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WEAK NONLINEARITY IN A MODEL WHICH ARISES

FROM THE HELMERT TRANSFORMATION
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Abstract. Nowadays, the algorithm most frequently used for determination of the esti-
mators of parameters which define a transformation between two coordinate systems (in
this case the Helmert transformation) is derived under one unreal assumption of error-
less measurement in the first system. As it is practically impossible to ensure errorless
measurements, we can hardly believe that the results of this algorithm are “optimal”.
In 1998, Kubáček and Kubáčková proposed an algorithm which takes errors in both

systems into consideration. It seems to be closer to reality and at least in this sense
better. However, a partial disadvantage of this algorithm is the necessity of linearization
of the model which describes the problem of the given transformation. The defence of this
simplification especially with respect to the bias of linear functions of the final estimators, or
better to say the specification of conditions under which such a modification is statistically
insignificant is the aim of this paper.

Keywords: Helmert transformation, linear regression model, nonlinearity measures, weak
nonlinearity

MSC 2000 : 62J05

1. Introduction

The problem to establish the “optimum” transformation or its parameters between
two geodetical networks (coordinate systems) which preserves some of their special

features is still an open mathematical problem which we can find in geodesy.

One of the transformation most often used is the linear conform transformation—
Helmert transformation—which is the composition of three simple ones: the shift, the

rotation and changing of the scale. If we denote the coordinates of the “important”—
the so called identical—points in the first system by ηI,i = (xi, yi)′ and in the second
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by ηII,i = (Xi, Yi)′, i = 1, . . . , n, then this transformation can be written in the

following way:

(1.1) ηII,i =
(

ϕ1

ϕ2

)
+

(
ϕ3, ϕ4

−ϕ4, ϕ3

)
ηI,i, i = 1, . . . , n,

where ϕ1, ϕ2, ϕ3 and ϕ4 are the parameters of this transformation.

Measurement by any apparatus is naturally influenced by its random error. This
fact makes determining these parameters difficult and changes an at first sight de-

terministic problem into a more complicated stochastic one. Now the problem can
be formulated as determining the optimum parameters within the following linear

regression model with nonlinear constraints—see [3]:

(Y − β1,0) ∼ Nk1(δβ1,Σ),(1.2)
(

δβ1

δβ2

)
∈

{(
δβ1

δβ2

)
: b + B1δβ1 + B2δβ2 +

1
2
ω(δβ1, δβ2) = 0

}
.

����������
1.1. We have used the following notation in (1.2):

β1 = (η′
I , η

′
II)

′,

β2 = (ϕ1, ϕ2, ϕ3, ϕ4)′,

β1,0 = (η′
I,0, η

′
II,0)

′— approximation of the actual value of β1,

β2,0 = (ϕ1,0, ϕ2,0, ϕ3,0, ϕ4,0)′— approximation of the actual value of β2,

δβ1 = (η′
I , η

′
II)

′ − (η′
I,0, η

′
II,0)

′ = (δη′
I , δη′

II)
′,

δβ2 = (ϕ1, ϕ2, ϕ3, ϕ4)′ − (ϕ1,0, ϕ2,0, ϕ3,0, ϕ4,0)′ = (δϕ1, δϕ2, δϕ3, δϕ4)′,

b = ηI,0ϕ3,0 +
[
I⊗

(
0 1

−1 0

)]
ηI,0ϕ4,0,

B1 =
(

ϕ3,0I + ϕ4,0

[
I⊗

(
0, 1

−1, 0

)]
,−I

)
,

B2 =
(
1⊗

(
1 0
0 1

)
, ηI,0,

[
I⊗

(
0, 1

−1, 0

)]
ηI,0

)
,

1 = (1, 1, . . . , 1)′,
1
2
ω(δβ1, δβ2) = δηIδϕ3 +

{[
I ⊗

(
0 1

−1 0

)]
δηI

}
δϕ4.
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2. Model with constraints of type II

Due to the nonlinearity of the constraints it is not possible to determine the

optimum estimators—in this paper we mean the best linear unbiased ones (BLUEs)—
of the unknown parameters δβ1 and δβ2 within the model (1.2). That is why it is

necessary (by neglecting the quadratic term ω(δβ1,δβ2)) to make its linearization and
turn it in that way into the so called linear regression model with constraints of

type II:

(Y − β1,0) ∼ Nk1(δβ1,Σ),(2.1) (
δβ1

δβ2

)
∈

{(
δβ1

δβ2

)
: b + B1δβ1 + B2δβ2 = 0

}
.

Theorem 2.1. Let us consider the model (2.1), where Y is a k1-dimensional

observation vector, β1 ∈ � k1 and β2 ∈ � k2 are unknown parameters, Σ is a known
positive definite matrix, b ∈ � q is a known vector

b ∈M(B1,B2) =
{

(B1,B2)
(

u
v

)
: u ∈ � k1 , v ∈ � k2

}

and B1 and B2 are known matrices satisfying

B1 ∼ q × k1, B2 ∼ q × k2, r(B1,B2) = q < k1 + k2, r(B2) = k2 < q.

Then within this model the BLUEs of the estimators δβ1 and δβ2 are

δβ̂1(Y) = (I−ΣB′
1[MB2(B1ΣB′

1)MB2 ]
+B1)(Y − β1,0)(2.2)

−ΣB′
1[MB2(B1ΣB′

1)MB2 ]
+b,

δβ̂2(Y) = − [(B′
2)
−
m(B1ΣB′

1)]
′B1(Y − β1,0)− [(B′

2)
−
m(B1ΣB′

1)]
′b,

the covariance matrix of these estimators is

(2.3) var
(

δβ̂1(Y)
δβ̂2(Y)

)
=

(
Σ−ΣB′

1Q1,1B1Σ, −ΣB′
1Q1,2

−Q2,1B1Σ, Q2,2

)
,

where

Q1,1 = [MB2(B1ΣB′
1)MB2 ]

+,(2.4)

Q1,2 = Q′
2,1 = (B′

2)
−
m(B1ΣB′

1),

Q2,2 = [B′
2(B1ΣB′

1 + B2B′
2)
−1B2]−1 − I,

MB2 = I−B2(B′
2B2)−B′

2.

���������
. See [1], Lemma 2.3.1. �
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2.1. In the previous theorem we have used the following statements

for general matrices C, X:

[MXCMX ]+ =





(C + XX′)+ − (C + XX′)+X(X′(C + XX′)+X)−

×X′(C + XX′)+

C+ −C+X(X′C+X)−X′C+ M(X) ⊂M(C)

C−1 −C−1X(X′C−1X)−X′C−1 C—regular

(X′)−m(C) =





(C + XX′)−X(X′(C + XX′)−X)−

C−X(X′(C)−X)− M(X) ⊂M(C)

C−1X(X′C−1X)− C—regular

where A+ denotes the Moore-Penrose generalized inversion if it is unique, A− de-
notes any generalized inversion in the case of nonuniqueness, M(A) denotes the
space generated by the columns of matrix A.

The first term, i.e. [MXCMX ]+, does not depend on the choice of the generalized
inversions which are used on the right-hand side. As for the second, i.e. (X′)−m(C),
this term depends on the choice of the generalized inversions used, but no terms in

this paper containing it (e.g. (2.2)) do.
However, the estimators (2.2) are unbiased only within the linear model (2.1).

Within the “correct” nonlinear model (1.2) they become biased. Just here the prob-
lem arises how to ensure validity of the results from the linear model in the nonlinear

one.
The nonlinear (quadratic) term in the constraints of the model (1.2) depends on the

choice of the approximation β0 = (β′
1,0, β

′
2,0)′ of the accurate values of the unknown

estimated parameters β = (β′
1, β

′
2)
′, or better to say it depends on their mutual

(and of course also unknown) difference δβ = (δβ′
1, δβ′

2)′. That is why naturally
the biases of the given estimators (2.2) are also functions of these differences as will

be shown in the theorems below.
From now on let us suppose that the approximation β0 was chosen such that b = 0

in the constraints of the model (1.2).
To derive the biases of the estimators (2.2) we have to rewrite the model (1.2)

into a model without constraints. For the sake of simplicity we write ωKBδs ≡
ω(KB1δs,KB2δs).

Theorem 2.2. Model (1.2) is equivalent (up to terms of order 2) to the model
without constraints

(2.5) Y ∼ Nk1

(
KB1δs− 1

2
TωKBδs,Σ

)
, δs ∈ � k1 +k2−q ,
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whereKB =
(

KB1

KB2

)
is a (k1+k2)×(k1+k2−q)matrix such that r(KB) = k1+k2−q,

(B1,B2)KB = 0 and the relation between δβ and δs is given by

(
δβ1

δβ2

)
=

(
KB1

KB2

)
δs− 1

2

(
T
U

)
ωKBδs,

where
(

T
U

)
=

(
ΣB′

1(B1ΣB′
1 + B2B′

2)
−1

B′
2(B1ΣB′

1 + B2B′
2)−1

)
.

���������
. See [1], Remark 2.3.3. �

Using this theorem we can prove the assertions of the next theorem which concerns

the biases of the estimators (2.2).

Theorem 2.3. Let us consider the model (1.2). Then the biases of the estima-
tors (2.2) (up to terms of order 2) satisfy

b1 := E(δβ̂1)− δβ1 =
1
2
PΣ−1

ΣB′
1MB2

TωKBδs(2.6)

b2 := E(δβ̂2)− δβ2

=
1
2
(B′

2(B1ΣB′
1 + B2B′

2)
−1B2)−1B′

2(B1ΣB′
1 + B2B′

2)
−1ωKBδs,

where PC−1

A = A[A′C−1A]+AC−1 when M(A) ⊂ M(C) for general matrices A,
C (C regular).

���������
. See [1], Corollary 2.3.5 and Theorem 2.3.14. �

����������
2.2. The remark “up to terms of order 2” from the preceding theorems

has to be understood in the way that the argument in the term ωKBδs has to be
more precisely not (KB1δs,KB2δs), but (δβ1, δβ2). Nonetheless, as the terms of
order higher then 2 are beyond our interest and the term ω(δβ1, δβ2) is quadratic
itself, it is possible to use instead of the correct argument its linear approximation.
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3. Weak nonlinearity

It follows from Remark 1.1 that if we used the approximation β0 = β (i.e. the

unknown actual value) then the bias would naturally equal zero. Moreover it is clear
(as the term ω(δβ1, δβ2) is quadratic) that the biases decrease when the approx-
imation β0 tends to the actual value β. On the basis of these facts let us try to
formulate some criteria—restrictions on the regions for β0 or δβ—under which it

is possible to justify neglecting of these biases, i.e. to take the estimators (2.2) as
practically unbiased even in the nonlinear model (1.2).

The following definition of the so called nonlinearity measures provides an impor-
tant tool for determining such criteria.

Definition 3.1. Within the model (1.2) let us define the following nonlinearity
measures:

(3.1)

C
(par)
II,δβ1

(β0)

= sup





√
ω′

KBδsT′(PΣ−1

ΣB′
1MB2

)′Σ−1PΣ−1

ΣB′
1MB2

TωKBδs

δs′K′
B1

Σ−1KB1δs
: δs ∈ � k1+k2−q



 ,

C
(par)
II,δβ2

(β0)

= sup





√
ω′

KBδs(B1ΣB′
1 + B2B′

2)−1P(B1ΣB′
1+B2B′

2)−1

B2
ωKBδs

δs′K′
B1

Σ−1KB1δs
: δs ∈ � k1 +k2−q



 .

����������
3.1. These definitions have arisen from the procedure which is used

in the proof of Theorem 3.1 below. Their construction was motivated by the Bates
and Watts measures of curvature which have been used in the theory of nonlinear

regression models, but is not the same.

Theorem 3.1. Using the Hölder inequality together with the preceding defini-
tion we can prove the following implications:

δs′K′
B1

Σ−1KB1δs 6 2ε

C
(par)
II,δβ1

(β0)
⇒ ∀

{
h1 ∈ � k1

}
|h′

1b1| 6 ε
√

h′
1Σh1,(3.2)

δs′K′
B1

Σ−1KB1δs 6 2ε

C
(par)
II,δβ2

(β0)
(3.3)

⇒ ∀
{
h2 ∈ � k2

}
|h′

2b2| 6 ε
√

h′
2(B′

2(B1ΣB′
1 + B2B′

2)−1B2)−1h2.

���������
. See [1], Theorem 2.3.7 and 2.3.16. �
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3.2. As δβ1 = β1 − β1,0

.= KB1δs, this theorem declares that if

δβ1 moves inside the ellipsoid which is determined by the quadratic form with the
matrix Σ−1 and the right side 2ε/C

(par)
II,δβ1

(β0) or 2ε/C
(par)
II,δβ2

(β0) then the bias of the
estimator of an arbitrary linear function respectively of δβ1 or δβ2 is covered by an

ε-multiple of the term which as will be shown represents in some sense the standard
error of this linear function. It means that this bias can be considered practically

neglectable. In simple words we can say that the bias of the given linear function is
“drown” in its dispersion.

Lemma 3.1. It simply follows from Theorem 2.1 that

∀h1 ∈ � k1 : var(h′
1δβ1) = h′

1(Σ−ΣB′
1[MB2(B1ΣB′

1)MB2 ]
+B1Σ)h1,(3.4)

∀h2 ∈ � k2 : var(h′
1δβ2) = h′

2([B
′
2(B1ΣB′

1 + B2B′
2)
−1B2]−1 − I)h2.

���������
. It is a direct consequence of Theorem 2.1. �

����������
3.3. As the quadratic forms

h′
1ΣB′

1[MB2(B1ΣB′
1)MB2 ]

+B1Σh1, h1 ∈ � k1 ,

h′
2h2, h2 ∈ � k2

are p.s.d., if follows from the preceding lemma that the right-hand side terms of
inequalities (3.2) and (3.3) are not actual ε-multiples of the relevant standard errors

but their upper estimators.

If we denote

MΣ−1

ΣB′
1MB2

= I−ΣB′
1[MB2(B1ΣB′

1)MB2 ]
+B1,

the estimator δβ̂1 can be written as

(3.5) δβ̂1 = MΣ−1

ΣB′
1MB2

Y.

Taking into account Theorem 2.3 and the fact that the space � k1 can be decom-

posed into the sum of two subspacesM([PΣ−1

ΣB′
1MB2

]′) andM([MΣ−1

ΣB′
1MB2

]′), i.e.

∀h1 ∈ � k1 ∃h1,1 ∈M([PΣ−1

ΣB′
1MB2

]′), ∃h1,2 ∈M([MΣ−1

ΣB′
1MB2

]′) : h1 = h1,1 + h1,2,

we can formulate the following lemma:

Lemma 3.2.
a) ∀h1 ∈M([PΣ−1

ΣB′
1MB2

]′) : h′
1δβ1 = 0, which also means that var(h′

1δβ1) = 0;

b) ∀h1 ∈M([MΣ−1

ΣB′
1MB2

]′) : h′
1b1 = 0.

���������
. Assertion easily follows from (3.5) and Theorem 2.3. �
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Corollary 3.1. It follows from the preceding lemma that every estimator h′
1δβ̂1

of the linear function h′
1δβ1 can be written as the sum of the estimator h′

1,1δβ̂1 which

estimates with no bias the parameter h′
1,1δβ1 and the estimator h′

1,2δβ̂1 which is

identically equal to zero vector (but as the estimator of the parameter h′
1,2δβ1 it is

biased!).

On the basis of Theorem 3.1 we can formulate the regions of δβ1 which make the

bias of linear functions of the estimator δβ̂1 neglectable in the previously mentioned
sense.

Definition 3.2. The ellipsoids defined by the relations

Lβ1
b1

(β0) =

{
δβ1 ∈ � k1 : δβ′

1Σ
−1δβ1 6 2ε

C
(par)
II,δβ1

(β0)

}
,

Lβ1
b2

(β0) =

{
δβ1 ∈ � k1 : δβ′

1Σ
−1δβ1 6 2ε

C
(par)
II,δβ2

(β0)

}

are called the linearization regions for b1 and b2, respectively, in β0 with respect

to δβ1.

To define the linearization region with respect to δβ2 it is necessary to formulate
the following lemma.

Lemma 3.3. LetM be a symmetric p.d. matrix of the type n×n, and let c ∈ � .
Then for all matrices L of the type k × n, r(L) = k we have

{u ∈ � k : u = Lδβ, δβ′Mδβ 6 c2, δβ ∈ � n}(3.6)

= {u ∈ � k : u′(LM−1L′)−1u 6 c2}.

���������
. See [2], Theorem 2.2. �

Using the fact that the matrix B2 is of full rank in columns we can simply prove

the next lemma:

Lemma 3.4. We have

(3.7) δβ̂2 = −[(B′
2)
−
m(B1ΣB′

1)]
′B1δβ̂1.

���������
. See [1], proof of Theorem 2.3.14. �

The matrix [(B′
2)
−
m(B1ΣB′

1)]
′B1 is of the type k2 × k1 and its rank is equal to k2.

Hence using Lemma 3.3 the linearization region with respect to δβ2 can be defined.
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Definition 3.3. The ellipsoids defined by the relations

Lβ2
b1

(β0) =

{
δβ2 ∈ � k2 : δβ′

2(B
′
2(B1ΣB′

1 + B2B′
2)
−1B2)−1δβ2 6 2ε

C
(par)
II,δβ1

(β0)

}
,

Lβ2
b2

(β0) =

{
δβ2 ∈ � k2 : δβ′

2(B
′
2(B1ΣB′

1 + B2B′
2)
−1B2)−1δβ2 6 2ε

C
(par)
II,δβ2

(β0)

}

are called the linearization regions for b1 and b2, respectively, in β0 with respect

to δβ2.

So now we know the regions where the vectors δβ1 a δβ2 should occur. That

is why it is necessary to compare these regions with the ones which delimitate the
locus of their real occurrence. If we found out that the regions of real occurrence

are covered by the linearization ones it could be considered a strong argument for
“practical” unbiasness of the estimators (2.2) even within the nonlinear model (1.2)

(Remark 3.2).
It follows from Theorem 2.1 that the random vectors δβ̂1 and δβ̂2 satisfy

δβ̂1 ∼ Nk1(δβ1 + b1,Σ−ΣB′
1[MB2(B1ΣB′

1)MB2 ]
+B1Σ),

δβ̂2 ∼ Nk2(δβ2 + b2, (B′
2(B1ΣB′

1 + B2B′
2)
−1B2)−1 − I).

That is why δβ1 and δβ2 are covered with probability near to 1−α by the ellipsoids

Eβ1 = {δβ1 : (δβ1 − δβ̂1)′Σ−1(δβ1 − δβ̂1) 6 χ2
k1

(0; 1− α)},
Eβ2 = {δβ2 : (δβ2 − δβ̂2)′(B′

2(B1ΣB′
1 + B2B′

2)
−1B2)−1(δβ2 − δβ̂2)

6 χ2
k2

(0; 1− α)}.

Their comparison with the linearization regions from Definitions 3.2 and 3.3 made

the next definition reasonable.

Definition 3.4. The model (1.2) is said to be weakly nonlinear in β0 with respect

to bi, i ∈ {1, 2}, if the relation

(3.8) χ2
k1

(0; 1− α) � 2ε

C
(par)
II,δβi

(β0)

holds.

Simply said: weak nonlinearity of the model (1.2) with respect to the preceding
assertions means that the estimators which were derived from the linearization of

this model, i.e. (2.1), can by considered unbiased in some sense even within this
nonlinear model.
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3.4. However, it is important to mention one thing. Definition 3.4

concerns only the comparison of the areas of the given ellipsoids. It would be ideal
and correct in the sense of the aim we want to reach (i.e. finding out whether our δβ1

lies in the linearization region or not) to compare not only their areas but also their

positions. But these ellipsoids have not the same center which makes finding some
easy criterion for comparison of their positions difficult. That is why Definition 3.4

does not express exactly what we originally wanted. To temper this fact we have
formulated the relation (3.8) in this definition as a “sharp” inequality instead of a

“simple” one. That is why we can believe that this definition practically ensures the
original purpose.

4. Example

As a model of the identical points let us use the grids of the square whose sides

are 300 metres long. In System I we have located this square at the points

ηI,1 = (100, 100)′, ηI,2 = (400, 100)′, ηI,3 = (400, 400)′, ηI,4 = (100, 400)′

and in System II, for an easy verification of the results, we have transformed its grids
to the points ηII,i satisfying the relation

ηII,i =
(

200
200

)
+

(
cos �3 sin �3

− sin �3 cos �3

)
ηI,i, i = 1, . . . , 4.

These relations correspond to the Helmert transformation (1.1) with parameters

(
ϕ1, ϕ2, ϕ3, ϕ4) = (200, 200, cos �3 , sin �3

)
.

Let us consider the measurements of the particular grids and also of their coordi-

nates to be independent in both systems. So we can construct the initial estimators
of the coordinate vectors, i.e. YI and YII , by generating the normally distributed

errors with zero mean values and with dispersions σ2
I and σ2

II to the grids ηI and
ηII , respectively, i.e.

YI ∼ N8(ηI , σ
2
I I), YII ∼ N8(ηII , σ

2
III).

The transmission of this situation to the model (1.2) and its partial solution is

shown in the paper [3]. For the matrices B1, B2, vector b and the quadratic term
ω(δβ1, δβ2) see Remark 1.1.
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The main aim of the paper [3] has been to compare two algorithms which lead to

derivation of estimators of the parameters of the Helmert transformation between
two coordinate systems. Namely, standardly used algorithm which unrealistically
assumes errorless measurement in the first coordinate system and the algorithm

which we consider in this paper, i.e. the algorithm which is based on the linearization
of the model (1.2), see Section 2. Within the paper [3] several arguments were found

which support the use of the second algorithm. But these arguments represent “only”
the empirical point of view.

Therefore, let’s try to support the second algorithm not only by simulation but
also theoretically. Let us try to show that this is the question of the model with weak

nonlinearity and so the linearization we used to obtain the model (2.1) has not any
statistically important influence on the bias of the estimators which we are looking
for.

The following tables contain the nonlinearity measures (3.1) from Definition 3.1.
We have used the actual values of the vectors ηI , ηII and β2, as ηI,0, ηII,0, and

β2,0.

C
(par)
II,δβ1

(β0)

σ2
I\σ2

II 0.01 0.1 0.2 0.5 1

0.01 1.667 · 10−4 2.247 · 10−4 2.300 · 10−4 2.334 · 10−4 2.344 · 10−4

0.1 2.247 · 10−4 5.270 · 10−4 6.086 · 10−4 6.804 · 10−4 7.107 · 10−4

0.2 2.300 · 10−4 6.086 · 10−4 7.454 · 10−4 8.909 · 10−4 9.623 · 10−4

0.5 2.334 · 10−4 6.804 · 10−4 8.909 · 10−4 11.785 · 10−4 13.609 · 10−4

1 2.345 · 10−4 7.107 · 10−4 9.623 · 10−4 13.608 · 10−4 16.667 · 10−4

Table 1. Nonlinearity measure C
(par)
II,δβ1

(β0) with respect to σ2I and σ2II .

2/C
(par)
II,δβ1

(β0)

σ2
I\σ2

II 0.01 0.1 0.2 0.5 1

0.01 1.200 · 104 0.890 · 104 0.870 · 104 0.857 · 104 0.853 · 104

0.1 0.890 · 104 0.380 · 104 0.329 · 104 0.294 · 104 0.281 · 104

0.2 0.870 · 104 0.329 · 104 0.269 · 104 0.225 · 104 0.208 · 104

0.5 0.857 · 104 0.294 · 104 0.225 · 104 0.170 · 104 0.147 · 104

1 0.853 · 104 0.281 · 104 0.208 · 104 0.147 · 104 0.120 · 104

Table 2. Corresponding values 2/C
(par)
II,δβ1

(β0), ε = 1.
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C
(par)
II,δβ2

(β0)

σ2
I\σ2

II 0.01 0.1 0.2 0.5 1

0.01 0.515 · 10−4 0.906 · 10−4 1.125 · 10−4 1.434 · 10−4 1.653 · 10−4

0.1 4.151 · 10−4 4.767 · 10−4 5.233 · 10−4 6.040 · 10−4 6.668 · 10−4

0.2 7.871 · 10−4 8.419 · 10−4 8.857 · 10−4 9.686 · 10−4 10.353 · 10−4

0.5 17.562 · 10−4 17.835 · 10−4 18.132 · 10−4 18.639 · 10−4 19.066 · 10−4

1 30.505 · 10−4 30.548 · 10−4 30.568 · 10−4 30.575 · 10−4 30.583 · 10−4

Table 3. Nonlinearity measure C
(par)
II,δβ2

(β0) with respect to σ2I and σ2II .

2/C
(par)
II,δβ2

(β0)

σ2
I\σ̂2

II 0.01 0.1 0.2 0.5 1

0.01 3.883 · 104 2.208 · 104 1.778 · 104 1.395 · 104 1.210 · 104

0.1 0.482 · 104 0.420 · 104 0.382 · 104 0.331 · 104 0.300 · 104

0.2 0.254 · 104 0.238 · 104 0.226 · 104 0.206 · 104 0.193 · 104

0.5 0.114 · 104 0.112 · 104 0.110 · 104 0.107 · 104 0.105 · 104

1 0.066 · 104 0.065 · 104 0.065 · 104 0.065 · 104 0.065 · 104

Table 4. Corresponding values 2/C
(par)
II,δβ2

(β0), ε = 1.

Using statistical tables we can easily find out that if k1 = 16 (which is our case)
then χ2

16(0; 0.95) = 26.30 and so the relation (3.8) holds for all cases mentioned in the
previous tables. That is why, according to Definition 3.4, the model (1.2) involves

a weak nonlinearity in (ηI,0, ηII,0, β0) and so using linearization is, in the sense we
have talked about, correct.

For a check let us verify validity of the relations (3.2) and (3.3). Let us denote:

b1 the biases of the estimators of coordinate vectors of the identical points
in both systems, i.e. E(η̂′

I , η̂
′
II)

′ − (η′
I,0, η

′
II,0)

′,

b2 the bias of the estimators of the transformation parameters, i.e. E(β̂)− β0,
h1 vector from � 16 , (k1 = 16),
h2 vector from � 4 , (k2 = 4),
p1,h1 right-hand side of (3.2), i.e. p1,h1 = ε

√
h′1Σh1,

p2,h2 right-hand side of (3.3), i.e. p2,h2 = ε
√

h′2(B
′
2(B1ΣB′

1 + B2B′
2)−1B2)−1h2,

ε in our case ε = 1,
ei = (0, . . . 0, 1, 0, . . .0)′ ∈ � 16 , where 1 is at the i-th position,
fi = (0, . . . 0, 1, 0, . . .0)′ ∈ � 4 , where 1 is at the i-th position.
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Of course we do not know the actual values of the biases b1 a b2. But as the vectors

b̂1 := (η̂′
I , η̂

′
II)

′−(η′
I,0, η

′
II,0)

′ and b̂2 := β̂−β0 are their unbiased estimators, we can
approximate biases values by the averages from 1000 realizations of these estimators.
The results for some combinations of the unit dispersions σI and σII are given in

Table 5.

h σ2
I = 0.1, σ2

II = 0.1 σ2
I = 0.5, σ2

II = 0.01 σ2
I = 0.1, σ2

II = 0.5

h′1b1 p1,h1 h′1b1 p1,h1 h′1b1 p1,h1

e1 −0.0081 0.3162 0.0152 0.7071 −0.0047 0.3162
e2 −0.0028 0.3162 0.0157 0.7071 0.0171 0.3162
e3 0.0015 0.3162 −0.0067 0.7071 0.0086 0.3162
e4 −0.0073 0.3162 0.0061 0.7071 −0.0073 0.3162
e5 0.0164 0.3162 0.0062 0.7071 0.0038 0.3162
e6 −0.0074 0.3162 −0.0144 0.7071 0.0062 0.3162
e7 0.0036 0.3162 0.0213 0.7071 −0.0224 0.3162
e8 −0.0034 0.3162 −0.0083 0.7071 0.0059 0.3162
e9 −0.0051 0.3162 0.0030 0.1000 0.0067 0.7071
e10 0.0128 0.3162 0.0004 0.1000 0.0048 0.7071
e11 −0.0067 0.3162 −0.0011 0.1000 0.0131 0.7071
e12 0.0072 0.3162 0.0030 0.1000 −0.0202 0.7071
e13 −0.0044 0.3162 −0.0008 0.1000 0.0237 0.7071
e14 −0.0081 0.3162 −0.0034 0.1000 0.0115 0.7071
e15 −0.0049 0.3162 −0.0031 0.1000 −0.0104 0.7071
e16 −0.0002 0.3162 −0.0019 0.1000 0.0354 0.7071

h′2b2 p2,h2 h′2b2 p2,h2 h′2b2 p2,h2

f1 0.0039 1.0904 −0.0270 1.2172 −0.0130 1.2517
f2 0.0063 1.0904 0.0045 1.2172 −0.0143 1.2517
f3 0.0000 1.0000 0.0001 1.0000 0.0001 1.0000
f4 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000

Table 5.

Vectors ei and fi were chosen purposefully in their forms as the values e′ib1 and

f ′ib2 represent now the biases of the i-th components of the estimators β̂1 and β̂2,
respectively. The results from these tables expressively show that in all the mentioned

cases the relations (3.2) and (3.3) hold, i.e. that the biases of all components of the
given estimators are covered by their standard errors or more precisely by their upper

estimators.
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