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Abstract. A class of parabolic initial-boundary value problems is considered, where ad-
missible coefficients are given in certain intervals. We are looking for maximal values of
the solution with respect to the set of admissible coefficients. We give the abstract general
scheme, proposing how to solve such problems with uncertain data. We formulate a general
maximization problem and prove its solvability, provided all fundamental assumptions are
fulfilled. We apply the theory to certain Fourier obstacle type maximization problem.
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0. Introduction

In engineering design problems, there are uncertainties associated with geometrical
and material properties as well as with loads. Although by themselves these uncer-

tainties may be negligible, their combination might result in unexpected behaviour
which could lead to failure. Furthermore, most structures demand less weight or

less cost, having at the same time a high performance and reliability measure. It
thus becomes essential to deal with optimization problems considering probabilistic

design aspects. An interesting objective of this is also to design optimal shape sys-
tems under a required reliability. It is a consequence of requirements of an industrial

reliability that demands reduction of costs and fast and continuous evolution of the
products.

*This research was supported by the grant No. 1/8263/01 of the Grant Agency of the
Slovak Republic.
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Many mathematical models involve data which are not easy to determine. This

means that the coefficients of inequalities (or equations), right-hand sides or bound-
ary values can often be prescribed only between certain lower and upper bounds,
resulting from the accuracy of experimental measurements and the approximate

identification problem. In the following, we assume that the main aim of the com-
putations is to find the maximal value of a certain functional which depends on

the solution of the mathematical model. Then we can formulate the corresponding
maximization problem and employ methods of Optimal Design. In the present pa-

per we apply a general approach which is called “the method of reliable solutions
or worst scenario method’, see ([8], [9]), to a class of nonlinear parabolic problems

with uncertain coefficients. We give an abstract general scheme, proposing how to
solve such problems with uncertain data. We formulate a general maximization

problem and prove its solvability by using the method of penalization introduced
by Lions ([11]) for the parabolic state problem. Roughly speaking, the solution of

the state inequality is obtained as the limit of solutions of suitable approximate
problems. We introduce a functional by means of which we can choose the “worst

scenario”, i.e., the worst admissible coefficients. This choice is then accomplished by
formulating the corresponding maximization problem and we prove the existence of

at least one maximizer. We concretize the abstract results by applying them to a
certain Fourier obstacle type maximization problem (Fourier problem occurs in the

modelling of several heat transfer phenomena), when the coefficients of the parabolic
operator or the obstacles are given with some uncertainty.

1. Existence and uniqueness theorem for
a parabolic variational inequality

1.1. Basic assumptions.

We describe some function spaces. More details can be found in the books [2],

[5], [7] or [12], [16], [22]. Let E be a reflexive Banach space. If 1 6 p 6 ∞,
we denote by Lp(0, T, E) the space of all measurable functions v : [0, T ] → E such

that ‖v(·)‖E ∈ Lp(0, T ), where T ∈ (0,∞) is fixed. The space Lp(0, T, E) is the
Banach space with the norm ‖v‖Lp(0,T,E) =

(∫ T

0
‖v(t)‖p

E dt
)1/p

if 1 6 p < ∞
and ‖v‖L∞(0,T,E) = ess supt∈[0,T ] ‖v(t)‖E . Let C([0, T ], E) stand for the usual Ba-
nach space of all continuous functions from [0, T ] to E. Further, Ck([0, T ], E) denotes
the space of all k-times continuously differentiable functions ([0, T ] → E).

The spaces Lp(0, T, E), 1 < p < ∞, are reflexive and the dual spaces [Lp(0, T, E)]∗

can be identified with the spaces Lq(0, T, E∗), 1/p + 1/q = 1.
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The space L∞(0, T, E∗) can be identified with the dual space [L1(0, T, E)]∗, i.e., for
every F ∈ [L1(0, T, E)]∗ there exists a unique function θ ∈ L∞(0, T, E∗) satisfying
the relations

‖F‖[L1(0,T,E)]∗ = ‖θ‖L∞(0,T,E∗)

and

F(v) =
∫ T

0

〈θ(t), v(t)〉E dt for every v ∈ L1(0, T, E).

On the other hand, if E is a Hilbert space with the inner product (·, ·)E , then

L2(0, T, E) is a Hilbert space with the inner product

(v, z)L2(0,T,E) =
∫ T

0

(v(t), z(t))E dt, v, z ∈ L2(0, T, E).

Further, we introduce the Sobolev spaces of vector-valued functions. We denote

by W m
p ([0, T ], E) the space of all functions ν ∈ Lp(0, T, E), m > 1, 1 6 p 6 ∞ such

that there exist functions θi ∈ Lp(0, T, E), i = 1, 2, . . . , m, satisfying the relations

∫ T

0

diϕ(t)
dti

ν(t) dt = (−1)i

∫ T

0

ϕ(t)θi(t) dt for every ϕ ∈ C∞
0 (0, T ).

Functions θi are generalized derivatives of the i-th order and we set θi = diν/dti,

i = 1, 2, . . . , m. It is clear that W m
p ([0, T ], E) is a Banach space with the norm

‖ν‖W m
p ([0,T ],E) = (‖ν‖p

Lp(0,T,E) + ‖dν/dt‖p
Lp(0,T,E) + . . . + ‖dmν/dtm‖p

Lp(0,T,E))
1/p,

1 6 p < ∞,

and

‖ν‖W m
∞([0,T ],E) = ‖ν‖L∞(0,T,E) + ‖dν/dt‖L∞(0,T,E) + . . . + ‖dmν/dtm‖L∞(0,T,E).

In particular, v ∈ W 1
p ([0, T ], E) means that v : [0, T ] → E is absolutely continuous,

a.e. differentiable on (0, T ) and

v(t) = v(0) +
∫ t

0

(dv(s)/ds) ds for t ∈ [0, T ], dv/ds ∈ Lp(0, T, E).

Moreover, if E is a Hilbert space thenW m
2 ([0, T ], E) is a Hilbert space with the inner

product

(ν, ϑ)W m
2 (0,T,E) = (ν, ϑ)L2(0,T,E) +

(dν

dt
,
dϑ

dt

)
L2(0,T,E)

+ . . . +
(dmν

dtm
,
dmϑ

dtm

)
L2(0,T,E)

.
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Let V be a Hilbert space with the inner product (·, ·)V and the norm ‖ · ‖V .

Further, L(V, V ∗) is the space of all linear bounded operators from V into V ∗ with
the norm ‖ · ‖L(V,V ∗). We suppose that V ⊂ H , where H is a Hilbert space and V is
dense in H . If we identify H with its dual we have V ⊂ H ⊂ V ∗. We note that this

inclusion holds both in the algebraic and the topological sense. The symbol (·, ·)H

denotes the scalar product in H . As a consequence of the previous identifications,

the scalar product in H for F ∈ H and v ∈ V is the same as the scalar product of
F and v in the duality between V and V ∗. We put

(1.1) 〈F , v〉V = (F , v)H for any F ∈ H and for any v ∈ V.

For a Banach space X and positive constants λ, Λ we denote by E[C1,X ](λ, Λ) the
class of the operator functions κ(·) : [0, T ] → L(X ,X ∗) for which the assumptions

(A0)





1. λ‖v‖2
X 6 〈κ(t)v, v〉X 6 Λ‖v‖2

X ,

2. 〈κ(t)v, z〉X = 〈κ(t)z, v〉X for all v, z ∈ X and t ∈ [0, T ],

3. κ(·) ∈ C1([0, T ], L(X ,X ∗))

hold.

We consider the initial value problem (B)

(1.2)





u(t) ∈ K (t traversing the interval [0, T ]) such that

〈du/dt, v − u(t)〉V + 〈A(t)u(t), v − u(t)〉V > 〈L(t), v − u(t)〉V
for all v ∈ K, for a.e. t ∈ [0, T ]; u(0) = u0 ∈ K,

where K is a closed convex subset of V , du/dt is the strong derivative of u : [0, T ] →
V ∗, and

(A1)





A(t) ∈ E[C1,V ](α, M) for a.e. t ∈ [0, T ],

L ∈ W 1
2 ([0, T ], V ∗) ∩ C([0, T ], H),

A(0)u0 − L(0) ∈ H.

Let IK be the indicator function of some closed convex subset K of V , i.e.

IK(v) = 0 if v ∈ K, IK(v) = +∞ if v /∈ K.

This is a convex, lower semicontinuous, proper mapping on V , and v∗ ∈ ∂IK(v) ⊂
V ∗ if v ∈ K and 〈v−w, v∗〉V > 0 for any w ∈ K. For every v ∈ K, ∂IK(v) is a closed
convex cone in V ∗ with its vertex at zero, called the normal cone to K at v. If v /∈ K,
then ∂IK(v) is empty.
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1.2. An approximation result for solutions to the initial value prob-
lem (B).
Consider the approximating equations (a penalized parabolic initial-value prob-

lem) corresponding to the equality

(1.3)

{
duε(t)/dt + A(t)uε(t) + (∂IK)ε(uε(t)) = L(t), ε > 0,

uε(0) = u0.

We approximate

(1.4) du(t)/dt + A(t)u(t) + ∂IK(u(t)) 3 L(t) for a.e. t ∈ (0, T ),

by replacing IK by its Lipschitz-continuous Yosida approximation (IK)ε, ε > 0, where

(1.5)





(IK)ε(v) = (2ε)−1‖v − PK(v)‖2
V , ε > 0, v ∈ V,

(∂IK)ε(v) (the Fréchet derivative) = ε−1J(v − PK(v)), and

J (duality mapping of V ) : V → V ∗,

〈Jv, z〉V = (v, z)V , v, z ∈ V

is the canonical isomorphism from V into V ∗.

Here PK is the orthogonal projection onto K, and it is monotone and Lipschitz
continuous.
The projection operator is defined by (PK : V → K)

‖v − PK(v)‖V = min
z∈K

‖v − z‖V , v ∈ V,

and PK has the following properties arising directly from its definition (see [21]):

(1.6)





1◦ PK(v) = v ⇔ v ∈ K;

2◦ (PK(v)− v, z − PK(v))V > 0 for all v ∈ V, z ∈ K;

3◦ ‖PK(v)− PK(z)‖V 6 ‖v − z‖V for all v, z ∈ V.

On the other hand, the operator (∂IK)ε then fulfils the conditions

(1.7)





1◦ ε(∂IK)ε(v) = 0 ⇔ v ∈ K;

2◦ 〈ε(∂IK)ε(v)− ε(∂IK)ε(z), v − z〉V > 0;

3◦ ‖ε(∂IK)ε(v) − ε(∂IK)ε(z)‖V ∗ 6 2‖v − z‖V

for all v, z ∈ V.

This means that ε(∂IK)ε is monotone and Lipschitz continuous.
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Theorem 1. Let T > 0, ε > 0. Then there exists a unique solution
uε ∈ C1([0, T ], V ) of the initial value problem (1.3) and the sequences {uεn}n∈ 
and {duεn/dt}n∈  , εn → 0+, are contained in a bounded subset of L2(0, T, V ) ∩
L∞(0, T, H).
���������

. The initial problem can be rewritten in the form

(1.8)

{
duεn(t)/dt + Zεn(t)uεn(t) = L(t),

uεn(0) = u0,

with

Zεn(t) : V → V ∗,

Zεn(t) = A(t) + (∂IK)εn .

Thus the operators Zεn(t) are uniformly Lipschitz continuous and then due to [7]
the initial value problem (1.8) has a unique solution which is also a unique solution

the problem (1.3).
Let us set

(1.9) zεn = uεn − u0.

The function zεn ∈ C1([0, T ], V ) is a solution of the initial value problem

(1.10)

{
dzεn(t)/dt + A(t)zεn(t) + (∂IK)εn(u0 + zεn(t)) = L(t)−A(t)u0,

zεn(0) = 0.

For any function v in L2(0, T, V ) which satisfies dv/dt ∈ L2(0, T, V ∗), the following
equation holds (see [22]):

(1.11)
d
dt
‖v(t)‖2

H = 2〈dv(t)/dt, v(t)〉V .

This result will be used in the next step.

Performing duality pairing in (1.10), we obtain

〈dzεn(t)/dt, zεn(t)〉V + 〈A(t)zεn(t), zεn(t)〉V(1.12)

+ 〈(∂IK)εn(u0 + zεn(t)), zεn(t)〉V
= 〈L(t)−A(t)u0, zεn(t)〉V .

By (1.2) one has u0 ∈ K, and hence ((∂IK)εn)(u0) = 0. This means that

(1.13) 〈(∂IK)εn(u0 + zεn(t)), zεn(t)〉V > 0,
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due to the monotonicity of (∂IK)ε.

Thus, by virtue of (1.13) and (1.11) we get the estimate

(1.14)
d
dt
‖zεn(t)‖2

H + 2α‖zεn(t)‖2
V 6 2〈L(t)−A(t)u0, zεn(t)〉V .

The right-hand side of (1.14) is majorized by

2‖L(t)−A(t)u0‖V ∗‖zεn(t)‖V 6 α‖zεn(t)‖2
V + α−1‖L(t)−A(t)u0‖2

V ∗ .

Therefore,

(1.15)
d
dt
‖zεn(t)‖2

H + α‖zεn(t)‖2
V 6 α−1‖L(t)−A(t)u0‖2

V ∗ .

Integrating (1.15) from 0 to s, 0 < s < T , we obtain in particular

‖zεn(s)‖2
H 6 α−1

∫ s

0

‖L(t)−A(t)u0‖2
V ∗ dt(1.16)

6 α−1

∫ T

0

‖L(t)−A(t)u0‖2
V ∗ dt.

Hence,

(1.17) sup
s∈[0,T ]

‖zεn(s)‖2
H 6 α−1

∫ T

0

‖L(t)−A(t)u0‖2
V ∗ dt.

The right-hand side of (1.17) is finite and independent of εn, therefore

(1.17 1) the sequence {zεn}n∈  remains in a bounded set of L∞(0, T, H).

We then integrate (1.15) from 0 to T and get

(1.17 2) ‖zεn(T )‖2
H + α

∫ T

0

‖zεn(t)‖2
V dt 6 α−1

∫ T

0

‖L(t)−A(t)u0‖2
V ∗ dt.

This shows that the sequence {zεn}εn remains in a bounded set of L2(0, T, V ). This
means that

the sequence {uεn}εn is bounded in L2(0, T, V ) ∩ L∞(0, T, H)(1.17 3)

as εn → 0.
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On the other hand, in order to obtain an estimate for the sequence {duεn/dt}εn

we formally differentiate equation (1.10) and arrive at

d[dzεn(t)/dt]/dt + d[A(t)zεn(t)]/dt + d[(∂IK)εn(u0 + zεn(t))]/dt(1.18)

= dL(t)/dt− (dA(t)/dt)u0.

Next, we observe that the functions (∂IK)εn(u0 + zεn(·)) : [0, T ] → V ∗ are Lip-

schitz continuous by virtue of ((1.7), 3◦). As the space V ∗ is reflexive the functions
(∂IK)εn(u0+zεn(·)) belong to the spaceW 1

∞([0, T ], V ∗) (see [5]). Moreover, the func-
tions Zεn(·)uεn(·), L(·) from equation (1.8) belong to the spaces W 1

∞([0, T ], V ∗) and
W 1

2 ([0, T ], V ∗), respectively. This means that uεn ∈ W 2
2 ([0, T ], V ∗) and by virtue

of (1.9) and (1.18) we can write

〈d2uεn(t)/dt2, duεn(t)/dt〉V
+ 〈A(t)duεn(t)/dt, duεn(t)/dt〉V(1.19)

+ 〈d[(∂IK)εn(uεn(t))]/dt, duεn(t)/dt〉V
= 〈dL(t)/dt− (dA(t)/dt)uεn(t), duεn(t)/dt〉V
for a.e. t ∈ [0, T ].

Further, due to (1.11) we have

d
dt
‖duεn(t)/dt‖2

H + 2〈A(t)duεn(t)/dt, duεn(t)/dt〉V(1.20)

+ 2〈d[(∂IK)εn(uεn(t))]/dt, duεn(t)/dt〉V
= 2〈dL(t)/dt− (dA(t)/dt)uεn(t), duεn(t)/dt〉V .

However (due to the monotonicity of (∂IK)εn), we can write

(1.21) 〈d[(∂IK)εn(uεn(t))]/dt, duεn(t)/dt〉V > 0 for a.e. t ∈ [0, T ].

On the basis of (1.20), (A1), and (1.21) we obtain the inequality

d
dt
‖duεn(t)/dt‖2

H + α‖duεn(t)/dt‖2
V(1.22)

6 2α−1[(‖dL(t)/dt‖V ∗)2 + (‖(dA(t)/dt)uεn(t)‖V ∗)2]

6 2α−1[(‖dL(t)/dt‖V ∗)2 + ‖(dA(t)/dt)‖2
L(V,V ∗)‖uεn(t)‖2

V ],

and therefore, integrating (1.22) from 0 to s, 0 < s < T , and using (1.17)3, one has

‖duεn(s)/dt‖2
H + α

∫ s

0

‖duεn(t)/dt‖2
V dt(1.23)

6 ‖duεn(0)/dt‖2
H + 2α−1

[∫ T

0

(‖dL(t)/dt‖V ∗)2dt + const
]
.
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On the other hand, putting t = 0 in the equality

〈duεn(t)/dt, v〉V + 〈A(t)uεn(t), v〉V + 〈(∂IK)εn(uεn(t)), v〉V = 〈L(t), v〉V

for any v ∈ V , εn > 0, we get (due to the previous estimates, (∂IK)εn(u0) = 0)

〈duεn(0)/dt, v〉V = 〈L(0)−A(0)u0, v〉V .

This yields

(1.24) duεn(0)/dt = L(0)−A(0)u0 (∈ H by (A1)).

By (1.23) and (1.24) we see that

the sequences {duεn/dt}n∈  are bounded in the space(1.25)

L2(0, T, V ) ∩ L∞(0, T, H).

1.3. Solution of a parabolic variational inequality.
Due to the a priori estimates obtained above, we obtain existence and uniqueness

for a solution of the unilateral problem (B) introduced in (1.2).

Theorem 2. There exists a unique solution u ∈ W 1
∞([0, T ], H) ∩ W 1

2 ([0, T ], V )
of the initial value problem (B).
���������

. Let εn → 0, εn > 0. Then, due to the a priori estimates (1.17)3 and
(1.25), the sequence {uεn}εn is bounded in the space W 1

2 ([0, T ], V ) and in all spaces
W 1

p ([0, T ], H), 1 6 p < ∞. Hence, there exists a sequence {εnk
}k∈  , εnk

> 0, and a
function u∗ ∈ W 1

2 ([0, T ], V ) such that

(1.26)

{
lim

k→∞
εnk

= 0,

uεnk
→ u∗ weakly in W 1

2 ([0, T ], V ).

Further, due to ((1.3), 2◦) we have the relation

(1.27) (uεnk
(t), v)V =

(∫ t

0

(duεnk
(s)/ds) ds, v

)

V

+ (u0, v)V

for each k ∈ � and v ∈ V .
The expression

(∫ t

0
(dz(s)/ds) ds, v

)
V
for z ∈ W 1

2 ([0, T ], V ) represents (for each
fixed t ∈ [0, T ] and v ∈ V ) a linear continuous functional over W 1

2 ([0, T ], V ). This
shows that the sequence {(uεnk

(t), v)V }k∈  is (due to ((1.26), 2◦)) convergent for
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every t ∈ [0, T ] and v ∈ V . Consequently, there exists a function u : [0, T ] → V such

that

(1.28) uεnk
(t) → u(t) weakly in V for each t ∈ [0, T ].

By virtue of the Fatou Lemma and the Lebesgue Theorem ([5], App. 1), we see
that

(1.29)

{
u ∈ L1(0, T, V ),

uεnk
→ u weakly in L1(0, T, V ).

On the other hand, by comparing ((1.26), 2◦) with (1.29) we conclude that u(t) =
u∗(t) for a.e. t ∈ [0, T ] and

(1.30) uεnk
→ u weakly in W 1

2 ([0, T ], V ).

We observe that the a priori estimates (1.17)2 or (1.23) imply that the sequences
{uεnk

}k∈  and {duεnk
/dt}k∈  are bounded in the space L∞(0, T, H), which is the

adjoint space to L1(0, T, H). Thus by virtue of (1.30) and due to a theorem of
Banach-Alaoglu-Bourbaki ([6], Th. III 15) one has

(1.31)

{
uεnk

→ u weakly star in L∞(0,T,H),

duεnk
/dt → du/dt weakly star in L∞(0,T,H).

Then according to Proposition III.12 from [6] and by virtue of (1.31), we have the
estimates

‖u− u0‖L∞(0,T,H) 6 lim inf
k→∞

‖uεnk
− u0‖L∞(0,T,H) ,

‖du/dt‖L∞(0,T,H) 6 lim inf
k→∞

‖duεnk
/dt‖L∞(0,T,H) ,

which imply the estimates (using (1.23), (1.24))

(1.32)





‖u− u0‖L∞(0,T,H) 6
[
α−1

∫ T

0

‖L(t)−A(t)u0‖2
V ∗ dt

] 1
2

,

‖du/dt‖L∞(0,T,H) 6
[
‖L(0)‖2

V ∗ + ‖A(0)u0‖2
V ∗

+2α−1

∫ T

0

‖dL(t)/dt‖2
V ∗ dt

+ const( max
t∈[0,T ]

‖dA(t)/dt‖2
L(V,V ∗))

] 1
2

for all t ∈ [0, T ].
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In virtue of the inequality ((1.3), 1◦) we can write

εnk
(∂IK)εnk

(uεnk
(t)) = εnk

[L(t)− duεnk
(t)/dt−A(t)uεnk

(t)]

for every t ∈ [0, T ].
The sequences {uεnk

}k∈  and {duεnk
/dt}k∈  are bounded in V and in H , respec-

tively, for a.a. t ∈ [0, T ]. Then one has (by virtue of ((1.26), 1◦))

lim
k→∞

εnk
(∂IK)εnk

(uεnk
(t)) = lim

k→∞
εnk

[L(t)− duεnk
(t)/dt−A(t)uεnk

(t)] = 0

strongly in V ∗ for a.a. t ∈ [0, T ].
Moreover, using then the monotonocity of εnk

(∂IK)εnk
and the relation (1.28), we

obtain

(1.33) 〈εnk
(∂IK)εnk

(v), u(t)− v〉V 6 0 for a.a. t ∈ [0, T ], v ∈ V.

Then inserting v = u(t) + θz, θ > 0, z ∈ V , into (1.33) we obtain

〈εnk
(∂IK)εnk

(u(t) + θz), z〉V > 0 for all z ∈ V,

whence (due to the Lipschitz continuity of εnk
(∂IK)εnk

) the limiting process θ → 0
yields

〈εnk
(∂IK)εnk

(u(t)), z〉V > 0 for all z ∈ V.

This means that

(1.34) εnk
(∂IK)εnk

(u(t)) = 0 for almost all t ∈ [0, T ],

which due to ((1.7), 1◦) gives the relation u(t) ∈ K.
We have (after changing u on a set of zero measure)

u ∈ W 1
∞([0, T ], H) ∩ C([0, T ], H)(1.35)

and thus,

u(t) = u(0) +
∫ t

0

(du(ξ)/dξ) dξ for every t ∈ [0, T ], 0 < ξ < t.(1.36)

Simultaneously we obtain the relation

(1.37) uεnk
(t) = u0 +

∫ t

0

(duεnk
(ξ)/dξ) dξ for every t ∈ [0, T ], k ∈ � .
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Hence, due to the convergences (1.28) and (1.30) we obtain the initial condition

u(0) = u0.
Let us suppose again that z is given in L2(0, T, V ) (being an arbitrary function),

where

(1.38) z(t) ∈ K for a.e. t ∈ [0, T ].

We then have the inequalities

〈εnk
(∂IK)εnk

(uεn(t)), z(t)− uεnk
(t)〉V 6 0,(1.39)

for a.e. t ∈ [0, T ] and every n ∈ � .

We then come back to the equations

(1.40) duεnk
(t)/dt + A(t)uεnk

(t) + (∂IK)εnk
(uεnk

(t)) = L(t),

and forming the scalar product of (1.40) and [z(t)− uεnk
(t)] and integrating from 0

to T , we arrive at the inequalities

‖uεnk
(T )‖2

H + 2
∫ T

0

〈A(t)uεnk
(t), uεnk

(t)〉V dt(1.41)

6 ‖uεnk
(0)‖2

H + 2
∫ T

0

〈A(t)uεnk
(t), z(t)〉V dt

+ 2
∫ T

0

〈duεnk
(t)/dt, z(t)〉V dt

+ 2
∫ T

0

〈L(t), uεnk
(t)− z(t)〉V dt for all k ∈ � .

However, using the assumptions (A1), we can easily see that the functionals on
the left-hand side of (1.41) are weakly lower semicontinuous on the spaces H and

L2(0, T, V ), respectively. The passage to the limit for k →∞ in the integrals of the
inequalities (1.41) is easy, using the relations (1.28), (1.30) and the initial conditions

in (1.2) and in (1.3). Hence, we find

‖u(T )‖2
H + 2

∫ T

0

〈A(t)u(t), u(t)〉V dt

6 lim inf
k→∞

[
‖uεnk

(T )‖2
H + 2

∫ T

0

〈A(t)uεnk
(t), uεnk

(t)〉V dt

]

6 ‖u(0)‖2
H + 2

∫ T

0

〈du(t)/dt, z(t)〉V dt

+ 2
∫ T

0

〈A(t)u(t), z(t)〉V dt + 2
∫ T

0

〈L(t), u(t)− z(t)〉V dt,
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and this gives

(1.42)
∫ T

0

〈du(t)/dt + A(t)u(t)− L(t), z(t)− u(t)〉V dt > 0

for all z ∈ L2(0, T, V ) such that z(t) ∈ K for a.e. t ∈ [0, T ].
We deduce from (1.42) that

(1.43) 〈du(t)/dt, v − u(t)〉V + 〈A(t)u(t), v − u(t)〉V > 〈L(t), v − u(t)〉V

for all v ∈ K and for a.e. t ∈ [0, T ], which proves the inequality in (1.2).
Indeed, let s ∈ [0, T ] and v ∈ V be arbitrary. We consider a family Ok of neigh-

borhoods of the point s

Ok = (s− 1/k, s + 1/k), k →∞,

and define z(t) = u(t) if t /∈ Ok and z(t) = v if t ∈ Ok.
Then (1.42) yields

(1.44)
2
k

∫

Ok

〈du(t)
dt

+ A(t)u(t) − L(t), v − u(t)
〉

V
dt > 0.

Passing to the limit with k →∞ and using the Lebesgue Theorem, we obtain

〈du(s)/ds + A(s)u(s) − L(s), v − u(s)〉V > 0

for almost all s ∈ [0, T ]. Thus (1.43) follows for a.a. t ∈ [0, T ]. This inequality implies
that u is a solution of the initial value problem (B).
Let u∗ and u0 be two solutions of the problem (B). We take successively

u = u∗, v = u0,

u = u0, v = u∗

in (B). Then adding up these inequalities, we get (integrating from 0 to t)

(1.45)
∫ t

0

〈(du∗(ξ)/dξ − du0(ξ)/dξ) + A(ξ)(u∗(ξ)− u0(ξ)), u∗(ξ)− u0(ξ)〉V dξ 6 0

for every t ∈ [0, T ].
Let us denote z = u∗ − u0. The function z fulfils the initial condition

(1.46) z(0) = 0.
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The inequality (1.45) then implies (by the relation (1.11))

(1.47) ‖z(t)‖2
H + 2

∫ t

0

〈A(ξ)z(ξ), z(ξ)〉V dξ 6 0 for all t ∈ [0, T ].

This estimation together with (A1) gives

z(t) = u∗(t)− u0(t) = 0

and

u∗(t) = u0(t) for all t ∈ [0, T ],

which proves uniqueness of the solution of the initial value problem (B). �
�����������

1. The a priori estimate (1.17)1 shows the existence of an element u

in L∞(0, T, H) and a subsequence εn → 0 (for n →∞) such that

(1.48) uεn converges to u in the weak star topology of L∞(0, T, H).

Then (1.48) means that for each v ∈ L1(0, T, H)

(1.49)
∫ T

0

〈uεn(t)− u(t), v(t)〉H dt → 0, εn → 0.

By (1.17)3 the subsequence {uεnk
}k∈  belongs to a bounded subset of L2(0, T, V ),

therefore another passage to a subsequence shows the existence of some u∗ ∈
L2(0, T, V ) and a subsequence {uεnk

}k∈  such that

(1.50) uεnk
converges to u∗ in the weak topology of L2(0, T, V ).

The convergence (1.50) means
∫ T

0

〈uεnk
(t)− u∗(t), v(t)〉V dt → 0 for any v ∈ L2(0, T, V ∗), εnk

→ 0.

In particular, by (1.1) one has

(1.51)
∫ T

0

〈uεnk
(t), v(t)〉H dt →

∫ T

0

〈u∗(t), v(t)〉H dt

for each v in L2(0, T, H), εnk
→ 0. Thus, comparing (1.51) with (1.49), we see that

∫ T

0

〈u(t)− u∗(t), v(t)〉H dt = 0

for each v in L2(0, T, H), hence,

u = u∗ ∈ L2(0, T, V ) ∩ L∞(0, T, H).
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2. A maximization problem. The worst scenario approach

2.1. Formulation of the problem.
We assume that the data in the problem (B) depend on the input data O belonging

to a compact subset Uad of a Banach space U . We assume that the convex set of

admissible states depends also on an input data parameter O.
We consider the state problem





u(t,O) ∈ K(O) for a.e. t ∈ [0, T ],

〈du(t,O)/dt, v − u(t,O)〉V + 〈A(t,O)u(t,O), v − u(t,O)〉V
> 〈L(t,O), v − u(t,O)〉V for a.e. t ∈ [0, T ]

and for all v ∈ K(O),

(2.1)

u(0,O) = u0(O) ∈ K(O),(2.2)

where K(O) is a closed convex subset of a Hilbert space V .

The maximization problem we consider here is (see the state problem (2.1))

(P)





Maximize Φ(O, u(O)) with respect to O ∈ Uad,

where u(O) ∈ W 1
2 ([0, T ], V ) is the solution

of the state inequality in (2.1).

Here Uad ⊂ U is compact and the criterion functional Φ(O, u(O)) : U ×
W 1

2 ([0, T ], V ) →  is lower bounded and fulfils the assumption

(E0)

{
If vn → v weakly in W 1

2 ([0, T ], V ) and On → O strongly in U ,

On ∈ Uad, then one has lim sup
n→∞

Φ(On, vn) 6 Φ(O, v).

In order to characterize the dependence O → K(O) we recall a special type of
convergence of set sequences introduced in ([14]).

Definition 1. A sequence {Kn}n∈  of subsets of a normed space W converges

to a set K ⊂ W if

(2.3)





1◦ K contains all weak limits of the sequences {vnk
}k∈  , vnk

∈ Knk
,

where{Knk
}k∈  is an arbitrary subsequence of {Kn}n∈  ,

2◦ every element v ∈ K is the strong limit of a sequence {vn}n∈  ,

vn ∈ Kn.

!"��#$�%#�&��('
. K = Lim

n→∞
Kn.
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We introduce the system {K(O)} of convex closed subsets K(O) ⊂ V and

the family {A(t,O)}O∈Uad of linear bounded operators A(·,O) ∈ C1([0, T ], L(V,

V ∗)), O ∈ Uad, t ∈ [0, T ], the initial condition and functionals satisfying the
following assumptions:

(H0)





1◦
⋂

O∈Uad

K(O) 6= ∅;

2◦ On → O strongly in U ⇒ K(O) = Lim
n→∞

K(On);

3◦ 〈A(t,O)v, z〉V = 〈A(t,O)z, v〉V for all v, z ∈ V,

t ∈ [0, T ], O ∈ Uad;

4◦ ‖A(t,O)‖L(V,V ∗) 6 MA for all O ∈ Uad and t ∈ [0, T ];

5◦ ‖dA(t,O)/dt‖L(V,V ∗) 6 M̂A for all O ∈ Uad and t ∈ [0, T ];

6◦ 〈A(t,O)v, v〉V > αA‖v‖2
V , αA > 0 for all v ∈ V,

t ∈ [0, T ], O ∈ Uad

(the real number αA does not depend on [O, t] and v;

A(t, ·) is said to be uniformly coercive with respect to Uad);

7◦ On → O strongly in U ⇒ A(·,On) → A(·,O)

in C1([0, T ], L(V, V ∗));

8◦ u0(On) → u0(O) strongly in V if On → O strongly in U ,

On ∈ Uad;

9◦ ‖L(·,O)‖W 1
2 ([0,T ],V ∗) 6 ML for all O ∈ Uad;

10◦ {L(·,On)}n∈  is a sequence in C1([0, T ], V ∗) such that

L(·,On) → L(·,O) in C1([0, T ], V ∗) as On → O strongly in U ;

11◦ A(0,O)u(O) − L(0,O) ∈ H for all O ∈ Uad;

where MA, M̂A, ML are constants independent of O.

Theorem 3. Let the assumptions (H0) and (E0) be satisfied. Then there exists
at least one maximizer O∗ ∈ Uad of the optimal control problem (P).
���������

. According to Theorem 2, for every O ∈ Uad there exists a unique

solution u(O) ∈ W 1
∞([0, T ], H)∩W 1

2 ([0, T ], V ) of the state initial value problem (2.1).
Let {On}n∈  ⊂ Uad be a maximizing sequence for the criterion functional

Φ(O, u(O)):

(2.4) lim
n→∞

Φ(On, u(On)) = sup
O∈Uad

Φ(O, u(O)).
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Due to the compactness of the set Uad there exists an element O∗ ∈ Uad and a

sequence {Onk
}k∈  such that

(2.5) lim
k→∞

Onk
= O∗ in U .

Hence, the state problem (2.1) may be rewritten in the form

(2.6)





u(t,Onk
) ∈ K(Onk

),

〈du(t,Onk
)/dt + A(t,Onk

)u(t,Onk
), v − u(t,Onk

)〉V
−〈L(t,Onk

), v − u(t,Onk
)〉V > 0

for all v ∈ K(Onk
) and for a.e. t ∈ [0, T ],

u(0,Onk
) = u0(Onk

) ∈ K(Onk
).

Due to the estimates (1.17)2, (1.23), and (1.32) (Theorem 2), taking into account
assumptions (H0), we see that

(2.7)

{
‖u(Onk

)‖W 1
2 ([0,T ],V ) 6 M1,2,

‖u(Onk
)‖W 1

∞([0,T ],H) 6 M1,∞,

where the constants [M1,2, M1,∞] involve only the constants [αA, MA, ML, M̂A]
from (H0) and the upper bound for the sequence u0(Onk

). On the other hand,
if we compare estimates (1.17)2, (1.23), and (1.32) we can see that the constants
[M1,2, M1,∞] do not depend on the sequence {K(Onk

)}k∈  . It follows by esti-
mates (2.7) that there exists a function u∗ ∈ W 1

∞([0, T ], H) ∩ W 1
2 ([0, T ], V ) and a

subsequence of {Onkj
}j∈  such that

(2.8)

{
u(Onkj

) → u∗ weakly in W 1
2 ([0, T ], V ),

u(t,Onkj
) → u∗(t) weakly in V for all t ∈ [0, T ],

and

(2.9)

{
u(Onkj

) → u∗ weakly star in L∞(0, T, H),

du(Onkj
)/dt → du∗/dt weakly star in L∞(0, T, H).

On the other hand, we infer from relations (2.6), ((2.8), 2◦), and assumption
((H0), 2◦) that

(2.10) u∗(t) ∈ K (O∗) for all t ∈ [0, T ].
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Next by virtue of the relations

(2.11)

{
u(t,Onkj

) = u0(Onkj
) +

∫ t

0
(du(ξ,Onkj

)/dξ) dξ,

u∗(t) = u∗(0) +
∫ t

0
(du∗(ξ)/dξ) dξ, t ∈ [0, T ],

we obtain, due to (2.8) and the assumption ((H0), 8◦), that the initial condition
satisfies

(2.12) u∗(0) = u0(O∗) ∈ K(O∗).

Let κ ∈ L1([0, T ], V ) be an arbitrary function such that

κ(t) ∈ K(O∗) for a.e. t ∈ [0, T ].

The assumption ((H0), 2◦) and Definition 1 imply the existence of a sequence
{vk}k∈  such that

vk(t) ∈ K(Onk
) for all t ∈ [0, T ], k ∈ � , and vk(t) → κ(t) strongly in V

for a.e. t ∈ [0, T ].
On the other hand, since the sets K(Onk

) are closed in the space V , we can use
Lemma A.0 from ([5], App.), according to which for every (ε/k) (ε > 0) there exists
a measurable function vk : [0, T ] → K(Onk

) with only a finite number of values and
such that

(2.13)
∫ T

0

‖κ(t)− vk(t)‖V dt = (ε/k).

Then passing to the limit in (2.13), we obtain

(2.13 1) lim
k→∞

‖vk − κ‖L1(0,T,V ) = lim
k→∞

∫ T

0

‖vk(t)− κ(t)‖V dt = 0.

Furthermore, one has, for t ∈ [0, T ],

(2.14)

{
A(t,Onkj

)vj(t) → A(t,O∗)ω(t) weakly in V ∗,

〈A(t,O∗)ω(t), ω(t)〉V 6 lim inf
j→∞

〈A(t,Onkj
)vj(t), vj(t)〉V ,

as vj(t) → ω(t) weakly in V and Onkj
→ O∗ strongly in U .
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Indeed, for any θ(t) ∈ V we can write

lim
j→∞

〈A(t,Onkj
)vj(t), θ(t)〉V = lim

j→∞
〈A(t,Onkj

)θ(t), vj(t)〉V
= 〈A(t,O∗)θ(t), ω(t)〉V
= 〈A(t,O∗)ω(t), θ(t)〉V

due to the assumptions ((H0) 3◦, 7◦).
Moreover, we have (in view of ((H0), 6◦)

〈A(t,Onkj
)(vj(t)− ω(t)), (vj(t)− ω(t))〉V > 0.

Hence, we may write

lim
j→∞

2〈A(t,Onkj
)ω(t), vj(t)〉V

6 lim inf
j→∞

〈A(t,Onkj
)vj(t), vj(t)〉V + lim

j→∞
〈A(t,Onkj

)ω(t), ω(t)〉V .

This yields ((2.14), 2◦). By virtue of the inequality in (2.6) we get
∫ T

0

〈du(t,Onkj
)/dt + A(t,Onkj

)u(t,Onkj
)− L(t,Onkj

),(2.15)

vj(t)− u(t,Onkj
)〉V dt > 0.

The last inequality can be rewritten in the form

‖u(T,Onkj
)‖2

H + 2
∫ T

0

〈A(t,Onkj
)u(t,Onkj

), u(t,Onkj
)〉V dt(2.16)

6 ‖u(0,Onkj
)‖2

H + 2
∫ T

0

〈A(t,Onkj
)u(t,Onkj

), vj(t)〉V dt

+ 2
∫ T

0

〈du(t,Onkj
)/dt, vj(t)〉V dt

+ 2
∫ T

0

〈L(t,Onkj
), u(t,Onkj

)− vj(t)〉V dt.

Thus by passing to the limit in (2.16), we have

lim inf
j→∞

‖u(T,Onkj
)‖2

H + 2 lim inf
j→∞

∫ T

0

〈A(t,Onkj
)u(t,Onkj

), u(t,Onkj
)〉V dt

6 lim
j→∞

‖u0(Onkj
)‖2

H + 2 lim
j→∞

∫ T

0

〈A(t,Onkj
)u(t,Onkj

), vj(t)〉V dt

+ 2 lim
j→∞

∫ T

0

〈du(t,Onkj
)/dt, vj(t)〉V dt

+ 2 lim
j→∞

∫ T

0

〈L(t,Onkj
), u(t,Onkj

)− vj(t)〉V dt,
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and hence (due to Definition 1, ((H0), 8◦), (2.8), (2.9), Fatou lemma, (2.13), and
(2.14)) we can write

‖u∗(T )‖2
H + 2

∫ T

0

〈A(t,O∗)u∗(t), u∗(t)〉V dt(2.17)

6 ‖u0(O∗)‖2
H + 2

∫ T

0

〈A(t,O∗)u∗(t), ω(t)〉V dt

+ 2
∫ T

0

〈du∗(t)/dt, ω(t)〉V dt

+ 2
∫ T

0

〈L(t,O∗), u∗(t)− ω(t)〉V dt.

On the other hand, we infer from (2.17) that (using the initial condition in (2.12))

(2.18)
∫ T

0

〈du∗(t)/dt + A(t,O∗)u∗(t)− L(t,O∗), ω(t)− u∗(t)〉V dt > 0

for all ω ∈ L1(0, T, V ) such that ω(t) ∈ K(O∗) for a.e. t ∈ [0, T ].
Then, inequality (2.18) takes the form

〈du∗(t)/dt, v(t)− u∗(t)〉V + 〈A(t,O∗)u∗(t), v(t)− u∗(t)〉V
> 〈L(t,O∗), v(t)− u∗(t)〉V

for a.e. t ∈ [0, T ] and for all v(t) ∈ K(O∗).
This inequality (together with (2.8), (2.9), and (2.12)) implies that (by the unique-

ness of a solution of (2.1))

(2.19)





u∗ = u(O∗),
u(On) → u(O∗) weakly in W 1

2 ([0, T ], V ), and

u(On) → u(O∗) weakly star in W 1
∞(0, T, H).

The Aubin compactness criterion (see [1]) gives the result that for a subsequence
{u(Onk

)}k∈  one has

u(Onk
) → u(O∗) strongly in L2(0, T, H).

Finally, in view of the assumption (E0) and (2.4) we may write

sup
O∈Uad

Φ(O, u(O)) = lim
n→∞

Φ(On, u(On)) 6 Φ(O∗, u(O∗)),

so that O∗ is a maximizing element (maximizer O∗ in Uad).
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3. Application to reliable solution of

a Fourier obstacle problem

The parabolic obstacle problem occurs in the modelling of several heat transfer
phenomena. Moreover, problems of this kind (optimal control problems in coeffi-

cients for systems described by parabolic equations) can be met in the technology
of semiconductor devices and arise in mechanics and the theory of free boundary

problems.

We start with notations. Let Ω denote an open bounded connected subset be-
longing to the three dimensional real space  3 (x = (x1, x2, x3) is the generic point
in  3 ) with the boundary ∂Ω = ∂ΩU ∪∂ΩG (is the union of ∂ΩU and ∂ΩG such that
meas∂ΩU > 0, meas∂ΩG > 0, meas(∂ΩU ∩ ∂ΩG) = 0). Next, (a,b) ) 3 stands for

the usual scalar product of  3 , i.e., (a,b) ) 3 =
3∑

i=1

aibi for any a,b ∈  3 . Moreover,

we suppose that ∂Ω is sufficiently smooth (Lipschitz continuous, for example). By
H1(Ω) we denote the usual Sobolev space. For v ∈ H1(Ω) the trace M0v(:= v|∂Ω)
is well defined (the trace operatorM0 is a linear continuous operator from H1(Ω) to
L2(∂Ω)), and Hm

∞(Ω) is the class of functions of Cm−1(Ω) whose derivatives of order
(m− 1) satisfy a Lipschitz condition on Ω.

Assume that the coefficients of the differential operator of the second order (de-

pending on the control e) and an obstacle S (x) are given with some uncertainty.
To simplify notation they are denoted as a vector O ≡ [e, S ]T ∈ U (Ω), where
U (Ω) = C(Ω)× C(Ω).

Moreover, we have





Uad(Ω) := U e
ad(Ω)×U S

ad (Ω), where

U e
ad(Ω) = {e ∈ H1

∞(Ω): 0 < emin 6 e 6 emax, |∂emin/∂xi| 6 const〈i〉,

i = 1, 2, 3}.

We note that U e
ad(Ω) is clearly compact in the topology of C(Ω). Set

U S

ad (Ω) = {S ∈ H1
∞(Ω): const1S 6 S (x) 6 const2S

for all [x] ∈ Ω, |∂S /∂xi| 6 const〈i〉, i = 1, 2, 3, S 6 −cp on ∂ΩU

where cp = const > 0}.

We note that the constants involved are positive so that U e
ad(Ω) and U S

ad (Ω) are
nonempty.
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For an arbitrary fixed O ∈ Uad(Ω), let the control system be given by the solution
of a nonlinear parabolic value problem (in the general form)

(3.1)





du(O)/dt + R(e)u(O) > L in (0, T )× Ω,

u(O) = 0 on [0, T ]× ∂ΩU ,

([A(e)]grad u(O),n) ) 3 + ωu(O) = G on [0, T ]× ∂ΩG,

(du(O)/dt + R(e)u(O)− L)(u(O)−S ) = 0 in (0, T )× Ω,

u(O) > S in [0, T ]× Ω,

u(0,O) = u0(O) > S in Ω.

Here

R(e)u(O) := − div([A(e)]grad u(O)) + a0(e)u(O)

where G(x) and ω(x) are given functions defined on ∂Ω with G ∈ L2(∂ΩG), ω(x) ∈
C(∂Ω), ω(x) > 0 on ∂ΩG, while the function S (the control variable) represents

the obstacle; n is the outward unit vector normal at ∂Ω, grad denotes the vector
{∂/∂xi}3

i=1, [A(t, e)] = [A([t, ·], e(·))] = [aij([t, ·], e(·))] denotes a [3× 3]-matrix (the
system of linear operators from  3 to  3 for any t ∈ [0, T ] depending on x over Ω,
a0(t, e) = a0([t, ·], e(·)), t ∈ [0, T ], is a scalar function and e ∈ U e

ad(Ω). The set of
relations (3.1) will be referred to as a differential inequality.

In the following we assume that [A([t,x], e)], a0([t,x], e) are defined on ([0, T ],
Ω)× [emin, emax] and satisfy the conditions

(A2)





1◦ aij([·,x], h), a0([·,x], h) ∈ C1([0, T ]) for a.e. x ∈ Ω

and for any h ∈ [emin, emax],

where a0([t, ·], h) > α0 a.e on Ω, t ∈ [0, T ],

α0 = const > 0;

2◦ aij([t, ·], h), daij([t, ·], h)/dt, a0([t, ·], h), da0([t, ·], h)/dt

are continuous functions on Ω for every h ∈ [emin, emax], t ∈ [0, T ],

and aij([t,x], ·), daij([t,x], ·)/dt, a0([t,x], ·),
da0([t,x], ·)/dt are continuous on [emin, emax]

for every [t,x] ∈ [0, T ]× Ω;

3◦ the ellipticity condition: ([A([t,x], e)]ξ, ξ) ) 3 > α∗|ξ|2) 3

for any ξ ∈  3 , for any e ∈ U e
ad(Ω) and for every

[t,x] ∈ [0, T ]× Ω, where α∗ = const > 0;

4◦ aij([t,x], h) = aji([t,x], h).
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On the right-hand side of (3.1), L(t) denotes a fixed functional defined below in (3.6)
for any t ∈ [0, T ].
We shall employ the method of reliable solutions alias the worst scenario method

(see [8], [9]), which consists of the following main steps:

(3.2)

{ 1◦ choose a functional criterion [O, u] → Φ(O, u),

2◦ solve the maximization problem: O∗ = Arg Max
O∈Uad(Ω)

Φ(O, u(O)),

where u(O) denotes the (unique) solution of the state problem (3.1) for the input
data O.
Consider the following criterion Φ. Let us choose 0 < t < T , subdomains Gj ⊂ Ω,

j = 1, 2, . . .R, and define
{

Nj(v) = (meas Gj)−1
∫

Gj
v(t) dΩ,

Φ(v) = Maxj6R Nj(v),

where Nj(v) is the mean value of v over a given subdomain Gj ⊂ Ω or Gj ⊂ ∂Ω,
R is a positive integer.
We shall refer to ((3.2), 2◦) as to the maximization problem (P). Preparing our

treatment we deal with the state inequality (3.1) for an arbitrary fixed O ∈ Uad(Ω).
Because of the above space assumptions we have to work in the framework of the
space W 1

2 ([0, T ], V ), where V ⊂ H , V = {v ∈ H1(Ω): v = 0 on ∂ΩU}, and H =
L2(Ω). This means that u(O) ∈ W 1

2 ([0, T ], V ) is a solution of (3.1) if and only if
u(O) is a solution of the symmetric operator equation

(3.3)





du(O)/dt + A(e)u(O) > L in (0, T )× Ω (in the sense of distribution)

and

u(O) = 0 on [0, T ]× ∂ΩU ,

([A(e)]grad u(O),n) ) 3 + ωu(O) = G on [0, T ]× ∂ΩG,

(du(O)/dt + A(e)u(O) − L)(u(O)−S ) = 0 in (0, T )× Ω,

u(O) > S in [0, T ]× Ω,

u(0,O) = u0(O) > S in Ω,

where A(t, e) (the symmetric linear operator) is a bounded operator: A(·, e) :
[0, T ] → L(V, V ∗). It is defined by the identity

〈A(t, e)v, z〉V := a([t, e]v, z) for any v, z ∈ V(3.4)

and for any t ∈ [0, T ], e ∈ U e
ad(Ω),
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where we define the symmetric bilinear form a([t, e]·, ·) : V×V →  for all e ∈ U e
ad(Ω)

and for any t ∈ [0, T ] by the relation

a([t, e]v, z) :=
∫

Ω

{([A([t,x], e)]grad v,grad z) ) 3 + a0([t,x], e)vz} dΩ(3.5)

+
∫

∂ΩG

ω(M0v)(M0z) dS.

Let us define a subset of V

D(A(t, e)) = {v ∈ V : z → a([t, e]v, z) is continuous on V(A3)

in the topology of H}.

The right-hand side is an element belonging to V ∗ (for any t ∈ [0, T ]), given by

(3.6) 〈L(t), v〉V (Ω) =
∫

Ω

f(t)v dΩ +
∫

∂ΩG

GM0v dS

for any v ∈ V , f(t) ∈ L2(Ω), G ∈ L2(∂ΩG).
Moreover, we introduce a set of admissible state functions by

K(S , Ω) := {v ∈ V : v(x) > S (x) for a.e. x ∈ Ω}.

Now we define

|[A (t, e)](x)| = sup
ξ∈ ) 3\{0}

|[A([t,x], e)]ξ|/|ξ| ) 3 for any t ∈ [0, T ].

Then by virtue of ((A2), 1◦, 2◦) we easily find that the function: x → |[A (t, e)](x)|
belongs to L∞(Ω) for all t ∈ [0, T ] and e ∈ U e

ad(Ω).

Lemma 1. The family {A(t, e)}, t ∈ [0, T ], e ∈ U e
ad(Ω) of operators defined

by (3.4) and (3.5) satisfies the assumptions ((H0), 3◦ to 7◦).
���������

. From the above hypotheses, using the continuity of the trace operator

M0 : H1(Ω) → L2(∂ΩG), we deduce that

|〈A(t, e)v, z)〉V | 6 max
[
‖[A(t, e)]‖L∞(Ω), ‖a0(t, e)‖L∞(Ω),(3.7)

const(Ω)‖ω‖L∞(∂ΩG)

]
‖v‖V ‖z‖V

with some positive const(Ω) for all t ∈ [0, T ] and all v, z ∈ V , e ∈ U e
ad(Ω) (it is a sim-

ple application of the Schwarz inequality; since [A(t, e)] ∈ L∞(Ω) and ω ∈ L∞(∂ΩG)
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for all t ∈ [0, T ], e ∈ U e
ad(Ω)). The same estimate (due to ((A2), 2◦)) can be obtained

for the operator dA/dt. Consequently, assumptions ((H0), 4◦, 5◦) are fulfilled. On
the other hand, for the bilinear form (3.5) we have (due to ((A2), 1◦ to 3◦))

〈A(t, e)v, v〉V > min[α∗, α0] ‖v‖2
V for all t ∈ [0, T ] and v ∈ V, e ∈ U e

ad(Ω).(3.8)

The condition ((H0), 6◦) is verified.
Let en → e strongly in U e(Ω) for n →∞, en ∈ U e

ad(Ω). Then one has

∣∣〈A(t, en)v, z〉V − 〈A(t, e)v, z〉V
∣∣(3.9)

6
∫

Ω

∣∣([A(t, en)]− [A(t, e)])grad v,grad z) ) 3

∣∣ dΩ

+
∫

Ω

|(a0(t, en)− a0(t, e))vz| dΩ

6 max
i,j

max
x∈Ω

max
t∈[0,T ]

|aij([t,x], en)− aij([t,x], e)|

×
∫

Ω

3|grad v| ) 3 |grad z| ) 3 dΩ

+ max
x∈Ω

max
t∈[0,T ]

|a0([t,x], en)− a0([t,x], e)|
∫

Ω

|vz| dΩ.

Furthermore, by the hypotheses ((A2), 1◦, 2◦) and due to (3.9), an application of
Theorem 3.10 ([12]) yields that

lim
n→∞

max
i,j

max
x∈Ω

max
t∈[0,T ]

|aij([t,x], en)− aij([t,x], e)| = 0

and

lim
n→∞

max
x∈Ω

max
t∈[0,T ]

|a0([t,x], en)− a0([t,x], e)| = 0.

This completes the proof of Lemma 1. �

Lemma 2. For any S ∈ U S
ad (Ω) the set K(S , Ω) is a closed and convex subset

of V and

{Sn → S strongly in C(Ω); Sn ∈ U S

ad (Ω)} ⇒ K(S , Ω) = Lim
n→∞

K(Sn, Ω).

���������
. Let us define for a fixed v ∈ V

Ω1 = {x ∈ Ω: v(x) −S (x) 6 cp/2}.
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Since v − S > cp holds on ∂ΩU , there exists a function % ∈ C∞(Ω) ∩ V such

that 0 6 % in Ω and % > 1 in Ω1. For any v ∈ K(S , Ω) we construct a sequence
vn = v + %‖Sn −S ‖C(Ω). Then vn ∈ V and vn > Sn a.e. in Ω. In fact, in Ω1 we
have

vn −Sn > v −S + (S −Sn) + ‖Sn −S ‖C(Ω) > 0, for all n,

whereas in Ω\Ω1

vn −Sn > v −S + (S −Sn) > cp/2− ‖S −Sn‖C(Ω) > 0

holds for n sufficiently great. Moreover,

‖vn − v‖V = ‖Sn −S ‖C(Ω)‖v‖V → 0.

Next, let vn ∈ K(Sn, Ω), vn → v weakly in V . Then v ∈ V as V is weakly closed in
H1(Ω) and vn → v in L2(Ω) strongly due to the Rellich Theorem, vn > Sn a.e. in Ω.
From the Lebesgue Theorem, v > S follows a.e., so that v ∈ K(S , Ω).
Let the initial function u0(O) ∈ K(S , Ω) for O ∈ Uad(Ω) be a solution of the

elliptic variational inequality

(3.10) 〈A(0, e)u0(O), v − u0(O)〉V > 〈L(0), v − u0(O)〉V

for all v ∈ K(S , Ω).
Let {On}n∈  ,On ∈ Uad(Ω), be a sequence such that

(3.11) On → O strongly in U (Ω).

Consider the variational inequality

(3.12)

{
u0(On) ∈ K(Sn, Ω),

〈A(0, en)u0(On), v − u0(On)〉V > 〈L(0), v − u0(On)〉V

for all v ∈ K(Sn, Ω). Then due to (3.6), (3.7) and (3.8) and since the sequence
{On}n∈  is bounded in C(Ω) we obtain an estimate

(3.13) ‖u0(On)‖V 6 const

with a constant independent of n.

The sequence {u0(On)}n∈  is bounded in V , hence there exists an element u0〈∗〉
and a subsequence {u0(Onk

)}k∈  such that

(3.14) u0(Onk
) → u0〈∗〉 weakly in V.
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Moreover, as u0(Onk
) ∈ K(Snk

, Ω) due to Lemma 2 and Definition 1 we have

(3.15) u0〈∗〉 ∈ K(S , Ω).

By virtue of (3.7) and (3.13) we obtain

‖A(0, enk
)u0(Onk

)‖V ∗ 6 M0 for all k.

Consequently, there exists an element X ∈ V ∗ and a subsequence

{A(0, enkm
)u0(Onkm

)}m∈ 

such that

(3.16) A(0, enkm
)u0(Onkm

) → X weakly in V ∗.

By assumption ((H0), 2◦) there exists a sequence {am}m∈  , am ∈ K(Om, Ω), such
that am → u0〈∗〉 strongly in V .
Henceforth, we will often use the following implication: ωn → ω weakly in V ∗,

zn → z strongly in V ⇒ 〈ωn, zn〉V → 〈ω, z〉V .
Now, let us take v := am in (3.12). We may write (by virtue of (3.16))

lim sup
m→∞

〈A(0, enkm
)u0(Onkm

), u0(Onkm
)〉V(3.17)

6 lim sup
m→∞

〈A(0, enkm
)u0(Onkm

), am〉V
+ lim sup

m→∞
〈L(0), u0(Onkm

)− am〉V
= 〈X , u0〈∗〉〉V .

Next, due to the assumption((A2), 3◦), we have

〈A(0, enkm
)u0(Onkm

)−A(0, enkm
)v, u0(Onkm

)− v〉V > 0(3.18)

for all v ∈ V.

Taking into account (3.14), (3.16), and (3.17), we derive

(3.19) 〈X −A(0, e)v, u0〈∗〉 − v〉V > 0 for all v ∈ V.

In fact, on the basis of (3.18) we may write

lim sup
m→∞

〈A(0, enkm
)v, u0(Onkm

)− v〉V
6 lim sup

m→∞
〈A(0, enkm

)u0(Onkm
), u0(Onkm

)〉V
+ lim sup

m→∞
〈A(0, enkm

)u0(Onkm
),−v〉V

= 〈X , u0〈∗〉〉V + 〈X ,−v〉V .
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This means that (3.19) follows from Lemma 1, ((H0), 7◦) and (3.18), (3.14).
In (3.19) we set v = u0〈∗〉 + ϑ(w − u0〈∗〉), ϑ ∈ (0, 1), and w ∈ V , and we get

〈X −A(0, e)(u0〈∗〉 + ϑ(w − u0〈∗〉)), u0〈∗〉 − w〉V > 0 for all w ∈ V,

0 < ϑ < 1.

However, due to (3.7), if we set again w = v, we arrive at

(3.20) 〈A(0, e)u0〈∗〉, u0〈∗〉 − v〉V 6 〈X , u0〈∗〉 − v〉V for all v ∈ V.

Next, substituting v := u0〈∗〉 in (3.18), we obtain

〈A(0, enkm
)u0(Onkm

), u0(Onkm
)− u0〈∗〉〉V

> 〈A(0, enkm
)u0〈∗〉, u0(Onkm

)− u0〈∗〉〉V .

On the other hand, due to the relations (3.9) and (3.14), we have

lim
m→∞

〈A(0, enkm
)u0〈∗〉, u0(Onkm

)− u0〈∗〉〉V = 0

so that

(3.21) lim inf
m→∞

〈A(0, enkm
)u0(Onkm

), u0(Onkm
)− u0〈∗〉〉V > 0.

Hence, combining (3.21) with the inequality

lim sup
m→∞

〈A(0, enkm
)u0(Onkm

), u0(Onkm
)− u0〈∗〉〉V

6 lim sup
m→∞

〈A(0, enkm
)u0(Onkm

), u0(Onkm
)〉V

+ lim
m→∞

〈A(0, enkm
)u0(Onkm

),−u0〈∗〉〉V 6 0

which is a consequence of (3.17) and (3.16), we are led to the equation

(3.22) lim
m→∞

〈A(0, enkm
)u0(Onkm

), u0(Onkm
)− u0〈∗〉〉V = 0.

Given a v ∈ K(S , Ω), by Lemma 2 there exists a sequence {vm}m∈  , vm ∈
K(Sm, Ω), vm → v strongly in V . Then, setting v = vm in (3.12) we may write

lim
m→∞

〈A(0, enkm
)u0(Onkm

), u0(Onkm
)− vm〉V

6 lim
m→∞

〈L(0), u0(Onkm
)− vm〉V = 〈L(0), u0〈∗〉 − v〉V .
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The limit on the left-hand side exists and can be bounded below, since we can write

lim
m→∞

〈A(0, enkm
)u0(Onkm

), u0(Onkm
)− u0〈∗〉〉V

+ lim
m→∞

〈A(0, enkm
)u0(Onkm

), u0〈∗〉 − vm〉V
= 〈X , u0〈∗〉 − v〉V > 〈A(0, e)u0〈∗〉, u0〈∗〉 − v〉V ,

where (3.22), (3.16), and (3.20) have been employed.

This leads (due to the continuity of the trace operator) to the inequality

(3.23)





u0〈∗〉 ∈ K(S , Ω),

〈A(0, e)u0〈∗〉, v − u0〈∗〉〉V > 〈L(0), v − u0〈∗〉〉V
for any v ∈ K(S , Ω).

Hence, we deduce that u0〈∗〉 = u0(O) (since the element v ∈ K(S , Ω) is chosen
arbitrarily and the solution of the state problem (3.10) is unique) and we may write

(3.24) u0(On) → u0(O) weakly in V.

By virtue of Lemma 2 there exists a sequence {θn}n∈  , θn ∈ K(Sn, Ω), such that
θn → u0(O) strongly in V . Inserting v := θn in (3.12) and adding 〈A(0, en)(u0(On)−
θn), u0(On)− θn〉V to both its sides, we obtain

lim sup
n→∞

〈A(0, en)u0(On)−A(0, en)θn, u0(On)− θn〉V(3.25)

6 lim sup
n→∞

|〈A(0, en)θn, θn − u0(On)〉V |

+ lim sup
m→∞

|〈L(0), θn − u0(On)〉V | = 0.

We note that the last inequality follows from the implication

en ∈ U e
ad(Ω), en → e strongly in U e(Ω) and vn → v strongly in V

for n →∞⇒ ‖〈A(0, en)vn −A(0, en)v‖V ∗ 6 MA‖vn − v‖V → 0,

which is a consequence of ((H0), 4◦). On the other hand, due to the uniform mono-
tonicity of [A(0, en)] by ((H0), 6◦) and due to (3.25) we obtain the strong conver-
gence u0(On) → u0(O) strongly in V for n → ∞. This means that the assumption
((H0), 8◦) is verified. The operator A(0, e) is defined by (3.4) at t = 0. Then
u0(O) ∈ D(A([0, ·])) is equivalent (due to the assumption (A3)) to u0(O) ∈ V ,

A([0, ·])u0(O) ∈ H and
∫
Ω A([0, ·])u0(O)v dΩ = a([0, ·]u0(O), v) for any v ∈ V . On

the other hand, in view of (3.6) (for G = 0 on ∂ΩG) one has L(0) ∈ H . Hence,

349



we have A([0, ·])u0(O) − L(0) ∈ H for all O ∈ Uad(Ω). This means that the condi-
tion ((H0), 11◦) is verified. Now if we combine the above arguments we may conclude
that all the assumptions (H0) are satisfied.
Let us consider the criterion Φ of the form (3.2). We shall verify the assump-

tion (E0).
Let vn → v strongly in C([0, T ], H), then vn(t) → v(t) strongly in L2(Ω) and we

may write

|Nj(vn)−Nj(v)| = (measGj)−1

∫

Gj

(vn(t)− v(t)) dΩ

6 const ‖vn(t)− v(t)‖L2(Ω) → 0 as n →∞.

Then one has

lim
n→∞

Φ(vn) = lim
n→∞

Max
j

Nj(vn) = Max
j

lim
n→∞

Nj(vn) = Max
j

Nj(v) = Φ(v).

Now, we are able to define the main task for the maximization problem for a

parabolic inequality. Find

(Pheat) O∗ = Arg Max
O∈Uad(Ω)

Φ(O, u(O)),

where u(O) ∈ W 1
2 ([0, T ], V ) denotes the solution of the State Problem

(3.26)

{
u(t,O) ∈ K(S , Ω), t ∈ [0, T ], O ∈ Uad(Ω),

〈du(t,O)/dt + A(e)u(t,O), v − u(t,O)〉V > 〈L(t), v − u(t,O)〉V .

Finally, as a consequence of Lemmas 1, 2 and due to the assertions given above,
we conclude that the assumptions of Theorem 3 are fulfilled. We thus obtain:

Theorem 4. There exists a unique solution of the State Problem (3.26) for any
O ∈ Uad(Ω). The Maximization Problem (Pheat) has at least one solution.
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Dunod, Paris, 1969.

[12] V.C. Litvinov: Optimization in Elliptic Problems with Applications to Mechanics of
Deformable Bodies and Fluid Mechanics. Birkhäuser-Verlag, Berlin, 2000.

[13] F. Mignot, J.-P. Puel: Optimal control of some variational inequalities. SIAM J. Control
Optim. 22 (1984), 466–478.

[14] U. Mosco: Convergence of convex sets and solutions of variational inequalities. Adv.
Math. 3 (1969), 510–585.

[15] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Masson, Paris,
1967.

[16] P. Neittaanmäki, D. Tiba: Optimal Control of Nonlinear Parabolic Systems. Theory,
Algorithms and Applications. Pure and Applied Mathematics. Marcel Dekker inc., New
York, 1994.

[17] T. I. Seidman, Hong Xing Zhou: Existence and uniqueness of optimal controls for a
quasilinear parabolic equation. SIAM J. Control Optim. 20 (1982), 747–762.

[18] J. Sokolowski, J. P. Zolesio: Introduction to Shape Optimization. Shape Sensitivity
Analysis. Springer-Verlag, New York, 1992.
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