1
0 ) is a projection of the

error e(x, t) if the equality

(6.5) (a(u)∇(uh + eh),∇V̂ ) = (a(u)∇u,∇V̂ )

holds for all V̂ ∈ ŜN,p+1
0 . We set

(6.6) %̂(x, t) = u(x, t)− uh(x, t)− eh(x, t).

Note that eh(x, t) =
N∑

j=1

Cj(t)ϕj,p+1(x).

Lemma 6.1. Let u ∈ H1([0, T ], Hp+2 ∩ H1
0 ) be a solution of (2.8) with (2.9).

Let uh, eh and %̂ be defined by (3.5), (6.5) and (6.6), respectively. Then

‖%̂‖0 + h‖∇%̂‖0 6 C(u)hp+2(6.7)

and

‖∇(uh + eh)‖∞ 6 C(u),(6.8)

independently of t and h.
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����� �"!
. The proof of (6.7) follows from the work of Adjerid, Flaherty, Wang [1].

Let V̂ be an arbitrary function from ŜN,p+1
0 . Using (2.2), (6.5) and the Schwarz

inequality we obtain

µ‖∇(uh + eh − u)‖2
0 6 (a(u)∇(uh + eh − u),∇(uh + eh − u))

= (a(u)∇(uh + eh − u),∇(uh + V̂ − u))

6 M‖∇(uh + eh − u)‖0 ‖∇(uh + V̂ − u)‖0,

i.e.,

(6.9) ‖∇(uh + eh − u)‖0 6 M

µ
‖∇(uh + V̂ − u)‖0

holds. According to Adjerid, Flaherty, Wang [1], Lemma 3.3 and Lemma 3.5, there
exists a suitable function ϕ ∈ ŜN,p+1

0 , which can be substituted for V̂ in (6.9), such

that

‖∇(uh + eh − u)‖0 6 C(u)hp+1.

The estimate of (uh+eh−u) in the L2 norm can be obtained by the duality argument.

The proof of (6.8) for p = 1 can be found in Thomée [15], p. 212. We rewrite this
proof for p = 1, 2, . . .. Let

Π: H1
0 7→ SN,p+1

0

denote the standard interpolation operator. The inverse inequality, see for example

Ciarlet [4], p. 142, converts the L∞ norm into the L2 norm:

‖∇(uh + eh −Πu)‖∞ 6 C

h1/2
‖∇(uh + eh −Πu)‖0

6 C

h1/2
(‖∇(uh + eh − u)‖0 + ‖∇(u−Πu)‖0).

Inequality (6.7) and the well known estimate ‖∇(u−Πu)‖0 6 C(u)hp+1 give us

(6.10) ‖∇(uh + eh −Πu)‖∞ 6 C(u)hp+1/2.

Using the estimate of the interpolation error, see Ciarlet [4], p. 122, we obtain

(6.11) ‖∇Πu‖∞ 6 C‖∇u‖∞.

The combination of results (6.10) and (6.11) gives us estimate (6.8). �
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Definition 6.3. We put

ηPN,`(x) = eh
` (x)−EPN,`(x),(6.12)

ηPL,`(x) = eh
` (x)−EPL,`(x),(6.13)

ηEL,`(x) = eh
` (x)−EEL,`(x), ` = 1, 2, . . . , p + 1,(6.14)

where, apparently, η ∈ ŜN,p+1
0 . We omit the indices of η if no ambiguity can occur.

Error estimates EPN,`, EPL,` and EEL,` are defined using (6.1), (6.2) and (6.3),
respectively, and eh

` ∈ ŜN,p+1
0 is given by (6.5).

Lemma 6.2. Let u`(x) ∈ Hp+2 ∩H1
0 be the solution of (2.8) with (2.9) at time

instants ti + c`τ , ` = 1, 2, . . . , p + 1. Let EPN,` ∈ ŜN,p+1
0 be the error estimate given

by (6.1) with (6.4), and let eh
` ∈ ŜN,p+1

0 and ηPN,` ∈ ŜN,p+1
0 , ` = 1, 2, . . . , p + 1, be

given by (6.5) and (6.12), respectively. Let U`, given by (5.1) with (5.3), satisfy (5.9)

and let EPN,` satisfy

(6.15) |EPN,`(x)−EPN,m(x)| 6 CL|t0 + c`τ − t0 − cmτ | = CL|c` − cm|τ

for all `, m = 1, 2, . . . , p + 1 and for almost every x ∈ [c, d].
Then

‖ηPN,`‖1 6 Chp+1, ` = 1, 2, . . . , p + 1.

����� �"!
. We start with the equation (6.1). We subtract the terms (∂t,`e

h
` , V̂ )j and

(a(U`+E`)∇eh
` ,∇V̂ )j on both sides of (6.1), add and subtract the terms (∂t,`u

h
` , V̂ )j ,

(∂t,`u`, V̂ )j and (a(U` + E`)∇uh
` ,∇V̂ )j on the right-hand side of (6.1), adding the

weak formulation (2.8) tested by V̂ , and using (6.5) we obtain

(∂t,`η`, V̂ )j + (a(U` + E`)∇η`,∇V̂ )j

= − (∂t,`θ`, V̂ )j − (∂t,`%̂`, V̂ )j + (∂t,`u` − (ut)`, V̂ )j

+ (f(U` + E`)− f(u`), V̂ )j + (a(U` + E`)[∇U` −∇uh
` ],∇V̂ )j

+ ([a(U` + E`)− a(u`)][∇uh
` +∇eh

` ],∇V̂ )j

for all V̂ ∈ ŜN,p+1
0 , j = 1, 2, . . . , N and ` = 1, 2, . . . , p + 1.

Using the definition of ∂t,`, (5.2), the fact that η0 = 0 and θ0 = 0 due to (6.4)
and (5.3), substituting η` and θ` by the transformed quantities according to (5.7),
we arrive at

1
τ

p+1∑

m=1

p+1∑

k=1

(a`mTmkη̃k, V̂ )j +
p+1∑

k=1

(a(U` + E`)T`k∇η̃k,∇V̂ )j

= −
p+1∑

m=1

p+1∑

k=1

(a`mTmk θ̃k, V̂ )j + . . .
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for all V̂ ∈ ŜN,p+1
0 , j = 1, 2, . . . , N and ` = 1, 2, . . . , p+1. The symbol . . . at the end

of the above formula means that the other terms remain unchanged.

Employing formula (5.8), multiplying this system of equalities by the matrix T−1

from the left, i.e. multiplying each equality by T−1
r` and summing over `, putting

V̂ = η̃r and rearranging, we have

‖η̃r‖0,j + λτ

p+1∑

`=1

p+1∑

m=1

T−1
r` T`m(a(U` + E`)∇η̃m,∇η̃r)j(6.16)

= −
r−1∑

k=1

(η̃k, η̃r)j −
r∑

k=1

(θ̃k , η̃r)j

+ λτ

p+1∑

`=1

T−1
r`

[
−(∂t,`%̂`, η̃r)j + (∂t,`u` − (ut)`, η̃r)j

+ (f(U` + E`)− f(u`), η̃r)j + (a(U` + E`)[∇U` −∇uh
` ],∇η̃r)j

+ ([a(U` + E`)− a(u`)][∇uh
` +∇eh

` ],∇η̃r)j

]

for j = 1, 2, . . . , N and r = 1, 2, . . . , p + 1.

We bound the second term employing an analogue of Lemma 5.1 together with
assumption (6.15). This step is correct because

|U` + E` − Um −Em| 6 |U` − Um|+ |E` −Em| 6 2CL|c` − cm|τ.

Let us bound some terms in (6.16). Employing (2.2), (2.3), (2.4), (6.8), the triangle

and the Schwarz inequalities and the definitions of θ, η and %̂, we obtain

|(f(U` + E`)− f(u`), η̃r)j | 6 L(‖θ`‖0,j + ‖η`‖0,j + ‖%̂`‖0,j)‖η̃r‖0,j ,(6.17)

|(a(U` + E`)[∇U` −∇uh
` ],∇η̃r)j | 6 M‖∇θ`‖0,j‖∇η̃r‖0,j(6.18)

and finally

|([a(U` + E`)− a(u`)][∇uh
` +∇eh

` ],∇η̃r)j |(6.19)

6 C(u, L)(‖θ`‖0,j + ‖η`‖0,j + ‖%̂`‖0,j) ‖∇η̃r‖0,j .
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Employing inequalities (6.17), (6.18), (6.19) and the Young inequality in (6.16),

we arrive at

(6.20)

‖η̃r‖2
0,j + λτµ‖∇η̃r‖2

0,j

6 C1

(r−1∑

k=1

‖η̃k‖2
0,j +

r∑

k=1

‖θ̃k‖2
0,j

)

+ τ2C2

p+1∑

`=1

[
‖∂t,`%̂`‖2

0,j + ‖∂t,`u` − (ut)`‖2
0,j + ‖θ`‖2

0,j + ‖η̃`‖2
0,j + ‖%̂`‖2

0,j

]

+ τC3

p+1∑

`=1

(‖∇θ`‖2
0,j + ‖θ`‖2

0,j + ‖η̃`‖2
0,j + ‖%̂`‖2

0,j)

+ τ3C4

p+1∑

m6=r
m=1

‖∇η̃m‖2
0,j

for j = 1, 2, . . . , N and r = 1, 2, . . . , p + 1.
Summing over j, applying (3.4) to the last term, using (5.24), (5.22), (5.20), (5.25),

(6.7), (5.26) and τ = Ch, we have

(1− τ2C2 − τC3)‖η̃r‖2
0 − (C1 + τ2C2 + τC34)

r−1∑

k=1

‖η̃k‖2
0

− (τ2C2 + τC34)
p+1∑

k=r+1

‖η̃k‖2
0 6 Cτ2p+3

for r = 1, 2, . . . , p + 1.
This is a system of inequalities in the same form as (5.19) and we can employ the

Gaussian elimination to obtain the lower triangular system

(1− τ2C5 − τC6)‖η̃r‖2
0 6 (C7 + τ2C8 + τC9)

r−1∑

k=1

‖η̃k‖2
0 + Cτ2p+3

for r = 1, 2, . . . , p + 1.
Solving this system by forward substitution, we finally find that

(6.21) ‖η̃r‖0 6 Chp+3/2, r = 1, 2, . . . , s.

Using (5.16), we have

(6.22) ‖ηr‖0 6 Chp+3/2, r = 1, 2, . . . , s.
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Returning with (6.21) and (6.22) to (6.20) summed over j, we obtain

‖∇η̃r‖0 6 Chp+1, r = 1, 2, . . . , s.

Finally, relation (5.16) gives us

‖∇ηr‖0 6 Chp+1, r = 1, 2, . . . , s.

�

Lemma 6.3. Let u`(x) ∈ Hp+2 ∩H1
0 be the solution of (2.8) with (2.9) at time

instants ti + c`τ , ` = 1, 2, . . . , p + 1. Let EPL,` ∈ ŜN,p+1
0 be the error estimate given

by (6.2) with (6.4), and let eh
` ∈ ŜN,p+1

0 and ηPL,` ∈ ŜN,p+1
0 , ` = 1, 2, . . . , p + 1, be

given by (6.5) and (6.13), respectively. Let U`, given by (5.1) with (5.3), satisfy (5.9).

Then

‖ηPL,`‖1 6 Chp+1, ` = 1, 2, . . . , p + 1.

����� �"!
. The proof of this lemma is very similar to that of the previous lemma.

The starting equality which follows from (6.2), (2.8) and (6.5) is

(∂t,`η`, V̂ )j + (a(U`)∇η`,∇V̂ )j = − (∂t,`θ`, V̂ )j − (∂t,`%̂`, V̂ )j

+ (∂t,`u` − (ut)`, V̂ )j + (f(U`)− f(u`), V̂ )j

+ (a(U`)[∇U` −∇uh
` ],∇V̂ )j

+ ([a(U`)− a(u`)][∇uh
` +∇eh

` ],∇V̂ )j

for all V̂ ∈ ŜN,p+1
0 , j = 1, 2, . . . , N and ` = 1, 2, . . . , p + 1.

Proceeding in the same way as in the previous proof, i.e., applying the following

steps:

• definition of ∂t,`,

• transformation (5.7) and formula (5.8),
• multiplying the resulting system by the matrix T−1,

• putting V̂ = η̃r,

• bounding the terms with a and f using (2.2), (2.3), (2.4), etc.,

• applying Lemma 5.1,
• summing over j, using (3.4), (5.24), (5.22), (5.20), (5.25), (3.6), (5.26),

• performing Gaussian elimination,
we obtain the result. �
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Lemma 6.4. Let u`(x) ∈ Hp+2 ∩H1
0 be the solution of (2.8) with (2.9) at time

instants ti + c`τ , ` = 1, 2, . . . , p + 1. Let EEL,` ∈ ŜN,p+1
0 be the error estimate given

by (6.3), and let eh
` ∈ ŜN,p+1

0 and ηEL,` ∈ ŜN,p+1
0 , ` = 1, 2, . . . , p+1, be given by (6.5)

and (6.14), respectively. Then

‖ηEL,`‖1 6 Chp+1/2, ` = 1, 2, . . . , p + 1.

����� �"!
. The proof of this lemma is very similar to those of the previous two

lemmas but we need not use the Gaussian elimination nor the transformation T .
The starting equality which follows from (6.3), (2.8) and (6.5) is

(a(U`)∇η`,∇V̂ )j = − (∂t,`θ`, V̂ )j − (∂t,`%`, V̂ )j + (∂t,`u` − (ut)`, V̂ )j

+ (f(U`)− f(u`), V̂ )j + (a(U`)[∇U` −∇uh
` ],∇V̂ )j

+ ([a(U`)− a(u`)][∇uh
` +∇eh

` ],∇V̂ )j

for all V̂ ∈ ŜN,p+1
0 , j = 1, 2, . . . , N and ` = 1, 2, . . . , p + 1.

Proceeding in the same way as in the previous proofs, i.e., applying the following

steps:
• putting V̂ = η`,

• using 0 6 µ‖∇η`‖2
0,j 6 (a(U`)∇η`,∇η`)j , ` = 1, 2, . . . , p + 1,

• bounding the terms with a and f using (2.2), (2.3), (2.4), etc.,

• applying the Friedrichs inequality utilizing η` ∈ ŜN,p+1
0 ⊂ H1

0 (c, d),
• using the fact that (5.25) implies

‖∂t,`θ`‖0 = τ−1

∥∥∥∥
p+1∑

m=1

a`mθm

∥∥∥∥ 6 τ−1Ca

p+1∑

m=1

‖θm‖ 6 Chp+1/2

for ` = 1, 2, . . . , p + 1,

• summing over j, using the previous step, (5.21), (5.20), (5.25), (3.6) and (5.26)
we obtain the result. �

The following theorem about the convergence of the effectivity indices is now easy

to prove.

Theorem 6.1. Let u` ∈ Hp+2∩H1
0 and U` ∈ SN,p

0 be solutions of (2.8) with (2.9),

and (5.1) with (5.3) at time instants ti + c`τ , ` = 1, 2, . . . , p + 1. Let E` ∈ ŜN,p+1
0

be the solution of (6.1) with (6.4) (for EPN), or (6.2) with (6.4) (for EPL), or (6.3)

(for EEL). Let U` satisfy (5.9) and let EPN,` satisfy (6.15) for ` = 1, 2, . . . , p + 1.
Further, let

(6.23) ‖e`‖1 > Chp, ` = 1, 2, . . . , p + 1.
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Then

(6.24) lim
h→0

Θ` = lim
h→0

‖E`‖1

‖e`‖1
= 1, ` = 1, 2, . . . , p + 1,

where Θ is ΘPN, ΘPL or ΘEL.
����� �"!

. Rewrite e given by (5.5) as

e` = u` − (uh
` + eh

` ) + (uh
` − U`) + (eh

` −E`) + E`, ` = 1, 2, . . . p + 1.

Then

e` = E` + %̂` + θ` + η` and E` = e` − %̂` − θ` − η`

for ` = 1, 2, . . . p + 1, and

‖E`‖1 > ‖e`‖1 − ‖%̂`‖1 − ‖θ`‖1 − ‖η`‖1 > ‖e`‖1 − C1h
p+α,(6.25)

‖E`‖1 6 ‖e`‖1 + ‖%̂`‖1 + ‖θ`‖1 + ‖η`‖1 6 ‖e`‖1 + C2h
p+α(6.26)

for ` = 1, 2, . . . p+1, where α = 1 for EPN and EPL, α = 1/2 for EEL. Dividing (6.25)

and (6.26) by ‖e`‖1 and taking (6.23) into account, we see that

1− C1h
α 6 Θ` 6 1 + C2h

α, ` = 1, 2, . . . p + 1.

Then (6.24) holds for h → 0. �

Note that assumption (6.23) implies C1h
p 6 ‖e`‖1 6 C2h

p, see (5.14).
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