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ON A RELIABLE SOLUTION OF A VOLTERRA INTEGRAL

EQUATION IN A HILBERT SPACE*

� ����� � ��� 	
, 
��  � � � ��� ��	 , Bratislava

Abstract. We consider a class of Volterra-type integral equations in a Hilbert space.
The operators of the equation considered appear as time-dependent functions with values
in the space of linear continuous operators mapping the Hilbert space into its dual. We
are looking for maximal values of cost functionals with respect to the admissible set of
operators. The existence of a solution in the continuous and the discretized form is verified.
The convergence analysis is performed. The results are applied to a quasistationary problem
for an anisotropic viscoelastic body made of a long memory material.

Keywords: Volterra integral equation in a Hilbert space, Rothe’s method, maximization
problem, viscoelastic body
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0. Introduction

We will deal with the maximum optimization problem connected with a Volterra

integral equation in the Hilbert space. We consider a class of operator-functions
t → A(t) appearing in the state integral equation as the admissible set of control
parameters. We will use an approach similar to [6], where the maximization problem
for the class of coefficients of parabolic problems was considered. Solving the max-

imum problem with the class of operators appearing in the role of control variables
makes it possible to determine the reliability bounds of uncertain coefficients of the

coefficients characterizing the long memory viscoelastic structures. The problems
of uncertain material functions characterizing the elasto-plastic bodies were solved

in [7], [8], [9]. The paper [5] deals with the sensitivity analysis of the uncertain heat
conductivity coefficients problems for anisotropic steady-state heat flows.

*This work was supported by Grant 1/8263/01 of the Grant Agency of the Slovak
Republic.
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In contrast to [6] we start with the abstract formulation of the problem and its

approximation in Section 1. We will verify the existence and uniqueness theorem for
a certain class of linear continuous operators acting from the Hilbert space into its
dual. Applying Rothe’s method (see e.g. [10], [11], [14]) we prove a convergence result

for the approximated state problem with respect to a time variable and to a sequence
of finite-dimensional subspaces modelling the finite element spaces. In Section 2 we

state the maximization problem representing the so called “worst scenario”, i.e. the
worst admissible operators.

The problem formulated in a Hilbert space will be applied to the reliable solution

problem for an anisotropic viscoelastic body made of a long memory material. A
suitable functional depending on the time and space dependent coefficients is to be

maximized. The approximate solution using three dimensional finite elements and
the Hermitian interpolation with respect to the time variable is explained.

1. The state problem and its approximation

For any Banach space X and T > 0 we introduce the set L∞(0, T ;X) of all
measurable essentially bounded functions w : [0, T ] → X , the set C([0, T ], X) of all
continuous functions and the Sobolev space

W 1,∞(0, T ;X) = {w ∈ L∞(0, T ;X) : w′ ∈ L∞(0, T ;X)}

with a derivative w′ in the sense of distributions. All sets of functions are Banach
spaces with norms

‖w‖L∞(0,T ;X) = ess sup
t∈[0,T ]

‖w(t)‖X ,

‖w‖C([0,T ],X) = max
t∈[0,T ]

‖w(t)‖X ,

‖w‖W 1,∞(0,T ;X) = ‖w‖L∞(0,T ;X) + ‖w′‖L∞(0,T ;X).

We have a continuous imbedding W 1,∞(0, T ;X) ⊂ C([0, T ], X). Every element
w ∈W 1,∞(0, T ;X) can be expressed in the form

w(t) = w(0) +
∫ t

0

w′(s) ds, t ∈ [0, T ].

Let V be a Hilbert space with a scalar product ((·, )) and a norm ‖ · ‖, V ∗ its

dual space with a norm ‖ · ‖∗. We denote by 〈f, v〉 the duality pairing between the
functional f ∈ V ∗ and the element v ∈ V .
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We shall deal with the set of operator functions t → A(t) with values in the
Banach space B = L(V, V ∗) of all linear bounded operators A : V → V ∗. We assume
moreover that A ∈ U , where U = W 1,∞(0, T ;B). The operator A(0) : V → V ∗ is
assumed to be positive definite, i.e.

(1) 〈A(0)v, v〉 > α0‖v‖2 ∀v ∈ V, α0 > 0.

We introduce a norm in U equivalent to the original norm in W 1,∞(0, T ;B) by

‖A‖U = ‖A(0)‖B + ess sup
t∈[0,T ]

‖A′(t)‖B.

Let f : [0, T ] → V ∗, (A′ ∗ u)(t) =
∫ t

0 A
′(t− s)u(s) ds. We consider

The state problem:

To find u : [0, T ] → V fulfilling

(2) A(0)u(t) + (A′ ∗ u)(t) = f(t), t ∈ [0, T ].

Theorem 1.1. Let f ∈ C([0, T ], V ∗). Then there exists a unique solution
u ∈ C([0, T ], V ) of the equation (2).
���������

. Due to the Lax-Milgram theorem there exists an inverse operator

A(0)−1 ∈ L(V ∗, V ). The equation (2) is then equivalent to the Volterra integral
equation in the Banach space V :

(3) u(t) + (B ∗ u)(t) = q(t), t ∈ [0, T ],

with B ∈ L∞(0, T ;L(V, V )), q ∈ C([0, T ], V ) defined by B(t) = A(0)−1A′(t), q(t) =
A(0)−1f(t), t ∈ [0, T ].
The equation (3) can be expressed in the form

(4) u = A(u),

where A : C([0, T ], V ) → C([0, T ], V ) is defined by A(u) = q −B ∗ u.
It can be seen easily that there exists an integer n ≡ n(B, T ) such that the

operator An is contractive in the Banach space C([0, T ], V ). More precisely, we have

‖Anu−Anv‖ 6
Tn‖B‖n

L∞(0,T ;L(V,V ))

n!
‖u− v‖, n = 1, 2, . . .

and hence there exist n0 ∈ � and κ ∈ (0, 1) such that

‖Anu−Anv‖ 6 κ‖u− v‖ ∀u, v ∈ V, n > n0.

Applying the Banach fixed point theorem we obtain the existence and uniqueness of
a solution of (4) which is also a unique solution u ∈ C([0, T ], V ) of (3) and (2). �
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We will continue with a full discretization of the problem (2). Let us assume a

family of finite-dimensional subspaces {Vh}, Vh ⊂ V , h ∈ (0, h0) such that for any
v ∈ V there exist vh ∈ Vh, h ∈ (0, h0) fulfilling

(5) vh → v in V as h→ 0 + .

Let Ah ∈W 1,∞(0, T ;B), h ∈ (0, h0) be approximating operators satisfying

〈Ah(0)u, u〉 > α0‖u‖2 ∀u ∈ V with α0 > 0,(6)

Ah → A in U as h→ 0 + .(7)

Further we assume for τ ∈ (0, τ0) the division of the interval [0, T ] by

0 = t0 < t1 < . . . < tN−1 < tN = T, ti = iτ, i = 1, . . . , N ≡ N(τ).

We define the approximation uhτ ∈ C([0, T ], Vh) of a solution u of (2) by

(8) uhτ (t) = uhτ
i−1 +

t− ti−1

τ
(uhτ

i − uhτ
i−1), t ∈ [ti−1, ti],

where {uhτ
i } are unique solutions (due to the Lax-Milgram theorem) of stationary

problems

〈Ah
0u

hτ
0 , v〉 = 〈f0, v〉 ∀v ∈ Vh,(9)

〈
Ah

0u
hτ
i +

i−1∑

j=0

(Ah
i−j −Ah

i−j−1)u
hτ
j , v

〉
= 〈fh

i , v〉 ∀v ∈ Vh, i = 1, . . . , N(10)

with Ah
i = Ah(ti), fh

i = fh(ti), i = 0, 1, . . . , N . We have introduced fh : [0, T ] →
V ∗—approximating functionals of f .

In order to ensure the convergence of the scheme we impose a smoothness condition
on the right-hand side f .

Theorem 1.2. Let f ∈ W 1,∞([0, T ], V ∗), fh ∈ W 1,∞([0, T ], V ∗), h ∈ (0, h0) be
such that

(11) fh → f in W 1,∞([0, T ], V ∗) as h→ 0 + .

Then

(12) uhτ ⇀∗ u in W 1,∞([0, T ], V ) as h→ 0+, τ → 0+,

472



where u ∈ W 1,∞(0, T ;V ) is a unique solution of the equation (2) and uhτ is defined

by (8)–(10).
If a solution u fulfils the condition

(13) πh(u) → u in C([0, T ], V ) as h→ 0+,

where πh(u)(t) ∈ Vh, t ∈ [0, T ] is the orthogonal projection of u(t) onto the sub-
space Vh, then

(14) uhτ → u in C([0, T ], V ) as h→ 0+, τ → 0 + .

���������
. Using the uniform coercivity (6) and the convergence (7) we obtain

from (10) the inequalities

α0‖uhτ
i ‖2 6

〈
−

i−1∑

j=0

∫ tj+1

tj

(Ah)′(ti − s) ds uhτ
j + fh

i , u
hτ
i

〉

and

‖uhτ
i ‖ 6 α−1

0 (‖A‖U + ε)
i−1∑

j=0

τ‖uhτ
j ‖+ α−1

0 ‖fh
i ‖∗, i = 1, . . . , N, h ∈ (0, h0).

Applying the convergence (7), (11) and a discrete form of Gronwall’s lemma ([10])
with respect to {uhτ

i } we obtain an a priori estimate

(15) ‖uhτ
i ‖ 6 C1(T ), i = 0, 1, . . . , N(τ), h ∈ (0, h0), τ ∈ (0, τ0).

Let us denote δwi = τ−1(wi − wi−1), wi = w(ti) for any function w ∈ C([0, T ], X)
with values in a Banach space X . Setting i−1 instead of i into (10) and subtracting
from (10) we obtain the relations

〈Ah
0δu

hτ
i , v〉 =

〈
−τ

i−2∑

j=0

δAh
i−j−1δu

hτ
j − δAh

i u
hτ
0 + δfh

i , v

〉

=
〈
−

i−2∑

j=0

∫ tj+1

tj

(Ah)′(ti−1 − s) ds δuhτ
j − 1

τ

∫ ti

ti−1

(Ah)′(s) ds uhτ
0 + δfh

i , v

〉

∀v ∈ Vh.

Again using the convergence (7), (11) and a discrete form of Gronwall’s lemma we

arrive at the estimate

(16) ‖δuhτ
i ‖ 6 C2(T ), i = 0, 1, . . . , N(τ), h ∈ (0, h0), u ∈ (0, τ0).
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Let us define step functions uhτ , ũhτ : [0, T ] → V by

uhτ (0) = uhτ
0 , uhτ (t) = uhτ

i , t ∈ (ti−1, ti],

ũhτ (0) = 0, ũhτ (t) = uhτ
i−1, t ∈ (ti−1, ti], i = 1, . . . , N.

The equation (10) can be expressed in the form

〈
Ah(0)uhτ (t) + (Ah)′ ∗ ũhτ (t) +

∫ ti

t

(Ah)′(ti − s)ũhτ (s) ds, v
〉

(17)

=
〈∫ t

0

[(Ah)′(t− s)− (Ah)′(ti − s)]ũhτ (s) ds+ fhτ (t), v
〉

for all v ∈ Vh, t ∈ (ti−1, ti], i = 1, . . . , N.

The a priori estimates (15), (16) imply the estimate

(18) ‖uhτ‖W 1,∞(0,T ;V ) 6 C3(T ), h ∈ (0, h0), τ ∈ (0, τ0)

and the existence of a function w ∈ W 1,∞(0, T ;V ) and a sequence {hn, τn}, hn > 0,
τn > 0 fulfilling

(19) hn → 0, τn → 0, uhnτn ⇀∗ w in W 1,∞(0, T ;V ).

Simultaneously we have inequalities

‖uhτ(t)− uhτ (t)‖ 6 τC2(T ),(20)

‖uhτ(t)− ũhτ (t)‖ 6 τC2(T ).(21)

Applying the assumptions (5), (7), (11), the a priori estimate (15) and the esti-
mates (20), (21) we obtain from the equation (17) that the limiting function w

from (19) is a solution of the state equation (2). We have w ≡ u due to the unique-
ness of the solution and hence the convergence (12) holds. We remark that we have

used the relation

lim
τ→0

‖F (t+ τ)− F (t)‖Lp(0,T ;X) = 0, 1 6 p <∞

for any function F ∈ Lp(0, T ;X) extended by F (t + τ) = 0 if t + τ /∈ [0, T ] in
performing the limit in the integral on the right-hand side of the relation (17).

It remains to prove the uniform convergence (14). Let uh(t) := πhu(t) ∈ Vh,
t ∈ [0, T ] be the orthogonal projection onto Vh. Due to the assumption (13) it fulfils

the uniform convergence

(22) lim
h→0+

‖u− uh‖C([0,T ],V ) = 0.
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We define functions vhτ : [0, T ] → Vh by

(23) vhτ = uh − ũhτ , h ∈ (0, h0), τ ∈ (0, τ0).

Taking into account the relations (2), (17) we obtain the identity

(24) 〈Ah(0)vhτ (t) + (Ah)′ ∗ vhτ (t), vhτ (t)〉 = 〈ωhτ (t), vhτ (t)〉, t ∈ [0, T ],

where

ωhτ (t) = Ah(0)uh(t)−A(0)u(t) + (Ah)′ ∗ uh(t)−A′ ∗ u(t)
∫ ti

t

(Ah)′(ti − s)ũhτ (s) ds−
∫ t

0

[(Ah)′(t− s) + (Ah)′(ti − s)]ũhτ (s) ds

+Ah(0)[ũh(t)− uh(t)] + f(t)− f
hτ (t).

The uniform coercivity (6) and the assumption A′ ∈ L∞(0, T ;B) imply the inequality

‖vhτ (t)‖ 6 ‖ωhτ (t)‖∗ + C3(T )
∫ t

0

‖vhτ (s)‖ ds ∀t ∈ [0, T ].

The estimate

(25) ‖vhτ (t)‖ 6 ‖ωhτ (t)‖∗ expTC3(T ) ∀t ∈ [0, T ]

follows due to Gronwall’s lemma. The previous assumptions and estimates imply the

convergence
ωhτ → 0 in C([0, T ];V ∗) as h→ 0+, τ → 0 + .

The uniform convergence (14) then follows from (25) and the proof is complete. �

2. A maximization problem and its approximation

Let us assume the compact subset Uad ⊂ U of operator functions A : [0, T ] → B
such that A(0) fulfil uniform positive definiteness (1). The functional Φ: U ×
C([0, T ];V ) → � fulfils

An ∈ Uad, {An, un} → {A, u} in U × C([0, T ];V ) as n→∞(26)

=⇒ lim
n→∞

sup Φ(An, un) 6 Φ(A, u).

We formulate
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Maximization problem:

(27) A∗ = arg max
A∈Uad

Φ(A, u(A)),

where u(A) is a solution of the integral equation (2).

Theorem 2.1. Let the assumptions of Theorem 1.1 be fulfilled. Let the func-
tional Φ satisfy (26).
Then the Maximization Problem (27) has at least one solution.
���������

. Let {An} be a maximizing sequence in Uad for the problem (27), i.e.,

(28) lim
n→∞

Φ(An, u(An)) = sup
A∈Uad

Φ(A, u(A)).

There exists its subsequence (again denoted by {An}) and A∗ ∈ Uad such that

(29) An → A∗ in U .

The corresponding sequence {un} fulfils the equations

(30) An(0)un +A′n ∗ un = f, n = 1, 2, . . .

Let us denote by u∗ ∈ C([0, T ], V ) ≡ u(A∗) the unique solution of the equation

(31) A∗(0)u∗ +A′∗ ∗ u∗ = f.

If

(32) un → u∗ in C([0, T ], V ),

then the property (26) implies the relation (27).
Comparing (30) and (31) we arrive at the equation

(33) An(0)(un − u∗)(t) +
∫ t

0

(A′n)(t− s)(un − u∗)(s) ds = ωn(t), t ∈ [0, T ]

with

ωn(t) = [A∗(0)−An(0)]u∗(t) +
∫ t

0

(A∗ −An)′(t− s)u∗(s) ds.

We have

(34) lim
n→∞

‖ωn‖C([0,T ],V ∗) = 0
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due to the convergence (29). The equation (33) implies, due to the uniform coercivity

and boundedness of {An} in U , the inequality

‖(un − u∗)(t)‖ 6 M

∫ t

0

‖(un − u∗)(s)‖ ds+ ‖ωn(t)‖∗ ∀t ∈ [0, T ].

Applying Gronwall’s lemma we arrive at the estimate

‖(un − u∗)(t)‖ 6 C4(M,T )‖ωn(t)‖∗ ∀t ∈ [0, T ]

and the uniform convergence (32) follows due to (34). The convergence (28), (29),

(32) together with the property (26) implies that a function A∗ ∈ Uad solves the
Maximization problem (27). �

We continue with an approximate maximization problem. We assume that the
assumptions of Theorem 1.2 hold.

Let Uh
ad ⊂ Uad, h ∈ (0, h0) be such compact subsets that for all A ∈ Uad and

h ∈ (0, h0) there exist approximating operator functions Ah ∈ Uh
ad fulfilling the con-

vergence (7). Let τ ∈ (0, τ0). We assume that the functional Φ: U×C([0, T ], V ) → �
fulfils the continuity property

Ak ∈ Uad, uk ∈ V, {Ak, uk} → {A, u} in U × C([0, T ], V ) as k →∞(35)

=⇒ lim
k→∞

Φ(Ak, uk) = Φ(A, u).

For A ∈ Uh
ad we denote by u

hτ (A) ∈ W 1,∞(0, T ;V ) a solution belonging to the
approximating problem (9), (10).

The approximate maximization problem Ph:

(36) Ahτ
∗ = arg max

A∈Uh
ad

Φ(A, uhτ (A)).

Theorem 2.2. Let f ∈ W 1,∞(0, T ;V ∗) and let the admissible sets Uad, Uh
ad

satisfy the assumptions stated above. Then there exists a solution Ahτ
∗ ∈ Uh

ad of

Problem (36).
Let the assumption (13) be fulfilled for every A ∈ U . If {hn, τn} is such a sequence

that

hn > 0, τn > 0, hn → 0, τn → 0,

then there exists its subsequence {hk, τk} fulfilling

Ahkτk
∗ → A∗ in U for k →∞,(37)

uhkτk(Ahkτk
∗ ) → u(A∗) in C([0, T ], V ) for k →∞,(38)

lim
k→∞

Φ(Ahk ,τk∗ , uhkτk(Ahkτk∗ )) = Φ(A∗, u(A∗)),(39)

477



where A∗ is a solution of Problem (27), uhkτk(Ahkτk∗ ) are solutions of the approximate
problem (9), (10) with h := hk, τ := τk, A := Ahkτk∗ and u(A∗) is a solution of the
state equation (2) with A := A∗.

���������
. Let {An} ⊂ Uh

ad be a maximizing sequence for the problem (36), i.e.

(40) lim
n→∞

Φ(An, u
hτ (An)) = sup

A∈Uh
ad

Φ(A, uhτ (A)).

There exists its subsequence (again denoted by {An}) and Ã ∈ Uh
ad such that

(41) An → Ã in U .

The corresponding sequence {uhτ
n }, uhτ

n = uhτ (An) fulfils the relation analogous
to (17):

〈
An(0)uhτ

n (t) +A′n ∗ ũhτ
n (t) +

∫ ti

t

(An)′(ti − s)ũhτ
n (s) ds, v

〉
(42)

=
〈∫ t

0

[(An)′(t− s)− (An)′(ti − s)]ũhτ
n (s) ds+ fhτ (t), v

〉

for all v ∈ Vh, t ∈ (ti−1, ti], i = 1, . . . , N.

Let uhτ
∗ be a solution of the approximated scheme corresponding to Ã:

〈
Ã(0)uhτ

∗ (t) + (Ã′ ∗ ũhτ
∗ )(t) +

∫ ti

t

Ã′(ti − s)ũhτ
∗ (s) ds, v

〉
(43)

=
〈∫ t

0

[Ã′(t− s)− Ã′(ti − s)]ũhτ
∗ (s) ds+ fhτ (t), v

〉

for all v ∈ Vh, t ∈ (ti−1, ti], i = 1, . . . , N.

The following estimates can be verified in the same way as in the proof of Theo-

rem 1.2:

‖uhτ
n ‖W 1,∞(0,T ;V ) 6 C5(T ),(44)

‖uhτ
n (t)− uhτ

n (t)‖ 6 τC6(T ),

‖uhτ
n (t)− ũhτ

n (t)‖ 6 τC6(T ),

‖uhτ
∗ ‖W 1,∞(0,T ;V ) 6 C5(T ),

‖uhτ
∗ (t)− uhτ

∗ (t)‖ 6 τC6(T ),

‖uhτ
∗ (t)− ũhτ

∗ (t)‖ 6 τC6(T ), n > n0, h ∈ (0, h0), τ ∈ (0, τ0).
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Let us denote

(45) vhτ
n = ũhτ

n − uhτ
∗ , n > n0, h ∈ (0, h0), τ ∈ (0, τ0).

We obtain from (42), (43) the identity

(46) 〈An(0)vhτ
n (t) +A′n ∗ vhτ

n (t), vhτ
n (t)〉 = 〈ωhτ

n (t), vhτ
n (t)〉

with ωhτ
n ∈ C([0, T ], V ∗) fulfilling

(47) lim
n→∞

‖ωhτ
n ‖C([0,T ],V ∗) = 0.

Applying the uniform coercivity of the operators {An} and Gronwall’s lemma to (46)
we obtain due to (44), (45), (47) the convergence

(48) uhτ
n → uhτ

∗ in C([0, T ], V ).

The property (26) of the functional Φ and the convergence (40), (41), (48) then imply
that Ã ≡ Ahτ

∗ is a solution of Approximate Maximization Problem (36).
We continue with the convergence of the method. Let hn → 0, τn → 0. The

sequence {Ahnτn∗ } belongs to the compact set Uad ⊂ U . Hence there exist its subse-
quence {Ahkτk∗ } and an operator function Â ∈ Uad fulfilling

Ahkτk
∗ = arg max

A∈Uhk
ad

Φ(A, uhkτk(A)),(49)

Ahkτk
∗ → Â in U .(50)

Let û ≡ u(Â) be a unique solution of the state equation

(51) Â(0)û+ Â ∗ û = f

and uhkτk∗ ≡ uhkτk(Ahkτk∗ ), k = 1, 2 . . . a unique solution of the approximate problem

〈
Ahkτk
∗ (0)uhkτk

∗ (t) + (Ahkτk
∗ )′ ∗ ũhkτk

∗ (t) +
∫ ti

t

(Ahkτk
∗ )′(ti − s)ũhkτk

∗ (s) ds, v
〉

=
〈∫ t

0

[(Ahkτk∗ )′(t− s)− (Ahkτk∗ )′(ti − s)]ũhkτk∗ (s) ds+ fhkτk(t), v
〉

for all v ∈ Vhk
, t ∈ (tki−1, t

k
i ], tki = iτk, i = 1, . . . , Nk.

Using the same approach as in the proof of Theorem 1.2 we obtain the convergence

(52) uhkτk
∗ (Ahkτk

∗ ) → û ≡ u(Â) in C([0, T ], V ) as k →∞.
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For an arbitrary A ∈ Uad there exists a sequence {Ãk} ∈ Uhk

ad fulfilling Ãk → A

in U . At the same time we have

uhkτk(Ãk) → u(A) in C([0, T ], V ) as k →∞.

The relations (49)–(52) and the assumption (35) then imply the relations

Φ(Â, u(Â)) = lim
k→∞

Φ(Ahkτk
∗ , u∗(Ahkτk

∗ )(53)

> lim
k→∞

Φ(Ãk, u
hkτk(Ãk)) = Φ(A, u(A)).

Hence we conclude that Â ≡ A∗ is a solution of Maximization Problem (27). More-
over, the convergence (37), (52), (53) holds and the proof is complete. �

3. Applications to maximization problems for viscoelastic bodies

Let Ω ⊂ � 3 be a bounded domain with a Lipschitz boundary ∂Ω = Γ0 ∪ Γ1 with

open in ∂Ω parts Γ0, Γ1, meas(Γ0) > 0, Γ0 ∩ Γ1 = ∅ and the unit outward normal
vector n(x), x ∈ ∂Ω. We assume a quasistationary state of a viscoelastic body
occupying Ω and acting upon the body forces f(x, t), x ∈ Ω, t ∈ [0, T ] and surface
tractions g(x, t), x ∈ Γ1, t ∈ [0, T ]. Considering the Boltzman type anisotropic long
memory material ([3]) we obtain the equilibrium equations

(54) − div σ(u;x, t) = f(x, t), x ∈ Ω, t ∈ [0, T ]

with boundary conditions

(55) u(x, t) = 0, x ∈ Γ0, σ(u;x, t)n = g(x, t), x ∈ Γ1,

and stress-strain relations

σij(u;x, t) = Aijkl(x, 0)εkl(u(t)) +
∫ t

0

∂

∂t
Aijkl(x, t− s)εkl(u(s)) ds,(56)

εij(u) =
1
2

(∂ui

∂xj
+
∂uj

∂xi

)
, i, j = 1, 2, 3.(57)

We assume the components of fourth order tensor functions Aijkl(·, ·) : Ω×[0, T ] → �
to fulfil

(58) Aijkl ∈W (0,1)(Ω× (0, T )) := {a ∈ L∞(Ω× (0, T )); a′ ∈ L∞(Ω× (0, T ))}.
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The fourth order tensors Aijkl(x, 0) are assumed to be uniformly positive definite:

(59) Aijkl(x, 0)εijεkl > c0εijεij , c0 > 0, a.e. in Ω, ∀{εij} ∈ � 3×3
sym ,

where � 3×3
sym is the space of all symmetric tensors {εij} ∈ � 3×3 .

In order to simplify the admissible class of operator functions A(t), t ∈ [0, T ], we
will consider 6× 6 matrix functions A (≡ (Aij(x, t))6ij=1 instead of tensor functions
{Aijkl}.
We set

V = {v ∈ H1(Ω)3 : v(x) = 0, x ∈ Γ0},

the Hilbert space of displacements vectors v : Ω → � 3 .
The operator function A ∈ U appearing in the state equation (1) has then the

form

(60) 〈A(t)u,v〉 =
∫

Ω

ε(u)A(x, t)εT (v) dx, u,v ∈ V,

where we set

ε = (ε1, . . . , ε6), εi = εii, i = 1, 2, 3, ε4 = ε12, ε5 = ε13, ε6 = ε23.

The operatorA(0) : V → V ∗ is positive definite with some constant α0 > 0 due to the
uniform positive-definiteness of the tensor function {Aijkl(·, 0)} or the matrix A(·, 0)
and Korn’s inequality, verified in ([13]).

If we define a functional f(t) ∈ V ∗, t ∈ [0, T ] by

(61) 〈f(t),v〉 =
∫

Ω

f(x, t) · v(x) dx+
∫

Γ1

g(r, t) · v(r) dr, v ∈ V

we can identify the state integral equation (2) with a weak formulation of the bound-

ary value problem (54)–(57). Applying Theorem 1.1 we obtain

Theorem 3.1. Let f ∈ C([0, T ], L2(Ω)3), g ∈ C([0, T ], L2(Γ1)3). Then there
exists a unique weak solution u ∈ C([0, T ], V ) of the problem (54)–(57).

Let us introduce the following spaces of matrix functions:

U = [W (0,1)(Ω× (0, T ))]6×6(62)

and

V = [W 1,∞(0, T ;W 1,p(Ω)) ∩W 2,r(0, T ;L1(Ω))]6×6, p > 3, r > 1.(63)
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In order to carry out the compactness analysis we recall the part of Corollary 4

devoted to compactness in L∞ spaces from the extensive paper of Simon ([16]).

Lemma 3.2. Let X ⊂ B ⊂ Y be Banach spaces with compact imbedding

X → B. Let F be a bounded set of functions in L∞(0, T ;Y ) and let ∂F/∂t =
{∂f/∂t : f ∈ F} be bounded in Lr(0, T ;Y ), r > 1. Then F is relatively compact in
C(0, T ;B).

Setting X := W 1,p(Ω), p > 3, B = L∞(Ω), Y = L1(Ω) we obtain

Lemma 3.3. The set V is relatively compact in U .
We have applied the compact imbedding W 1,q(Ω) ⊂⊂ L∞(Ω) ([12]) and the ex-

pression f(t) = f(0) +
∫ t

0
f ′(s) ds, a.e. in [0, T ] for any function f ∈ W 1,1(0, T ;Z),

Z a Banach space.
The set of admissible matrix functions

Uad = {(Aij)6ij=1 ∈ V : ‖(Aij)6ij=1‖V 6 c1,(64)

εA(x, t)εT > c0εεT , c0 > 0, ∀x ∈ Ω, ∀ε ∈ � 6}

is then compact in the Banach space U .
Instead of the set Uad we can consider its arbitrary convex closed (in V) sub-

set. Lower and upper estimates can be imposed on the matrix members Aij(x, 0),
A′ij(x, t) in a similar way as in [6].
Most of viscoelastic materials are described by coefficients fulfilling an exponential

decrease of their time derivatives. In that case we can consider as the admissible set

U1
ad = {(Aij) ∈ Uad : ‖(A′ij(·, t))‖L∞(Ω)6×6 6 c2e−βt, β > 0, ∀t ∈ [0, T ]}.

A very important special case of the set U1
ad is the set of coefficients in the exponential

form

Aij(t) = B
〈0〉
ij +

M∑

m=1

B
〈m〉
ij e−βmt, βm > 0, m = 1, . . . ,M

with a positive definite matrix (Aij)6ij=1(0). Precisely, the admissible set has the
form

U2
ad =

{
[({B〈n〉ij ), {βm}] ∈ [W 1,q(Ω)6×6 × � ]M , q > 3:

M∑

n=0

ε(Bij)〈n〉(x)εT > α0εεT , α0 > 0, ∀x ∈ Ω, ∀ε ∈ � 6 ,

‖(Bij)〈n〉‖W 1,q(Ω)6×6 6 cm, n = 0, . . . ,M ;

0 < γm 6 βm 6 δm, m = 1, . . . ,M
}
.
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Let

Ω =
M⋃

m=1

Ωm, Ωi ∩ Ωj = ∅, for i 6= j.

We assume the coefficients to be constant with respect to x on the subsets Ωm,
m = 1, . . . ,M . The admissible set has then the form

U3
ad = {(Aij) ∈ U : Aij |Ωm(x, t) = A

〈m〉
ij (t),

ε(A〈m〉ij (0))εT > c0εεT , c0 > 0, ∀ε ∈ � 6 ,
A
〈m〉
ij ∈ W 2,p(0, T ), p > 1, ‖A〈m〉ij ‖W 2,p(0,T ) 6 cm, m = 1, . . . ,M}.

We can formulate
Maximization problem P :

A∗ = arg max
A∈Uad

Φ(A,u(A)), A = {Aijkl}

with goal functionals Φi : U × C([0, T ];V ) → � , i = 1, 2 fulfilling the assump-
tions (26).

Let Ωj ⊂ Ω and let Ij ⊂ [0, T ], j = 1, . . . , J be intervals

1) Φ1(A,u(A)) = max
16j6J

ψj(u(A)) with

a) ψj(u(A)) = (measΩj)−1 max
16k63

∫
Ωj
uk(A)(t∗) dx, t∗ ∈ (0, T ], or

b) ψj(u(A)) = (meas Ij)−1(measΩj)−1 max
16k63

∫
Ij

∫
Ωj
uk(A) dt dx.

2) Φ2(A,u(A)) =
∫ T

0

∫
Ω
κ(A,u(A)) dt dx,

κ(A,u(A)) =
∑
i6=j

[aij(σii − σjj)2 + bijσ
2
ij ], aij > 0, bij > 0,

σij ≡ σij(A,u(A))(t) = Aijkl(0)εkl(u(t)) + (A′ijkl ∗ εkl(u))(t).

The functional Φ2 expresses the intensity of the shear stresses.
It can be verified using the standard methods that Maximization problem P fulfils

for all above mentioned choices of admissible sets and goal functions the conditions
of the general theory and has at least one solution A∗ = {A∗ijkl}.
We continue with the finite element approximation of Problem P . We assume the

polyhedral region Ω divided regularly (see [4] for the details) by tetrahedron {Gi}:

Ω =
I(h)⋃

i=1

Gi, Gi ∩Gj = ∅, i 6= j, h = diamGi, i = 1, . . . , I(h).

The partition is consistent with the partition ∂Ω = Γ0 ∪ Γ1. Let

Vh = {v ∈ V ∩ C(Ω)3 : v|Gi ∈ P1},
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where P1 ⊂ � 3 is the space of vector polynomials of the first degree. Let us assume
the admissible set Uad defined in (64). In order to fulfil the regularity of coeffi-
cients {Aijkl} we shall consider the Hermitian interpolation with respect to the time
variable. The method of Galerkin space-time discretization used in [15] can be used

in final numerical algorithms.
For τ > 0 we recall the division of the interval [0, T ] by

0 = t0 < t1 < . . . < tN−1 < tN = T, tm = mτ, m = 0, 1, . . . , N(τ)

and the approximation uhτ ∈ C([0, T ], Vh) of a weak solution u of (54)–(57) by

uhτ (t) = uhτ
m−1 +

t− tm−1

τ
(uhτ

m − uhτ
m−1), t ∈ [tm−1, tm].

Approximate maximization problem Phτ :

Ahτ
∗ = arg max

A∈Uhτ
ad

Φ(A,uhτ (A)), A = (Aij)6ij=1

with the approximate admissible set of 6× 6 matrix functions

Uhτ
ad =

{
A ∈ Uad : A(t) = A〈0〉m−1ϕ0

( t− tm−1

τ

)

+A〈1〉m−1ϕ1

( t− tm−1

τ

)
+A〈0〉m ϕ0

( t− tm
τ

)
+A〈1〉m ϕ1

( t− tm
τ

)
,

A〈0〉m = A〈0〉0 + τ

m∑

n=1

A〈1〉n , tm−1 6 t 6 tm, m = 1, . . . , N(τ)
}
,

A〈r〉m := (A〈r〉ij,m), (A〈r〉ij,m) ∈ Uh, r = 0, 1,

Uh = {ϕ ∈ C(Ω): ϕ|Gn ∈ P1, n = 1, . . . , I(h)}.

The Hermitian basic functions ϕ0, ϕ1 have the form

ϕ0(x) =

{
1− 3x2 − 2x3, −1 6 x 6 0,

1− 3x2 + 2x3, 0 6 x 6 1,

ϕ1(x) =

{
x+ 2x2 + x3, −1 6 x 6 0,

x− 2x2 + x3, 0 6 x 6 1.

The discrete values of uhτ are determined by variational equations

〈A〈0〉0 uhτ
0 ,v〉 = 〈fh

0 ,v〉, ∀v ∈ Vh,(65)
〈
A
〈0〉
0 uhτ

m +
m−1∑

n=0

τA
〈1〉
m−nuhτ

n ,v
〉

= 〈fh
m,v〉, ∀v ∈ Vh, m = 1, . . . , N(τ)
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with operators A〈r〉m : V → V ∗ defined by

〈A〈r〉m u,v〉 =
∫

Ω

ε(u)(A〈r〉ij,m)(x)ε(v)T dx, u,v ∈ V,

and finite element approximations fh
m of the functionals f(tm) ∈ V ∗,m = 1, . . . , N(τ)

defined in (61).

Using the approach similar to the proof of Theorem 2.2 the convergence of a
subsequence of {Ahτ} as h→ 0+, τ → 0+ can be verified.
� �"!$#%��&

3.4. The maximization problem (27) can be formulated also for the
bending problem of a viscoelastic plate of variable thickness made of a long memory

material. The deflections of the middle surface Ω are elements of the Hilbert space

V =
{
v ∈ H2(Ω): v|Γ0 =

∂v

∂n

∣∣
Γ0

= 0, v|Γ1 = 0
}
,

if the part Γ0 of the boundary ∂Ω is clamped and Γ1 is simply supported.

The functionals A(t) : V → V ∗ are of the form

〈A(t), v〉 =
∫

Ω

e3(x)Aijkl(x, t)
∂2u

∂xi∂xj

∂2v

∂xj∂xk
dx1 dx2

with the tensors {Aijkl(x, t)}, i, j, k, l ∈ {1, 2}, x = (x1, x2) fulfilling the positive
definiteness for t = 0. The variable thickness e : Ω → � can play the role of control
parameters in a similar way as in [1], [2], where a minimization problem for a short

memory material was investigated.
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