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Abstract. A modification of the Nikolskij extension theorem for functions from Sobolev
spaces Hk(Ω) is presented. This modification requires the boundary ∂Ω to be only Lipschitz
continuous for an arbitrary k ∈ � ; however, it is restricted to the case of two-dimensional
bounded domains.
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0. Introduction

The extension theorems concerning extensions of functions from Sobolev spaces
Hk(Ω) are very useful in the mathematical theory of the finite element method when
analyzing the convergence (or rate of convergence) of FEM in the case of a domain
the boundary ∂Ω of which is not polygonal. In FEM usually the Calderon extension
theorem (see, e.g., [6, pp. 77–81]) has been used. This extension has one great
advantage: extending functions from an arbitrary Sobolev space Hk(Ω) (k ∈ � ) into
Hk( � N ) (N is the dimension of Ω) only the Lipschitz continuous boundary ∂Ω is
required. However, the Calderon extension has also a great disadvantage: it is defined

by all generalized derivatives Dαu ∈ L2(Ω) (|α| 6 k) of the extended function u.
Thus, the Calderon extension from Hk(Ω) is not the Calderon extension from Hm(Ω)

*This work was supported by the grants No. 201/00/0557 and 201/03/0570 of the Grant
Agency of the Czech Republic and by the grant MSM: 262100001 of the Ministry of the
Education.
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(m < k; k,m ∈ � 0 ) and, using it, rather complicated tricks must be sometimes used

(see, for example, [10, proof of Theorem 31.2]). Moreover, we cannot apply the
abstract interpolation theory between Banach spaces to the Calderon extensions.

Contrary to Calderon’s extensions, the Nikolskij extensions are based on linear
combinations of sophisticated “reflections” of function values of the extended func-

tion u (see (1.22), (1.23)). These “reflections” were first considered in the Hestenes
theory of extensions of functions belonging to Ck(Ω) (see [4]; this paper is an im-
portant modification of the theory introduced in [9]). As only function values of the
extended function u are considered in the definition of the extension, the extension

from Hk(Ω) is also an extension from Hm(Ω) (m < k; m, k ∈ � ).
In [6, pp. 75–77] the Nikolskij extension is described and the extension theorem

proved for Ω ∈ Ck−1,1. A similar result is formulated in [7]; however, for Ω ∈ Ck+1,1

only. In [1] the basic idea introduced in [6, (3.33), (3.34)] is presented with reference

to [3, Appendix] where, however, only the Whitney-Hestenes theory of extensions of
functions belonging to Ck(Ω) is explained. Also in [8, pp. 21–24] a modification of
the Ck(Ω)-extension theory is presented. How to modify the trick described in [8] to
the Hk(Ω)-extension theory (and to obtain an extension of Nikolskij-Hestenes type
for spaces Hk(Ω) with Ω ∈ C0,1) is the contents of the present paper.

1. The case of a smooth boundary and some auxiliary results

1.1. Definition. Let Ω be a bounded (in the general case multiply connected)
domain in � N , which is considered in a Cartesian coordinate system x1, . . . , xN

(the points of this system will be denoted by X = [x1, . . . , xN ]). Let Ω satisfy the
following conditions:

a) There exist positive constants α, β, a finite number m of Cartesian coordinate
systems xr1, . . . , xrN (r = 1, . . . ,m) (the points in the r-th system will be denoted
by Xr = [xr1, . . . , xrN ]), orthogonal mappings Ar : � N → � N (r = 1, . . . ,m) and
bounded domains U1, . . . , UN (the form of which will be specified at point c)) such

that

(1.1)
m⋃

r=1

Ur ⊃ ∂Ω, Λr = Ur ∩ ∂Ω 6= ∅ (r = 1, . . . ,m);

relations (1.1) are considered in the (global) system x1, . . . , xN .

b) The points Xr of the r-th local system are connected with the points X of the

global system by relations

(1.2) Xr = Ar(X), X = A−1
r (Xr) (r = 1, . . . ,m).
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The image of the domain Ω in the r-th system is denoted by Ωr; hence

(1.3) Ωr = Ar(Ω), Ω = A−1
r (Ωr) (r = 1, . . . ,m).

The image of the domain Ur in the r-th system is denoted by Ûr; hence

(1.4) Ûr = Ar(Ur), Ur = A−1
r (Ûr) (r = 1, . . . ,m).

c) There exist m functions ar(X ′
r) continuous in (N − 1)-dimensional open

cubes ∆r (i.e., intervals in the case of N = 2), where

(1.5) ∆r = {X ′
r = [xr1, . . . , xrN−1] : |xrj | < α, j = 1, . . . , N − 1},

such that

Λ̃r = Ûr ∩ ∂Ωr = {[X ′
r, ar(X ′

r)] : X
′
r ∈ ∆r}, (Λ̃r = Ar(Λr)),(1.6)

{Xr : X ′
r ∈ ∆r, ar(X ′

r) < xrN < ar(X ′
r) + β} = Ûr ∩ Ωr = V̂ +

r ,(1.7)

{Xr : X ′
r ∈ ∆r, ar(X ′

r)− β < xrN < ar(X ′
r)} = Ûr\Ωr = V̂ −

r .(1.8)

Thus, we have Ûr = V̂ +
r ∪ Λ̃r ∪ V̂ −

r , V̂
+
r lies inside of Ωr and V̂ −

r outside of Ωr (see
Fig. 1).

If all these conditions are satisfied then the domain Ω is called the domain with a
continuous boundary ; briefly we denote it by Ω ∈ C0,0 (see Fig. 1 for N = 2).

xrN

(xr1, . . . , xrN−1) = X ′
r

O

α
αβ

β

ar(X ′
r)

Ω

Figure 1.

d) Moreover, if each of functions ar(X ′
r) (r = 1, . . . ,m) is Lipschitz on the cube∆r,

i.e., there exists a constant L such that for every two points X ′
r, Y

′
r of this cube we

have

(1.9) |ar(Y ′
r )− ar(X ′

r)| 6 L
√

(yr1 − xr1)2 + . . .+ (yrN−1 − xrN−1)2,
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then we say that Ω is a domain with a Lipschitz continuous boundary and write
briefly Ω ∈ C0,1.

e) Finally, if each of functions ar(X ′
r) (r = 1, . . . ,m) has all partial derivatives on

the cube ∆r up to and including the order k which all are Lipschitz continuous then

we write Ω ∈ Ck,1.

The orthogonal transformation Xr = Ar(X) can be written in the form

(1.10) xri = x0
i +

N∑

j=1

aijxj (i = 1, . . . , N),

where x0
1, . . . , x

0
N are the coordinates of the origin of the global coordinate system in

the r-th local coordinate system. The Jacobian of this transformation satisfies

(1.11) J(X) =
D(xr1, . . . , xrN )
D(x1, . . . , xN )

= ±1,

where the sign plus appears in the case when the coordinate systems are oriented
either both positively or both negatively.

In � 2 the transformation (1.10) has the form (we write it in the case when both
coordinate systems are oriented positively and the positive direction of the axis xr1

makes the angle α with the positive direction of the axis x1)

xr1 = x0
1 + x1 cosα+ x2 sinα,(1.12)

xr2 = x0
2 − x1 sinα+ x2 cosα.

The inverse transformation X = A−1
r (Xr) has in this case the form

x1 = x0
r1 + xr1 cosα− xr2 sinα,(1.13)

x2 = x0
r2 + xr1 sinα+ xr2 cosα.

The following Lemma 1.2 is formulated for greater simplicity only in � 2 . The

proof is straightforward and thus omitted.

1.2. Lemma. Let v ∈ Hk(Ω), Ω ∈ C0,0 and let vr(Xr) = v(A−1
r (Xr)). Then

vr ∈ Hk(Ωr) and we have

D(1,0)vr = cosα
∂v

∂x1
+ sinα

∂v

∂x2
, D(0,1)vr = − sinα

∂v

∂x1
+ cosα

∂v

∂x2
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and generally for |α| 6 k

Dαvr =
(

cosα
∂

∂x1
+ sinα

∂

∂x2

)α1(
− sinα

∂

∂x1
+ cosα

∂

∂x2

)α2

v,

where α = (α1, α2).

1.3. Theorem. Let G ∈ C0,0, v ∈ Hk(G), Gr = Ar(G), vr(Xr) = v(A−1
r (Xr)).

Then

(1.14) ‖vr‖k,Gr = ‖v‖k,G.

���������
. For N = 2 Theorem 1.3 is a consequence of the theorem on substitution

in the Lebesgue integral, Lemma 1.2 and relation (1.11). In the case of N > 3 the
proof is similar. �

The formulation of the following theorem is taken from [6, Theorem 3.9 of Chap-
ter 2].

1.4. Theorem. Let Ω ∈ Ck−1,1. Then there exists a linear and bounded

extension operator Ek : Hk(Ω) → Hk( � N ), i.e., we have

Ek(c1v1 + c2v2) = c1Ek(v1) + c2Ek(v2) ∀ c1, c2 ∈ � 1 , ∀ v1, v2 ∈ Hk(Ω),(1.15)

Ek(v)(X) = v(X) ∀X ∈ Ω, ∀ v ∈ Hk(Ω),(1.16)

‖Ek(v)‖k, � N 6 C‖v‖k,Ω ∀ v ∈ Hk(Ω),(1.17)

where the constant C depends only on the domain Ω. In addition, we have

(1.18) Ek : Hm(Ω) → Hm( � N ) ∀m ∈ � 0 , m < k,

i.e., the extension operator from Hk(Ω) is also a linear and bounded extension op-
erator from Hm(Ω) for all m ∈ � 0 , m < k.

The proof of Theorem 1.4 is based on Lemmas 1.5 and 1.6.

1.5. Lemma. Let F and G be two bounded domains in � N and let T : F → G

be a one-to-one and continuous transformation of the domain F onto G. Let the

transformation T be (k − 1)-times continuously differentiable on F and let its all
derivatives of order k−1 be Lipschitz on F . Finally, we assume that T−1 is a Lipschitz
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transformation defined on G. Let u ∈ Hk(G) and let us set v(Y ) = u(T (Y )). Then
v ∈ Hk(F ) and we have

(1.19) ‖v‖k,F 6 C‖u‖k,G.

The proof of Lemma 1.5 is not simple and can be found in [6, Lemma 3.4 of
Chapter 2] with references to [6, Lemmas 3.1 and 3.2].

The situation in Section 2 will be such that in the proof of Lemma 2.3 we will be

able to use a modification of Lemma 1.5 with stronger assumptions concerning the
transformation T . We formulate now this modification in Lemma 1.5a and present

its proof. This lemma concerns two-dimensional domains and we will use in it the
same notation which is used in Lemma 2.3 and its proof.

1.5a. Lemma. Let (ξ1, ξ2) and (y1, y2) be two Cartesian coordinate systems
connected by the transformation

(1.20) ξ1 = ϕ1(y1, y2) := y1 + g(y2), ξ2 = ϕ2(y1, y2) := y2 + f(y1),

where f(t), g(t) are k-times continuously differentiable functions. Let f(0) = g(0) =
f ′(0) = 0. Let S be a square neighbourhood of the origin y1 = y2 = 0 and let Σ be its
image in the coordinate system (ξ1, ξ2) in transformation (1.20). Let S be so small
that all derivatives Dαϕi(y1, y2) (|α| 6 k, i = 1, 2) are bounded. Let w ∈ Hk(Σ)
and let us set

(1.21) v(y1, y2) = w(ϕ1(y1, y2), ϕ2(y1, y2)).

Then

(1.22) v ∈ Hk(S), ‖v‖k,S 6 C‖w‖k,Σ.

���������
. The Jacobian of (1.20) is given by the expression

J(y1, y2) =
∣∣∣∣

1 g′(y2)
f ′(y1) 1

∣∣∣∣ = 1− f ′(y1)g′(y2).

Thus

(1.23) J(0, 0) = 1.
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Relation (1.23) has the following consequence (see [3, Sections 198, 199]): At some

neighbourhood of ξ1 = ξ2 = y1 = y2 = 0 the transformation (2.23) has a unique
inverse which is expressed by

(1.24) y1 = µ1(ξ1, ξ2), y2 = µ2(ξ1, ξ2)

and the functions µ1, µ2 are of class Ck. The Jacobians

J(y1, y2), J−1(ξ1, ξ2) = 1/J(y1, y2)

are different from zero in the corresponding neighbourhoods (J−1(ξ1, ξ2) is the Ja-
cobian of the functions µ1(ξ1, ξ2), µ2(ξ1, ξ2)).
If y2 = 0 and y1 > 0 then we obtain ξ2 = f(ξ1) and ξ1 > 0. This means that

the first arc ξ2 = f(ξ1) corresponds to the positive part of the coordinate axis y1.

Similarly, the second arc corresponds to the positive part of the coordinate axis y2

(see Fig. 6).

Let the square neighbourhood S be such a part of the whole neighbourhood that
all derivatives Dαϕi(y1, y2) (|α| 6 k, i = 1, 2) are bounded in S and all derivatives
Dαµi(ξ1, ξ2) (|α| 6 k, i = 1, 2) are bounded in Σ.
First, let us consider w ∈ C∞(Σ). Then the function v(y1, y2) given by (1.21)

satisfies v ∈ C∞(S) and we can write, according to the rule of differentiation of a
composite function,

∂v

∂yi
(y1, y2) =

2∑

r=1

∂w

∂ξr
(ξ1, ξ2)

∂ϕr

∂yi
(y1, y2),

∂2v

∂yi∂yj
(y1, y2) =

2∑

r=1

2∑

s=1

∂2w

∂ξr∂ξs
(ξ1, ξ2)

∂ϕs

∂yj
(y1, y2)

∂ϕr

∂yi
(y1, y2)

+
2∑

r=1

∂w

∂ξr
(ξ1, ξ2)

∂2ϕr

∂yi∂yj
(y1, y2)

and generally

∂α1+α2v

∂yα1
1 ∂yα2

2

(y1, y2) =
∂α1+α2w

∂ξα1+α2
1

(ξ1, ξ2)
(∂ϕ1

∂y1
(y1, y2)

)α1(∂ϕ1

∂y2
(y1, y2)

)α2

+ . . .

+
∂w

∂ξ2
(ξ1, ξ2)

∂α1+α2ϕ2

∂yα1
1 ∂yα2

2

(y1, y2),

where ξ1 and ξ2 appearing as arguments on the right-hand sides of these expressions
should be expressed by (1.20). Inserting these relations into the right-hand side of
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the expression

‖v‖2
k,S =

∑

|α|6k

∫

S
(Dαv)2 dY

and using the boundedness of the derivatives of ϕ1, ϕ2, we obtain after applying

the Cauchy inequality for sums (see (1.49)) and the theorem on substitution in the
Lebesgue integral

(1.25) ‖v‖k,S 6 C‖w‖k,Σ ∀w ∈ C∞(Σ).

Let now w ∈ Hk(Σ). As Σ ∈ C0,0 we can use the theorem on the density of C∞(Σ)
in Hk(Σ) and find a sequence {wj} ⊂ C∞(Σ) such that

(1.26) lim
j→∞

‖wj − w‖k,Σ = 0.

Let us set
vj(y1, y2) := wj(ϕ1(y1, y2), ϕ2(y1, y2)).

We have vj ∈ C∞(S) and so we can derive (similarly as we obtained (1.25))

‖vl − vj‖k,S 6 C‖wl − wj‖k,Σ.

According to (1.26), the right-hand side of the last relation tends to zero with
j, l → ∞. Thus, {vj} is a Cauchy sequence in Hk(S). The completeness of Hk(S)
guarantees the existence of a function ω ∈ Hk(S) such that

lim
j→∞

‖vj − ω‖k,S = 0.

Further, if k > 2 then w ∈ Hk(Σ) implies w ∈ C0(Σ), according to the Sobolev
imbedding theorem. Hence v ∈ C0(S) and

‖vj − v‖0,S 6 C‖wj − w‖0,Σ → 0.

The last two relations and the uniqueness of the limit in L2(S) imply that ω = v

a.e. in S; hence v ∈ Hk(S) and we have

(1.27) lim
j→∞

‖vj − v‖k,S = 0.

The rest of the proof of inequality (1.22)2 is simple when k > 2. By (1.25) we
have

‖vj‖k,S 6 C‖wj‖k,Σ.
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Passing to the limit for j →∞ in this inequality, we obtain, according to (1.26) and
(1.27), the desired inequality (1.22)2 in the case k > 2.
Now, let k = 1; thus, w ∈ H1(Σ) only. In this case we cannot use the Sobolev

imbedding theorem. However, this theorem served us only to prove the relation

(1.28) v ∈ L2(S)

which can be proved also in the following way: The function v(y1, y2) is connected
with the function w ∈ H1(Σ) by relation (1.21). Thus, by (1.24), w(ξ1, ξ2) =
v(µ1(ξ1, ξ2), µ2(ξ1, ξ2)). Since the derivatives of the functions µ1, µ2 ∈ Ck are

bounded, we have

|J−1(ξ1, ξ2)| =
∣∣∣∣
D(µ1, µ2)
D(ξ1, ξ2)

∣∣∣∣ 6 K ∀ (ξ1, ξ2) ∈ Σ.

Further, owing to J−1(0, 0) = 1, we have J−1(ξ1, ξ2) 6= 0 ∀ (ξ1, ξ2) ∈ Σ. Finally,
S is the image of Σ in transformation (1.24). Thus, by means of the theorem on
substitution in the Lebesgue integral,

∫

S
[v(y1, y2)]2 dY =

∫

Σ

[v(µ1(ξ1, ξ2), µ2(ξ1, ξ2))]2 |J−1(ξ1, ξ2)| dξ

6 K

∫

Σ

[w(ξ1, ξ2)]2 dξ.

Hence (1.28) follows and Lemma 1.5a is proved. �

1.5b. �! #"%$ ��& . As the functions µ1, µ2 appearing in (1.24) and defining the

inverse transformation to (1.20) are of class Ck with bounded derivatives on Σ up
and including to the order k we can prove: Let v ∈ Hk(S) and let us set

(1.29) w(ξ1, ξ2) := v(µ1(ξ1, ξ2), µ2(ξ1, ξ2)).

Then

(1.30) w ∈ Hk(Σ), ‖w‖k,Σ 6 C‖v‖k,S .

The proof follows lines similar to the proof of Lemma 1.5a (we have J−1(0, 0) = 1).

1.6. Lemma. Let K, K+ and K∗ be three prisms given by the relations

K = {Y = (Y ′, yN ) ∈ � N : |yi| < α, i = 1, . . . , N − 1, 0 < yN < β},(1.31)

K+ = {Y = (Y ′, yN ) ∈ � N : |yi| < α, i = 1, . . . , N − 1, 0 < yN < kβ},(1.32)

K∗ = {Y = (Y ′, yN ) ∈ � N : |yi| < α, i = 1, . . . , N − 1, |yN | < β}.(1.33)
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Let ũr ∈ Hk(K) with ũr(Y ) = 0 ∀Y /∈ M , where M ⊂ K is a set of the type

indicated in Fig. 2. Let us extend ũr by zero from K onto K+, and let us define

on K∗ a function ũ∗r by the relations

(1.34) ũ∗r(Y
′, yN) =





ũr(Y ′, yN ) for yN > 0,
k∑

j=1

λj ũr(Y ′,−jyN) for yN < 0,

where the numbers λ1, . . . , λk are uniquely determined as the solution of the system

of linear algebraic equations

(1.35) 1 =
k∑

j=1

(−j)nλj , n = 0, 1, . . . , k − 1.

Then

(1.36) ũ∗r ∈ Hk(K∗), ‖ũ∗r‖k,K∗ 6 C‖ũr‖k,K

and the generalized derivatives are given by the relations

(1.37) Dαũ∗r(Y ) =





Dαũr(Y ) for Y ∈ K,
k∑

j=1

(−j)αNλjD
αũr(Y ′,−jyN) for Y ∈ K∗\K.

Finally,

(1.38) ũ∗r(Y ) = 0 ∀Y ∈ K∗ ∩N(∂K∗),

where N(∂K∗) is a neighbourhood of ∂K∗.

M
K

K∗ −K
Ω

Figure 2.
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�! #"%$ ��& . It is necessary to explain the meaning of the symbol Dαũr for the

derivative in the expression Dαũr(Y ′,−jyn): The last component of the function
ũ∗r(Y

′, yN) is composed in the case of yN < 0. Thus Dαũr means the derivative
of the function ũr with respect to the external components and the right-hand side

of (1.37) is the result of differentiation of a composite function.
In the case of a function in one variable everything is simpler. For example, if

f(x) is a given function and we define a function F (t) := f(at) (setting x = at) then
the meaning of the relations F ′(t0) = af ′(at0) and F ′(t) = af ′(at) is clear. (The
symbol f ′ denotes the derivative with respect to the external variable x = at.) The
notation just introduced is an analogue of the case of a function of one variable.
���������

of Lemma 1.6. The proof of the assertion of Lemma 1.6 is presented in [6,

p. 76] in a rather concise way. As Lemma 1.6 is important for our considerations we
prove it in a more detailed way. In part A) inclusion ũ∗r ∈ Hk(K∗) and relation (1.37)
are proved, in part B) inequality (1.36)2 is established.
A) First we note that the determinant of system (1.34) is Vandermond’s determi-

nant; thus it is different from zero.
For yN < 0 the function ũ∗r(Y

′, yN) is defined as a linear combination of functions
belonging to Hk(K∗\K); thus we have ũ∗r ∈ Hk(K∗\K) and ũ∗r ∈ L2(K∗). Now we
prove that Dαũ∗r ∈ L2(K∗) for 1 6 |α| 6 k.

Let us assume first that ũr ∈ C∞(K). Then by (1.34) we have

ũ∗r
∣∣
K∗−K

∈ C∞(K∗\K).

Let us consider the identity
∫

K∗
ũ∗r(Y )Dαϕ(Y ) dY =

∫

K

ũr(Y )Dαϕ(Y ) dY(1.39)

+
k∑

j=1

λj

∫

K∗\K
ũr(Y ′,−jyN)Dαϕ(Y ) dY,

where ϕ ∈ C∞0 (intK∗) and the function ũ∗r is given by (1.34). Let α = (α1, . . . , αN ),
where |α| 6 k, and let us put α = α′ + α′′, where

α′ = (α1, . . . , αN−1, 0), α′′ = (0, . . . , 0, αN).

If we apply to both integrals on the right-hand side of (1.39) the integration by parts
with respect to the multiindex α′ we obtain

∫

K∗
ũ∗r(Y )Dαϕ(Y ) dY = (−1)|α

′|
∫

K

Dα′
ũr(Y )

∂αNϕ

∂yαN

N

(Y ) dY(1.40)

+(−1)|α
′|

k∑

j=1

λj

∫

K∗\K
Dα′

ũr(Y ′,−jyN)
∂αNϕ

∂yαN

N

(Y ) dY,
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because ϕ = 0 in a neighbourhood of ∂K∗ and

(1.41) n(K∗\K) = (0, . . . , 0, 1), n(K) = (0, . . . , 0,−1) ∀Y ∈ ∆,

where ∆ is the common face of both the prisms K, K∗\K and n(G) is the outward
unit normal to the domain G.

Now we apply to both integrals on the right-hand side of (1.40) the integration by

parts with respect to the multiindex α′′ and use relations (1.41); we obtain

∫

K

Dα′
ũr(Y )

∂αNϕ

∂yαN

N

(Y ) dY(1.42)

= −
∫

∆

Dα′
ũr(Y ′, 0)

∂αN−1ϕ

∂yαN−1
N

(Y ′, 0) dY ′

−
∫

K

∂

∂yN
Dα′

ũr(Y )
∂αN−1ϕ

∂yαN−1
N

(Y ) dY

= −
∫

∆

Dα′
ũr(Y ′, 0)

∂αN−1ϕ

∂yαN−1
N

(Y ′, 0) dY ′

+ (−1)2
∫

∆

∂

∂yN
Dα′

ũr(Y ′, 0)
∂αN−2ϕ

∂yαN−2
N

(Y ′, 0) dY ′

+ (−1)2
∫

K

∂2

∂y2
N

Dα′
ũr(Y )

∂αN−2ϕ

∂yαN−2
N

(Y ) dY = . . .

=
αN∑

s=1

(−1)s

∫

∆

∂s−1

∂ys−1
N

Dα′
ũr(Y ′, 0)

∂αN−sϕ

∂yαN−s
N

(Y ′, 0) dY ′

+ (−1)αN

∫

K

Dα′′+α′
ũr(Y )ϕ(Y ) dY,

∫

K∗\K
Dα′

ũr(Y ′,−jyN)
∂αNϕ

∂yαN

N

(Y ) dY(1.43)

=
∫

∆

Dα′
ũr(Y ′, 0)

∂αN−1ϕ

∂yαN−1
N

(Y ′, 0) dY ′

+ j

∫

K∗\K
D(0,...,0,1)Dα′

ũr(Y ′,−jyN)
∂αN−1ϕ

∂yαN−1
N

(Y ) dY

=
∫

∆

Dα′
ũr(Y ′, 0)

∂αN−1ϕ

∂yαN−1
N

(Y ′, 0) dY ′

+ j

∫

∆

D(0,...,0,1)Dα′
ũr(Y ′, 0)

∂αN−2ϕ

∂yαN−2
N

(Y ′, 0) dY ′

+ j2
∫

K∗\K
D(0,...,0,2)Dα′

ũr(Y ′,−jyN)
∂αN−2ϕ

∂yαN−2
N

(Y ) dY = . . .
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=
αN∑

s=1

js−1

∫

∆

D(0,...,0,s−1)Dα′
ũr(Y ′, 0)

∂αN−sϕ

∂yαN−s
N

(Y ′, 0) dY ′

+ jαN

∫

K∗\K
Dα′′+α′

ũr(Y ′,−jyN)ϕ(Y ) dY =

= −
αN∑

s=1

(−1)s(−j)s−1

∫

∆

∂s−1

∂ys−1
N

Dα′
ũr(Y ′, 0)

∂αN−sϕ

∂yαN−s
N

(Y ′, 0) dY ′

+ (−1)αN (−j)αN

∫

K∗\K
Dα′′+α′

ũr(Y ′,−jyN)ϕ(Y ) dY.

If we express the right-hand side of (1.40) in terms of (1.42) and (1.43) we get

∫

K∗
ũ∗r(Y )Dαϕ(Y ) dY(1.44)

= (−1)|α|
∫

K

Dαũr(Y )ϕ(Y ) dY

+ (−1)|α|
∫

K∗\K

{ k∑

j=1

(−j)αNλjD
αũr(Y ′,−jyN)

}
ϕ(Y ) dY

+ (−1)|α
′|

αN∑

s=1

(−1)s

[
1−

k∑

j=1

(−j)s−1λj

]

×
∫

∆

∂s−1

∂ys−1
N

Dα′
ũr(Y ′, 0)

∂αN−sϕ

∂yαN−s
N

(Y ′, 0) dY ′.

The index s satisfies s 6 αN 6 |α| 6 k; hence s − 1 6 k − 1 and the expression in
square brackets, which stands in (1.44) in front of the integral over∆, is equal to zero,
according to (1.35). Thus, relation (1.44) implies that the generalized derivatives
Dαũ∗r , where |α| 6 k, exist in K∗ and satisfy (1.37).

Till now we have considered ũr ∈ C∞(K). The density C∞(K) in Hk(K) and the
results just proved imply that the function ũ∗r ∈ L2(K∗) defined by relation (1.34),
where ũr ∈ Hk(K), belongs to Hk(K∗) and its generalized derivatives Dαũ∗r ∈
L2(K∗), where |α| 6 k, are given by (1.37).

B) First we prove the estimate

(1.45) ‖ũ∗r‖2
k,K∗\K 6 C‖ũr‖2

k,K .

According to (1.37), the function ũ∗r given by (1.34) satisfies on K
∗\K the relations

(1.46) Dαũ∗r(Y
′, yN ) =

k∑

j=1

λj(−j)αN (Dαũr)(Y ′,−jyN), yN < 0.
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We can write, according to the definition of the norm,

(1.47) ‖ũ∗r‖2
k,K∗\K =

∑

|α|6k

∫

K∗\K
[Dαũ∗r(Y

′, yN )]2 dY.

As in the case of q > 0 we have

∫ 0

−q

f(−jyN) dyN = −
∫ 0

q

f(jt) dt =
∫ q

0

f(jyN ) dyN ,

and we get from (1.47) by virtue of (1.46)

(1.48) ‖ũ∗r‖2
k,K∗\K =

∑

|α|6k

∫

K

[ k∑

j=1

λj(−j)αN (Dαũr)(Y ′, jyN )
]2

dY.

Since

|λj(−j)αN | 6 max
j=1,...,k

|λj |kk,

we can estimate the integrand in (1.48) using the Cauchy inequality

(1.49)

( n∑

s=1

as

)2

6 n

n∑

s=1

a2
s

in the following way:

[ k∑

j=1

λj(−j)αN (Dαũr)(Y ′, jyN)
]2

6
(

max
j=1,...,k

|λj |kk
)2

[ k∑

j=1

(Dαũr)(Y ′, jyN)
]2

6
(

max
j=1,...,k

|λj |kk
)2
k

k∑

j=1

[(Dαũr)(Y ′, jyN)]2.

This result and (1.48) imply inequality (1.45) with C 6 k2
(

max
j=1,...,k

|λj |kk
)2
because

by definition ũr(Y ) = 0 for Y ∈ K+ \K.
Now we prove easily inequality (1.36)2: we have

(1.50) ‖ũ∗r‖2
k,K∗ = ‖ũ∗r‖2

k,K∗\K + ‖ũr‖2
k,K .

Inequality (1.36)2 follows immediately from (1.45) and (1.50). �
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���������
of Theorem 1.4. The proof consists of parts A–F.

A) Let U1, . . . , Um be the domains introduced in Definition 1.1 and let U0 be such
a domain that

(1.51) U0 ⊂ Ω,
m⋃

r=0

Ur ⊃ Ω.

Then the theorem on partition of unity (see [5, Theorem 5.3.8]) implies the existence

of such functions ϕr ∈ C∞0 ( � N ) (r = 0, 1, . . . ,m) that suppϕr ⊂ Ur, 0 6 ϕr(X) 6 1
and

(1.52)
m∑

r=0

ϕr(X) = 1, X ∈ Ω.

Let u ∈ Hk(Ω). Let us define u(X) = 0 for X /∈ Ω and let us put

(1.53) ur(X) := ϕr(X)u(X), X ∈ � N .

It is evident that

(1.54) ur ∈ Hk(Ω), suppur ⊂ Ur, suppur ⊂ Ω.

Let us consider the domain Ur (1 6 r 6 m) and the r-th local Cartesian coordinate
system connected with this domain. According to Definition 1.1, the domain is

denoted in this system by the symbol Ûr and the coordinates in this system by the
symbols xr1, . . . , xrN . We use again the notation

Xr = (X ′
r, xrN ), X ′

r = (xr1, . . . , xrN−1).

Let us consider two prisms K and K∗ given by (1.31) and (1.33), respectively,

and let us introduce a transformation Tr by the relations

(1.55) X ′
r = Y ′, xrN = yN + ar(Y ′).

The inverse transformation T−1
r has the form

(1.56) Y ′ = X ′
r, yN = xrN − ar(X ′

r).

According to Definition 1.1, we have

Ûr = Tr(K∗), V̂ +
r = Tr(K),(1.57)

K∗ = T−1
r (Ûr), K = T−1

r (V̂ +
r ).(1.58)
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Finally, we denote (as for Ar and A−1
r , see (1.2)–(1.4))

ûr(Xr) := ur(A−1
r (Xr)),(1.59)

ũr(Y ) := ûr(Tr(Y )).(1.60)

The function ûr(Xr) is defined on V̂ +
r and the function ũr(Y ) on K.

B) According to the assumption Ω ∈ Ck−1,1 of Theorem 1.4, both transforma-

tions Tr a T−1
r given by (1.55) and (1.56), respectively, satisfy the assumptions of

Lemma 1.5. As ûr ∈ Hk(V̂ +
r ), all assumptions of Lemma 1.5 are satisfied with

T = Tr, F = K and G = V̂ +
r . Hence ũr ∈ Hk(K), where ũr(Y ) is given by (1.60),

and we have

(1.61) ‖ũr‖k,K 6 C‖ûr‖k, 'V +
r
.

C) Let us apply Lemma 1.6 on the function ũr ∈ Hk(K). We obtain the func-
tion ũ∗r(Y ) (Y ∈ K∗)—the extension of ũr on K∗—satisfying relations (1.36). Us-
ing (1.56), we set

(1.62) û∗r(Xr) = ũ∗r(T
−1
r (Xr)), Y = T−1

r (Xr) ∈ K∗, Xr ∈ Ûr;

we have Xr ∈ Ûr in (1.62), according to (1.58)1.
Since the transformation T−1

r (together with Tr) satisfies all assumptions of

Lemma 1.5 concerning the transformation T and as relation (1.58)1 holds, we can
use Lemma 1.5 with T = T−1

r , F = Ûr, G = K∗, u = ũ∗r and v = û∗r . We get

(1.63) ‖û∗r‖k, 'Ur
6 C‖ũ∗r‖k,K∗ .

D) Connecting inequalities (1.63), (1.36)2 and (1.61) in the given order, we obtain

‖û∗r‖k, 'Ur
6 C‖ũ∗r‖k,K∗ 6 C‖ũr‖k,K 6 C‖ûr‖k, 'V +

r
,

i.e.,

(1.64) ‖û∗r‖k, 'Ur
6 C‖ûr‖k, 'V +

r
.

E) Owing to the definition of ûr and to (1.38), the function û∗r is equal to zero in

Ûr ∩N(∂Ûr), where N(∂Ûr) is a neighbourhood of ∂Ûr. Thus we can define

(1.65) û∗r(Xr) = 0 ∀Xr /∈ Ûr (r = 0, 1, . . . , s)
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and obtain thus local extension operators Ek,r(u) by Ek,r(u)(X) := û∗r(Ar(X)). The
global extension operator Ek(u) is defined by

(1.66) Ek(u) :=
s∑

r=0

Ek,r(u).

The linearity (1.15) of Ek follows from the linearity of Ek,r. As to (1.16), for X ∈ Ω
we have

Ek(u)(X) =
s∑

r=0

Ek,r(u)(X) =
s∑

r=0

ûr(Ar(X)) =
s∑

r=0

ur(X)

=
s∑

r=0

ϕr(X)u(X) = u(X)
s∑

r=0

ϕr(X) = u(X).

Finally,

‖Ek(u)‖k, � N =
∥∥∥∥

s∑

r=0

Ek,r(u)
∥∥∥∥

k, � N

=
∥∥∥∥

s∑

r=0

û∗r

∥∥∥∥
k, � N

6
s∑

r=0

‖û∗r‖k, � N 6 C

s∑

r=0

‖ûr‖k,Ωr = C

s∑

r=0

‖ur‖k,Ω 6 (s+ 1)C‖u‖k,Ω.

Thus, the boundedness condition (1.17) is verified. (Relation ‖ûr‖k,Ωr = ‖ur‖k,Ω

follows from Theorem 1.3.)

F) As to the last assertion of Theorem 1.4 (which says that the extension operator
Ek : Hk(Ω) → Hk( � N ) just described is also a linear and bounded extension operator
from Hm(Ω) into Hm( � N ) for all m < k, m ∈ � 0 ), it suffices to prove that the
function ũr(Y ′, yN ) defined by (1.34), (1.35) (with ũr ∈ Hm(K)) satisfies for each
m ∈ � 0 , m < k,

(1.67) ũr ∈ Hm(K∗), ‖ũ∗r‖m,k∗ 6 C‖ũr‖m,K .

As m < k, it follows from (1.35) that

(1.68) 1 =
k∑

j=1

(−j)nλj , n = 0, 1, . . . ,m− 1.

Thus repeating the considerations of part A) of the proof of Lemma 1.6 we arrive at
the following conclusions: the function ũ∗r ∈ L2(K∗) defined by relation (1.34), where
ũr ∈ Hm(K), belongs to Hm(K∗) and its generalized derivatives Dαũ∗r ∈ L2(K∗),
where |α| 6 m, are given by (1.37). Thus, (1.67)1 is satisfied.
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Replacing in part B) of the proof of Lemma 1.6 the symbol k by m, we obtain

instead of (1.45) the inequality

‖ũ∗r‖2
m,K∗\K 6 C‖ũr‖2

m,K .

This inequality and the identity

‖ũ∗r‖2
m,K∗ = ‖ũ∗r‖2

m,K∗\K + ‖ũr‖2
m,K

imply the desired estimate (1.67)2 and the proof of Theorem 1.4 is complete. �

It should be noted that for 0 6 m 6 k the domain Ω ∈ Ck−1,1 is the same.
In Section 2 we will need the following two-dimensional modification of Lemma 1.6:

1.7. Lemma. Let K ⊂ � 2 and K∗ ⊂ � 2 be two prisms given by the relations

K = {Y = (y1, y2) : |y1| < α, 0 < y2 < β},(1.69)

K∗ = {Y = (y1, y2) : |y1| < α, |y2| < β}.(1.70)

Let v ∈ Hq(K) (q 6 k) and let us define on K∗ a function v∗ by the relations

(1.71) v∗(y1, y2) =





v(y1, y2) for y2 > 0,
k∑

j=1

λjv
(
y1,− 1

j y2
)
for y2 < 0,

where the numbers λ1, . . . , λk are uniquely determined as the solution of the system

of linear algebraic equations

(1.72) 1 =
k∑

j=1

(
−1
j

)n

λj , n = 0, 1, . . . , k − 1.

Then

(1.73) v∗ ∈ Hm(K∗), ‖v∗‖m,K∗ 6 C‖v‖m,K (m 6 q 6 k)

and the generalized derivatives with |α| 6 m are given by the relations

(1.74) Dαv∗(Y ) =





Dαv(Y ) for Y ∈ K,
k∑

j=1

(
− 1

j

)α2
λjD

αv
(
y1,− 1

j y2
)
for Y ∈ K∗\K.

Comparing the assumptions of Lemmas 1.6 and 1.7 we see that the integers j with

j = 1, . . . , k appearing in Lemma 1.6 are replaced in Lemma 1.7 by the fractions 1
j
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(j = 1, . . . , k). This enables us not to consider the prism K+ into which the func-

tion ũr is extended by zero. Of course, property (1.38) cannot be now proved. (This
will be repaired by another trick in Section 2.)
The proof of Lemma 1.7 follows the same lines as the proof of Lemma 1.6 and thus

can be omitted. The difference between Lemma 1.6 (with N = 2) and Lemma 1.7
consists in the following: In Lemma 1.7 we cannot prove an analogue of (1.38);

however, the function v∗ is defined in (1.71) only by the function values of v(y1, y2)
with (y1, y2) ∈ K (and not also with (y1, y2) ∈ K+ as in Lemma 1.6).

2. The case of a two-dimensional domain
with a piecewise smooth boundary

Let Ω ∈ C0,1 be a domain with a piecewise smooth boundary ∂Ω (we assume that
its smooth parts are sufficiently smooth). Let P1, . . . , Pn ∈ ∂Ω be the points at which
the boundary ∂Ω is not smooth (see Fig. 3 with n = 3).

P1

P2

P3

Ω

Figure 3.

Let K(Pi, ri) be a closed disk with its centre at the point Pi and radius ri (i =
1, . . . , n). The magnitude of the radii ri will be specified later.

Let the point Pi = [x0
1, x

0
2] (1 6 i 6 n) be fixed and let us set

(2.1) r :=
√

(x1 − x0
1)2 + (x2 − x0

2)2.

Let pi(r) be the Hermite polynomial of degree 2k − 1 in one variable r uniquely
determined by the conditions

pi

(1
2
ri

)
= 1, p

(j)
i

(1
2
ri

)
= 0 (j = 1, . . . , k − 1),(2.2)

p
(j)
i (ri) = 0 (j = 0, 1, . . . , k − 1).

Let ζi(r) be a function defined by the relations

(2.3) ζi(r) =





1 for 0 6 r 6 1
2ri,

pi(r) for 1
2ri 6 r 6 ri,

0 for r > ri.
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Then ζi(r) ∈ Ck−1〈0,∞). Let u ∈ Hk(Ω) and let us define functions

(2.4) ui(X) = u(X)ζi(r) (i = 1, . . . , n) .

Let κ
(
Pi,

1
2ri

)
denote a closed disk with its centre at the point Pi and radius 1

2ri.

Then each function ui(X) can be expressed in the form

(2.5) ui(X) =





u(X) for X ∈ Ω ∩ κ
(
Pi,

1
2ri

)
,

u(X)pi(r) for X ∈ Ω ∩
{
K(Pi, ri)\κ

(
Pi,

1
2ri

)}
,

0 for X ∈ {Ω\K(Pi, ri)}.

2.1. Lemma. We have

(2.6) ui ∈ Hk(Ω).

Before proving Lemma 2.1 we introduce

2.2. Lemma. Let v ∈ Hk(Ω) and let {vn} ⊂ C∞(Ω) be such a sequence
that vn → v in Hk(Ω). Then for an arbitrary polynomial p(X) we have pvn → pv

in Hk(Ω).
���������

. We have

‖pvn − pv‖2
k,Ω =

∑

|α|6k

∫

Ω

[Dα(pvn − pv)]2 dX 6 C‖p‖2
Ck(Ω)

‖vn − v‖2
k,Ω → 0.

�
���������

of Lemma 2.1. We restrict ourselves to the case k = 2. Let us denote

p̃i(X) = pi

(√
(x1 − x0

1)2 + (x2 − x0
2)2

)

and let

L := ∂κ
(
Pi,

1
2
ri

)
∩ Ω, C := ∂K(Pi, ri) ∩ Ω.

Relations (2.2) with k = 2 imply

(2.7) p̃i

∣∣
L

= 1,
∂p̃i

∂xj

∣∣∣∣
L

= 0.

Similarly, on C we have

(2.8) p̃i

∣∣
C

= 0,
∂p̃i

∂xj

∣∣∣∣
C

= 0.
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As concerns the first derivatives we can write
∫

Ω

ui(X)
∂ϕ

∂xj
(X) dX =

∫

Ai

ui(X)
∂ϕ

∂xj
(X) dX +

∫

Bi

ui(X)
∂ϕ

∂xj
(X) dX

+
∫

Ω\(Ai∪Bi)

ui(X)
∂ϕ

∂xj
(X) dX,

where ϕ ∈ C∞0 (Ω) and

Ai = κ
(
Pi,

1
2
ri

)
∩ Ω, Bi =

(
K(Pi, ri)\κ

(
Pi,

1
2
ri

))
∩ Ω.

Considering u ∈ C∞(Ω) and using Green’s theorem with (2.7)1, (2.8)2, we find after
some computation

∫

Ω

ui(X)
∂ϕ

∂xj
(X) dX = −

∫

Ai

∂u

∂xj
(X)ϕ(X) dX

−
∫

Bi

(
∂u

∂xj
p̃i + u

∂p̃i

∂xj

)
(X)ϕ(X) dX.

Similarly, using Green’s theorem twice, we obtain by virtue of (2.7), (2.8)
∫

Ω

ui(X)
∂2ϕ

∂xj∂xk
(X) dX =

∫

Ai

∂2u

∂xj∂xk
(X)ϕ(X) dX

+
∫

Bi

(
∂2u

∂xj∂xk
p̃i +

∂u

∂xj

∂p̃i

∂xk
+

∂u

∂xk

∂p̃i

∂xj
+ u

∂2p̃i

∂xj∂xk

)
(X)ϕ(X) dX.

The last two relations together with Lemma 2.2 give the assertion. �

Let us set

(2.9) u0(X) = u(X)−
n∑

i=1

ui(X), ∀X ∈ Ω.

Relations (2.5), (2.6) and (2.9) imply

u0 ∈ Hk(Ω),(2.10)

u0(X) =





0 for X ∈
{
Ω ∩

n⋃
i=1

κ
(
Pi,

1
2ri

)}
,

u(X)(1− pi(r)) for X ∈ Ω ∩
{
K(Pi, ri)\κ

(
Pi,

1
2ri

)}
,

u(X) for X ∈
{
Ω\

n⋃
i=1

K(Pi, ri)
}
,

(2.11)

u(X) = u0(X) +
n∑

i=1

ui(X), ∀X ∈ Ω(2.12)

where i = 1, . . . , n on the second line of (2.11).
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Now, let Ω0 ⊃ Ω be a domain with the following properties:1

(2.13) Ω0 ∈ Ck,1, Ω0 = Ω ∪ ω1 ∪ . . . ∪ ωn

where the sets ωi satisfy (see Fig. 4 and Fig. 5)

(2.14) ωi ⊂
{
κ
(
Pi,

1
2
ri

)
− Ω

}
(i = 1, . . . , n).

Pi

riri

2
Ω

Figure 4.

Pi

Ω
Figure 5.

Let us set

(2.15) u0(X) = 0, X ∈ Ω0 − Ω.

Taking into account (2.10) and (2.11)1, we see that the function u0(X) defined by
relations (2.9) a (2.15) satisfies the relation

(2.16) u0 ∈ Hk(Ω0).

As Ω0 ∈ Ck,1, the function (2.16) can be extended by means of Theorem 1.4; hence

(2.17) u∗0 ∈ Hk( � 2 ), u∗0
∣∣
Ω0

= u0, ‖u∗0‖k, � 2 6 C‖u0‖k,Ω0 .

2.3. Lemma. Let ri be sufficiently small2 and let us consider the linear space Lk
i

of functions u ∈ Hk(Ω) for which3

u(X) = 0 ∀X ∈ Ω\K(Pi, ri),(2.18)

Dαu(X) = 0 ∀ |α| 6 k − 1, ∀X ∈ ∂K(Pi, ri) ∩ Ω.

1 The definition (2.13) of the domain Ω0 together with (2.9), (2.11)1, (2.15), (2.16) is one
of the basic tricks of this approach.

2 This requirement will be precisely formulated in the proof of Lemma 2.3.
3 Lemma 2.3 will be applied to the functions ui. The symbol u used in Lemma 2.3 is a
general symbol; u has nothing in common with the function u considered at the beginning
of Chapter 2.
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There exists a linear and bounded extension operator P i
k : Lk

i → Hk( � N ), i.e., we
have

P i
k(c1u1 + c2u2) = c1P i

k(u1) + c2P i
k(u2) ∀ c1, c2 ∈ � 1 , ∀u1, u2 ∈ Lk

i ,(2.19)

P i
k(u)(X) = u(X) ∀X ∈ Ω, ∀u ∈ Lk

i ,(2.20)

‖P i
k(u)‖k, � N 6 C‖u‖k,Ω ∀u ∈ Lk

i ,(2.21)

where the constant C depends only on the radius ri. In addition, we have

(2.22) P i
k : Lm

i → Hm( � N ) ∀m ∈ � 0 , m < k,

i.e, the extension from Lk
i is also a linear and bounded extension from Lm

i into

Hm( � N ) for all m ∈ � 0 , m < k.

���������
. Let ξ1, ξ2 be the positively oriented Cartesian coordinate system with

the origin ξ1 = ξ2 = 0 at the point Pi and let the non-negative part of the axis ξ1 be

tangent to one of the smooth curves which meet at the point Pi (see Fig. 6).

ξ1

ξ2

Pi

ξ1 = g(ξ2)

ξ2 = f(ξ1)
f ′(0) = 0

Figure 6.

Let both curves be expressed explicitly in the form

ξ2 = f(ξ1), ξ1 = g(ξ2),

let the functions f , g be (for simplicity) k-times continuously differentiable and let

f ′(0) = 0 (see again Fig. 6). Under these conditions, which can be easily satisfied in
applications, let us introduce the transformation

(2.23) ξ1 = ϕ1(y1, y2) := y1 + g(y2), ξ2 = ϕ2(y1, y2) := y2 + f(y1).
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The Jacobian of (2.23) is given by the expression

J(y1, y2) =
∣∣∣∣

1 g′(y2)
f ′(y1) 1

∣∣∣∣ = 1− f ′(y1)g′(y2).

Thus

(2.24) J(0, 0) = 1.

Relation (2.24) has the following consequence (see [3, Sections 198, 199]): In the

neighbourhood of ξ1 = ξ2 = y1 = y2 = 0 the transformation (2.23) has a unique
inverse which is expressed by

(2.25) y1 = µ1(ξ1, ξ2), y2 = µ2(ξ1, ξ2)

and the functions µ1, µ2 are of class Ck. The Jacobians

J(y1, y2), J−1(ξ1, ξ2) = 1/J(y1, y2)

are different from zero in the corresponding neighbourhoods (J−1(ξ1, ξ2) is the Ja-
cobian of the functions µ1(ξ1, ξ2), µ2(ξ1, ξ2)).
If y2 = 0 and y1 > 0 then we obtain ξ2 = f(ξ1) and ξ1 > 0. This means that

the first arc ξ2 = f(ξ1) corresponds to the positive part of the coordinate axis y1.

Similarly, the second arc corresponds to the positive part of the coordinate axis y2.

Let S be a square neighbourhood of the origin y1 = y2 = 0 (a part of the whole
neighbourhood) and let Σ be its image in the coordinate system ξ1, ξ2 in transfor-
mation (2.23). This means that Σ is a neighbourhood of the point Pi. We choose

the radius ri so small that

(2.26) K(Pi, ri) ⊂ Σ.

The magnitude of ri depends also on k (we first explain the situation in the case

of k = 2 which is the most important in applications): We choose ri such that
K(Pi, ri) ⊂ Σ and the image G̃ of G = K(Pi, ri) ∩Ω in transformation (2.25) has the
property

(2.27) dist(G̃, ∂S) >
a

2
+ ε,

where 2a is the length of the side of the square S lying in the plane y1, y2 (S has
the vertices D1, . . . , D4) and ε > 0 is a small number (see Figs. 7 and 8).
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y1

y2

D1

D2D3

D4

B1

B2

B3

B4

A

BO

G̃
S1

S2

S3 R1 R2R2

v(y1, y2) = 0

Figure 7.

y1

y2

G̃

v(y1, y2) = 0

Figure 8.

We see from Figs. 7 and 8 that there are two situations possible: A) the image G̃
of G lies in SI , B) the image G̃ of G lies in SII ∪SIII ∪SIV, where SI , . . . ,SIV are the

parts of the square S lying in the quadrants I, . . . , IV of the Cartesian coordinate
system y1, y2. We shall discuss both situations separately in parts A) and B).

A) Let Xi be the points of the local Cartesian coordinate system ξ1, ξ2 connected
with K(Pi, ri) and described at the beginning of this proof. In accordance with
Definition 1.1, let X denote the points of the global coordinate system x1, x2 and
let Ai be such a transformation that

(2.28) Xi = Ai(X), X = A−1
i (Xi).

Let u(X) satisfy the assumptions of Lemma 2.3 (i.e., u ∈ Hk(Ω) and (2.18) holds).
Let us denote

w(ξ1, ξ2) ≡ w(Xi) := u(A−1
i (Xi)),(2.29)

v(y1, y2) = w(ϕ1(y1, y2), ϕ2(y1, y2)) = w(y1 + g(y2), y2 + f(y1)).(2.30)

The function v(y1, y2) is defined on SI and is equal to zero on SI − G̃ (see Fig. 7).
By (2.18) and (2.29), (2.30), this function is not only equal to zero on the arcAB
(see Fig. 7) but it also satisfies4

(2.31) Dαv(Y ) = 0 ∀ |α| 6 k − 1 ∀Y ∈ arcAB in the sense of traces.

4We can see from (2.31) that the Hermite polynomial pi(r) appearing in the definition
of the function ui is the optimal one: Functions belonging to Hk( (G) has as traces all
derivatives up to and including the order k − 1. Thus it has no sense to choose degree
of pi(r) greater than 2k − 1.
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In our case k = 2. Let us define the function

(2.32) v̂(y1, y2) =

{
v(y1, y2) for y2 > 0,

−3v(y1,−y2) + 4v
(
y1,− 1

2y2
)
for y2 < 0.

According to Lemma 1.7 (with m = q = k = 2), the function v̂ ∈ H2(SI∪IV) is an
extension of v ∈ H2(SI ), where we set SI∪IV = SI∪SIV for brevity. (Similar notation

will be used in the following text.) Further, we define

(2.33) v∗(y1, y2) =

{
v̂(y1, y2) for y1 > 0,

−3v̂(−y1, y2) + 4v̂
(
− 1

2y1, y2
)
for y1 < 0.

According to Lemma 1.7, the function v∗(y1, y2) ∈ H2(S) is an extension of v̂ ∈
H2(SI∪IV). Since according to (2.33) and (2.32),

(2.34) v∗(y1, y2) = v(y1, y2) ∀ (y1, y2) ∈ SI ,

the function v∗ ∈ H2(S) is an extension of v ∈ H2(SI ) onto the whole square S. The
linearity of this extension is clear. Now, we verify its boundedness. By Lemma 1.7
we have

‖v̂‖2,SI∪IV 6 C1‖v‖2,SI , ‖v∗‖2,S 6 C2‖v̂‖2,SI∪IV .

Hence

(2.35) ‖v∗‖2,S 6 C‖v‖2,SI

with C = C1C2.
At the end of part A) we prove (2.40). On SIV, the function v∗(y1, y2) is expressed,

according to (2.32) and (2.33), by

(2.36) v∗(y1, y2) = −3v(y1,−y2) + 4v
(
y1,−

1
2
y2

)
, y1 > 0, y2 < 0.

Similarly we obtain that the function v∗(y1, y2) is expressed on SII by

(2.37) v∗(y1, y2) = −3v(−y1, y2) + 4v
(
−1

2
y1, y2

)
, y1 < 0, y2 > 0

and on SIII by

v∗(y1, y2) = − 3
[
−3v(−y1,−y2) + 4v

(
−1

2
y1,−

1
2
y2

)]
(2.38)

+ 4
[
−3v

(
−1

2
y1,−y2

)
+ 4v

(
−1

2
y1,−

1
2
y2

)]

= 9v(−y1,−y2)− 12v
(
−1

2
y1,−y2

)

+ 4v
(
−1

2
y1,−

1
2
y2

)
, y1 < 0, y2 < 0.
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The right-hand sides of relations (2.36)–(2.38) are defined only by the function values

of the original function v ∈ H2(SI ); thus they are well-defined.
Now, let (ŷ1, ŷ2) be an arbitrary point lying in the interior of SII∪III∪IV outside

the closed domain D of an L-shape which has the vertices O,A, S1, S3, R2, B (see

Fig. 7). We choose D such that

(2.39) 0 < dist(D, ∂S) < ε.

As the function v ∈ H2(SI ) is equal to zero outside G̃ and on the arcAB and
relation (2.27) holds, we have v∗(ŷ1, ŷ2) = 0. Hence,

(2.40) v∗(y1, y2) = 0 ∀ (y1, y2) ∈ SII∪III∪IV \ D.

B) Let now the image G̃ of G = K(Pi, ri) ∩ Ω lie in SII∪III∪IV. The transformed
function v(y1, y2) is given again by (2.30). We have (see Fig. 8) v ∈ H2(SII∪III∪IV)
in analogy with (2.31). The function v(y1, y2) is equal to zero in SII∪III∪IV \ G̃. We
recall that we choose the radius ri of K(Pi, ri) so small that (2.27) holds.
On the square S let us define the function

(2.41) v1(y1, y2) =

{
v(y1, y2) for y1 6 0,

−3v(−y1, y2) + 4v
(
− 1

2y1, y2
)
for y1 > 0

and on the quadrilateral SIII∪IV the function

(2.42) ψ(y1, y2) = v(y1, y2)− v1(y1, y2), y2 6 0.

We have

(2.43) ψ(y1, y2) = 0 ∀ (y1, y2) ∈ SIII.

The inclusion v ∈ H2(SII∪III∪IV), Lemma 1.7 and relation (2.41) imply

(2.44) v1 ∈ H2(S);

hence

(2.45) ψ ∈ H2(SIII∪IV).

Now, let us define on S the function

(2.46) ψ1(y1, y2) =

{
ψ(y1, y2) for y2 6 0,

−3ψ(y1,−y2) + 4ψ
(
y1,− 1

2y2
)
for y2 > 0.
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Taking into account (2.43), we see that

(2.47) ψ1(y1, y2) = 0 ∀ (y1, y2) ∈ SII∪III.

Lemma 1.7 and relations (2.45), (2.46) imply

(2.48) ψ1 ∈ H2(S).

Finally, let us define on S the function

(2.49) v∗(y1, y2) = ψ1(y1, y2) + v1(y1, y2) ∀ (y1, y2) ∈ S.

By (2.44), (2.48) and (2.49),

(2.50) v∗ ∈ H2(S).

Now we prove (2.53). By (2.41),

v1(y1, y2) = v(y1, y2) ∀ (y1, y2) ∈ SII∪III.

This relation and (2.47), (2.49) give

(2.51) v∗(y1, y2) = v(y1, y2) ∀ (y1, y2) ∈ SII∪III.

Further, by (2.46) and (2.42),

ψ1(y1, y2) = v(y1, y2)− v1(y1, y2) ∀ (y1, y2) ∈ SIV.

This fact and (2.49) yield

(2.52) v∗(y1, y2) = v(y1, y2) ∀ (y1, y2) ∈ SIV.

Relations (2.51) and (2.52) imply

(2.53) v∗(y1, y2) = v(y1, y2) ∀ (y1, y2) ∈ SII∪III∪IV.

Thus, v∗ ∈ H2(S) is an extension of v ∈ H2(SII∪III∪IV). Its linearity is clear. Now
we prove its boundedness. By Lemma 1.7 and (2.41) we have

(2.54) ‖v1‖2,S 6 C1‖v‖2,SII∪III .
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Lemma 1.7, (2.46) and then (2.47) give

‖ψ1‖2,S 6 C2‖ψ‖2,SIII∪IV = C2‖ψ‖2,SIV .

This result, (2.49) and (2.54) yield

‖v∗‖2,S = ‖ψ1 + v1‖2,S 6 ‖ψ1‖2,S + ‖v1‖2,S(2.55)

6 C1‖v‖2,SII∪III + C2‖ψ‖2,SIV .

By (2.42) and then (2.54) (because ‖v1‖2,SIV 6 ‖v1‖2,S) we conclude

‖ψ‖2,SIV = ‖v − v1‖2,SIV 6 ‖v‖2,SIV + ‖v1‖2,SIV(2.56)

6 ‖v‖2,SIV + C1‖v‖2,SII∪III 6 (1 + C1)‖v‖2,SII∪III∪IV .

Relations (2.55) and (2.56) give the desired result:

(2.57) ‖v∗‖2,S 6 C‖v‖2,SII∪III∪IV

with C 6 C1 + C2 + C1C2.

At the end of part B) we prove (similarly as in part A)) that v∗ = 0 in some
neighbourhood of ∂S. By virtue of the inclusions v ∈ H2(SII∪III∪IV), (2.44), (2.45),
(2.48), (2.50) and Sobolev’s imbedding theorem, the functions v, v1, ψ, ψ1, v∗ are
continuous on the corresponding domains. By (2.41) we have

(2.58) v1(y1, y2) = −3v(−y1, y2) + 4v
(
−1

2
y1, y2

)
∀ (y1, y2) ∈ SI .

By (2.42) and (2.41) we have

ψ(y1, y2) = v(y1, y2) + 3v(−y1, y2)− 4v
(
−1

2
y1, y2

)
, y1 > 0, y2 < 0.

This result and (2.46) yield

ψ1(y1, y2) = − 3v(y1,−y2)− 9v(−y1,−y2) + 12v
(
−1

2
y1,−y2

)
(2.59)

+ 4v
(
y1,−

1
2
y2

)
+ 12v

(
−y1,−

1
2
y2

)
− 16v

(
−1

2
y1,−

1
2
y2

)

∀ (y1, y2) ∈ SI .

Inserting (2.58) and (2.59) into (2.49), we obtain

v∗(y1, y2) = − 3v(−y1, y2) + 4v
(
−1

2
y1, y2

)
− 3v(y1,−y2)(2.60)

− 9v(−y1,−y2) + 12v
(
−1

2
y1,−y2

)
+ 4v

(
y1,−

1
2
y2

)

+ 12v
(
−y1,−

1
2
y2

)
− 16v

(
−1

2
y1,−

1
2
y2

)
∀ (y1, y2) ∈ SI .
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The right-hand side of relation (2.60) is defined only by the function values of the

original function v ∈ H2(SII∪III∪IV); thus it is well-defined.
Now, let (ŷ1, ŷ2) be an arbitrary point lying in the interior of SI outside the closed

square F which has two sides on the axes y1, y2 and satisfies (see Fig. 8)

0 < dist(F , ∂S) < ε.

As the function v ∈ H2(SII∪III∪IV) is equal to zero outside G̃ and relation (2.27)
holds, we have, taking into account (2.60), v∗(ŷ1, ŷ2) = 0. Hence

(2.61) v∗(y1, y2) = 0 ∀ (y1, y2) ∈ SI \ F .

C) We return to the coordinate system ξ1, ξ2 and then to the coordinate system

x1, x2. By (2.30) and (2.25) we have

(2.62) w(ξ1, ξ2) := v(µ1(ξ1, ξ2), µ2(ξ1, ξ2)).

We can set

(2.63) w∗(ξ1, ξ2) := v∗(µ1(ξ1, ξ2), µ2(ξ1, ξ2)).

As

v∗(y1, y2) = 0 ∀ (y1, y2) ∈ N(∂S),

where N(∂S) ⊂ S is a neighbourhood of ∂S, we have

w(ξ1, ξ2) = 0 ∀ (ξ1, ξ2) ∈ Ωi ∩N(∂Σ),

w∗(ξ1, ξ2) = 0 ∀ (ξ1, ξ2) ∈ N(∂Σ),

where Ωi = Ai(Ω) and N(∂Σ) ⊂ Σ is a neighbourhood of ∂Σ. Thus (taking into
consideration (2.26) and (2.5)3) we can set

w(ξ1, ξ2) = 0 ∀ (ξ1, ξ2) ∈ Ωi \Ai(K(Pi, ri)),(2.64)

w∗(ξ1, ξ2) = 0 ∀ (ξ1, ξ2) ∈ � 2 \ Σ(2.65)

and we have

w ∈ H2(Ωi), ‖w‖2,Ωi = ‖w‖2,Σ∩Ωi ,(2.66)

w∗ ∈ H2( � 2 ), ‖w∗‖2, � 2 = ‖w∗‖2,Σ.(2.67)
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Lemma 1.5a implies in the case of A)

(2.68) ‖v‖2,SI 6 C‖w‖2,Ωi∩Σ

and in the case of B)

(2.69) ‖v‖2,SII∪III∪IV 6 C‖w‖2,Ωi∩Σ.

Remark 1.5b and (2.50), (2.63) yield

(2.70) ‖w∗‖2,Σ 6 C‖v∗‖2,S .

Using (2.67)2, (2.70), (2.35) (or (2.57)), (2.68) (or (2.69)) and (2.66)2 in the given
order, we obtain

(2.71) ‖w∗‖2, � 2 6 C‖w‖2,Ωi .

The last step in section C) consists in returning to the global coordinate system x1,

x2. Using (2.28) and (2.29) together with Theorem 1.3, we obtain

‖w∗‖2, � 2 = ‖u∗‖2, � 2 , ‖w‖2,Ωi = ‖u‖2,Ω,

where u∗(X) = w∗(Ai(X)). These two equalities together with (2.71) give in the
Cartesian coordinate system x1, x2

(2.72) ‖u∗‖2, � 2 6 C‖u‖2,Ω ∀u ∈ Lk
i .

Setting P i
k(u) := u∗ (here k = 2), we get inequality (2.21). Relations (2.19), (2.20)

follow immediately from parts A) and B) of this proof.

D) It remains to prove the property of P i
k connected with (2.22), i.e., that P i

k is a
linear and bounded extension operator from Lm

i in H
m( � 2 ) for m < k with m ∈ � 0 .

(In our case k = 2 we shall consider m = 1.) This means not only to prove

(2.73) ‖P i
2(u)‖1, � 2 6 C‖u‖1,Ω ∀u ∈ L2

i

but also to derive

P i
2(c1u1 + c2u2) = c1P i

2(u1) + c2P i
2(u2) ∀ c1, c2 ∈ � 1 , ∀u1, u2 ∈ L1

i ,(2.74)

P i
2(u)(X) = u(X) ∀X ∈ Ω, ∀u ∈ L1

i ,(2.75)

‖P i
2(u)‖1, � 2 6 C‖u‖1,Ω ∀u ∈ L1

i .(2.76)
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Properties (2.74) and (2.75) are evident. It remains to verify (2.73) and (2.76). As

for relation (2.73), in case A) we have by Lemma 1.7

(2.77) ‖v̂‖1,SI∪IV 6 C‖v‖1,SI , ‖v∗‖1,S 6 C‖v̂‖1,SI∪IV .

Hence

(2.78) ‖v∗‖1,S 6 C‖v‖1,SI .

The rest of part A) follows in the case m = 1 the same lines as in the case k = 2.
In case B) we easily modify the derivation of (2.57) (using again Lemma 1.7) and
obtain

(2.79) ‖v∗‖1,S 6 C‖v‖1,SII∪III∪IV.

The rest of part B) follows in the case m = 1 the same lines as in case k = 2.
If u ∈ L1

i only, the definition of P i
2 remains the same, i.e., P i

2 is constructed by
means of the polynomial pi(r) of degree 2k − 1, by means of functions ξ2 = f(x1),
ξ1 = g(x2) (which are of the class Ck—here C2) and by means of (2.32), (2.33) in
case A) and (2.41), (2.46), (2.49) in case B). Derivation of (2.78) and (2.79) is the

same as in the case just considered. Considerations of part C) depend on Lemma 1.5a
and Remark 1.5b which are valid for an arbitrary k ∈ � . Lemma 2.3 is proved. �

Now we are ready to prove the main result of the paper.

2.4. Theorem. Let Ω ∈ C0,1 be a bounded two-dimensional domain. Let

the number of points at which the boundary ∂Ω is not smooth be finite. Let the
smooth parts of the boundary ∂Ω be of the class Ck,1. Then there exists a linear

and bounded extension operator Ek : Hk(Ω) → Hk( � 2 ) which is also a linear and
bounded extension operator from Hm(Ω) into Hm( � 2 ), where m < k, m ∈ � 0 .
���������

. By Lemma 2.3 we have

(2.80) ‖u∗i ‖k, � 2 6 C‖ui‖k,Ω,

where u∗i = E i
k(ui) and ui is defined by (2.2)–(2.5). In accordance with (2.12) let us

set

(2.81) u∗(X) = u∗0(X) +
n∑

i=1

u∗i (X) ∀X ∈ � 2 ,

where n is the number of points Pi at which the boundary ∂Ω is not smooth and the
function u0(X) is given by (2.9) and (2.15) with u0 ∈ Hk(Ω0). We recall that owing
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to Ω0 ∈ Ck,1, the function u0 ∈ Hk(Ω0) can be extended by means of Theorem 1.4
and relations (2.17) hold.
First we prove

(2.82) ‖u∗‖k, � 2 6 C‖u‖k,Ω.

Using the triangular inequality and relations (2.81), (2.17)3, (2.80), we find

(2.83) ‖u∗‖k, � 2 6 ‖u∗0‖k, � 2 +
n∑

i=1

‖u∗i ‖k, � 2 6 C

(
‖u0‖k,Ω0 +

n∑

i=1

‖ui‖k,Ω

)
.

By (2.15) and (2.9) we have

(2.84) ‖u0‖k,Ω0 = ‖u0‖k,Ω 6 ‖u‖k,Ω +
n∑

i=1

‖ui‖k,Ω.

Now we estimate ‖ui‖k,Ω by ‖u‖k,Ω. We can write

(2.85) ‖ui‖2
k,Ω = ‖u‖2

k,κi
+ ‖upi‖2

k,τi
,

where we set for brevity

κi = Ω ∩ κ
(
Pi,

1
2
ri

)
, τi = Ω ∩

{
K(Pi, ri) \ κ

(
Pi,

1
2
ri

)}
.

According to [2, (4.1.42)], for u ∈ Hk(G) and v ∈W k,∞(G) we have

(2.86) |uv|m,G 6 C
m∑

j=0

|u|j,G|v|m−j,∞,G (0 6 m 6 k).

As pi is a polynomial it belongs to W k,∞(τi). Consequently,

‖upi‖2
k,τi

=
m∑

j=0

|upi|2j,τi
.

This relation and (2.86) yield

(2.87) ‖upi‖k,τi 6 CMi‖u‖k,τi ,

where
Mi = ‖pi‖Ck(τi).
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Relations (2.85) and (2.87) imply

‖ui‖k,Ω 6 ‖u‖k,κi + CMi‖u‖k,τi ;

hence

(2.88)
n∑

i=1

‖ui‖k,Ω 6 CM‖u‖k,Ω

with

M = max
i=1,...,n

Mi.

Relations (2.83), (2.84) and (2.88) give the expected estimate (2.82) in the form

‖u∗‖k, � 2 6 CM‖u‖k,Ω.

It should be noted that if min
i=1,...,n

ri is small then the constant M is a great number.

Relations (2.12) and (2.81) yield the basic property of an extension

(2.89) u∗
∣∣
Ω

= u.

Linearity of the extension Ek follows from Theorem 1.4, Lemma 2.3 and rela-
tion (2.89).

The last property of Ek (i.e., that Ek is also a linear bounded extension oper-
ator from Hm(Ω) into Hm( � 2 ) with m < k) also follows from Theorem 1.4 and

Lemma 2.3. �

2.5. �) *"+$ ��& . The above presented results can be extended without any diffi-
culty to the case of spaces Hk,p(Ω) (k ∈ � , 1 6 p <∞).

3. One special case

In [11, Lemma 6], the following theorem was formulated with reference to [8,
pp. 20–22]:

3.1. Theorem. Let Ω be a two-dimensional bounded domain with the boundary
∂Ω = Γ1 ∪ Γ2, Γ1 and Γ2 being circles with radii R1 and R2 = R1 + %0 (%0 > 0),
respectively (see Fig. 9). We assume that the circles Γ1, Γ2 have the same center S0

and that

(3.1) R1 � %0.
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Let Γ0 be the circle with a center S0 and radius R0 = R1−%0 and let Ω∗ be a bounded

domain such that ∂Ω∗ = Γ0 ∪ Γ2. Then there exists a linear and bounded extension

operator (of the Nikolskij–Whitney type) E2 : H2(Ω) → H2(Ω∗) with the property
E2 : H1(Ω) → H1(Ω∗) and such that the constant C appearing in the inequality

(3.2) ‖E2(v)‖2,Ω∗ 6 C‖v‖2,Ω ∀ v ∈ H2(Ω)

does not depend on R1/%0.

x

y

R1

R2 %0

Figure 9.

However, the way from [8, pp. 20–22] to Theorem 3.1 is not straightforward; we

sketch, therefore, the proof of Theorem 3.1.
���������

of Theorem 3.1. A) The transformation

(3.3) x = (R1 + %) cosϕ, y = (R1 + %) sinϕ, (%, ϕ) ∈M,

maps one-to-one the rectangle

(3.4) M = 〈0, %0〉 × 〈0, 2 , )

onto Ω. The inverse transformation to (3.3) has the form

(3.5) % =
√
x2 + y2 −R1, ϕ = arctan

y

x
, (x, y) ∈ Ω.

The Jacobian of transformation (3.3) is given by

(3.6) J(%, ϕ) =
D(x, y)
D(%, ϕ)

= R1 + %
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and the Jacobian of transformation (3.5) by

(3.7) J−1(x, y) =
D(%, ϕ)
D(x, y)

=
1

R1 + %
.

B) Let u = u(x, y) ∈ H2(Ω) be an arbitrary but fixed function. Let us define
on M a function

(3.8) ũ(%, ϕ) = u((R1 + %) cosϕ, (R1 + %) sinϕ), (%, ϕ) ∈M.

We have

(3.9) u(x, y) = ũ
(√

x2 + y2 −R1, arctan
y

x

)
, (x, y) ∈ Ω.

By Lemma 1.5 (with T defined by (3.3), F = M , G = Ω, v = ũ (see (3.8)) and
u ∈ H2(Ω))

(3.10) ũ ∈ H2(M), ‖ũ‖2,M 6 C1‖u‖2,Ω,

where the constant C1 > 0 does not depend on u ∈ H2(Ω).

C) In the case k = 2 the system of equations (1.35) has the form

1 = λ1 + λ2, 1 = −λ1 −
1
2
λ2

with the solution λ1 = −3, λ2 = 4. Let us set

(3.11) M∗ = 〈−%0, %0〉 × 〈0, 2 , )

and let us define on M∗ a function ũ∗(%, ϕ) by the relations

(3.12) ũ∗(%, ϕ) =

{
ũ(%, ϕ) for % > 0,

−3ũ(−%, ϕ) + 4ũ
(
− 1

2%, ϕ
)
for % < 0.

The function ũ∗(%, ϕ) is by definition an extension of the function ũ(%, ϕ) from M

onto M∗. By a modification of Lemma 1.7 (which consists only of a different defini-

tion of the rectangles K and K∗) we have

(3.13) ũ∗ ∈ H2(M∗), ‖ũ∗‖2,M∗ 6 C2‖ũ‖2,M ,

where the constant C2 > 0 does not depend on ũ.
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D) The extension u∗(x, y) of the function u(x, y) from Ω on Ω∗ is given by the

relation

(3.14) u∗(x, y) = ũ∗
(√

x2 + y2 −R1, arctan
y

x

)
, (x, y) ∈ Ω∗.

Using (3.13)1, we can apply Lemma 1.5 with T given by (3.5) and F = Ω∗, G = M∗,

u = ũ∗, v = u∗ to obtain

(3.15) u∗ ∈ H(Ω∗), ‖u∗‖2,Ω∗ 6 C3‖ũ∗‖2,M∗ ,

where the constant C3 does not depend on ũ∗.

E) Using inequalities (3.15), (3.13) and (3.10) in the given order, we obtain in-
equality (3.2) with E2(v) = v∗ and C = C1C2C3. The proof of E2 : H1(Ω) → H1(Ω∗)
is the same as in Section 2. �

3.2. �) #"%$ ��& . A rough estimate of the constant C appearing in inequality (3.2)
is

(3.16) C 6 136(R1 + %0)2.

This estimate can be obtained if we compute (using transformations (3.3) and (3.5))
the norms standing on the left-hand sides of inequalities (3.10), (3.13) and (3.15) and

transform them by means of the theorem on substitution in the Lebesgue integral.
In estimating the obtained expressions we bound all absolute values of trigonometric

functions by one and use only the Cauchy inequality for sums.

4. A remark to the three-dimensional case

The result described in this paper can be generalized to the case of three-
dimensional bounded domains which can be obtained by means of a continuous

deformation of a cube (or a parallelepiped). The result of such a deformation is a
bounded domain with six smooth faces which can be curved. This will be proved in

detail in a subsequent paper.
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