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A NOTE ON THE GENERALIZED ENERGY INEQUALITY

IN THE NAVIER-STOKES EQUATIONS*

� � � � � � � � � �
, �
	 � � �  � ���� �  , Praha

Abstract. We prove that there exists a suitable weak solution of the Navier-Stokes equa-
tion, which satisfies the generalized energy inequality for every nonnegative test function.
This improves the famous result on existence of a suitable weak solution which satisfies this
inequality for smooth nonnegative test functions with compact support in the space-time.
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Suppose that we solve the Navier-Stokes equations for sufficiently smooth data.

It is proved in [1] that then there exists a suitable weak solution of these equations,
i.e. the generalized energy inequality holds for the smooth test functions with com-

pact support in the space-time domain. The goal of this paper is to describe briefly
the construction of a suitable weak solution which satisfies the above mentioned gen-

eralized energy inequality for every smooth test function. A similar result is also
mentioned in [6], but it is not proved there.

Let Ω ⊂ � 3 be a bounded domain with C 2+µ boundary ∂Ω (µ > 0), T > 0,
QT = Ω × (0, T ). The classical formulation of the Navier-Stokes initial-boundary
value problem for a viscous incompressible fluid can be written as

∂u

∂t
− ν ·∆u+ (u · ∇)u+∇P = f in QT ,(1)

∇ · u = 0 in QT ,(2)

u(·, 0) = u0,(3)

u = 0 on ∂Ω× (0, T ),(4)

*This research has been supported by the Research Plan of the Czech Ministry of Edu-
cation No. J04/98/210000010, by the Institute of Hydrodynamics, project No. 5476 and
by the Grant Agency of the Academy of Sciences of the Czech Republic through the
grant A2060302.
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where u = (u1, u2, u3) and P denote the velocity and the pressure, ν > 0 is the
viscosity coefficient and f is an external body force. Throughout the paper we
suppose that ν = 1.
Let V = C∞

0 (Ω, � 3 )∩{v;∇·v = 0}. As is usual in mathematical literature, H and
V , respectively, denote the closures of V in the norms of [L2(Ω)]3 and [W 1,2

0 (Ω)]3.
Denote further A = −PH∆, where PH is the Helmholtz projection from [L2(Ω)]3

onto H . Then D(A) = [W 2,2(Ω)]3 ∩ V is a Banach space with the norm ‖ · ‖D(A)

which is equivalent to the norm ‖ · ‖[W 2,2(Ω)]3 .

We write Lα,β instead of Lα(0, T ;Lβ(Ω)) and ‖ · ‖L∞,2∩L2,6 is the sum

‖ · ‖L∞(0,T ;L2(Ω)) + ‖ · ‖L2(0,T ;L6(Ω)).

Throughout the paper we suppose that the following conditions are satisfied:

(5) f ∈ L2(0, T ;H)

and for simplicity,

(6) u0 ∈ D(A).

The suitable weak solution in [1] is defined as follows.

Definition. Let

f ∈ Lq(QT ), q > 5/2,(7)

∇ · f = 0,(8)

u0 ∈ H.(9)

The pair (u,P) is called a suitable weak solution of (1)–(4) if

u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H),(10)

u(t) → u0 weakly in H for t→ 0,(11)

P ∈ L 5
4 (QT ),(12)

equation (1) holds in the sense of distributions in QT(13)

and
∫

Ω×{t}
|u|2ϕ+ 2

∫ t

0

∫

Ω

|∇u|2ϕ(14)

6
∫

Ω×{0}
|u0|2ϕ+

∫ t

0

∫

Ω

|u|2
(∂ϕ
∂t

+ ∆ϕ
)

+
∫ t

0

∫

Ω

(|u|2u+ 2Pu) · ∇ϕ+ 2
∫ t

0

∫

Ω

fuϕ
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for every ϕ ∈ C∞(QT ), ϕ > 0, ϕ = 0 in a neighbourhood of ∂Ω × (0, T ) and for
every t ∈ (0, T ).

The following result is proved in [1].

Theorem 1. Let (7) and (8) hold and u0 ∈ H ∩W
2
5 , 5

4
0 (Ω). Then there exists a

suitable weak solution of (1)–(4).

The following theorem is the main result of this paper.

Theorem 2. Let (5)–(6) hold. Then there exists a suitable weak solution (u,P)
of (1)–(4). Furthermore,

the function u : [0, T ] → H is weakly continuous,(15)

P ∈ Lr,s∗ ,(16)

where

2
r

+
3
s∗

= 3, 1 < r < 2,
3
2
< s∗ < 3(17)

and

∫

Ω×{t2}
|u|2ϕ+ 2

∫ t2

t1

∫

Ω

|∇u|2ϕ(18)

6
∫

Ω×{t1}
|u|2ϕ+

∫ t2

t1

∫

Ω

|u|2
(∂ϕ
∂t

+ ∆ϕ
)

+
∫ t2

t1

∫

Ω

(|u|2u+ 2Pu) · ∇ϕ+ 2
∫ t2

t1

∫

Ω

fuϕ

for every ϕ ∈ C∞(QT ), ϕ > 0, for almost every t1 ∈ [0, T ] and every t2 ∈ [0, T ],
t1 < t2. Moreover, (18) holds for t1 = 0.

First, we present a few lemmas. The first lemma is proved in [5].

Lemma 1. If g ∈ L∞,2 ∩ L2,6 and α ∈ [2,∞], β ∈ [2, 6], 2
α + 3

β > 3
2 , then

‖g‖Lα,β 6 c‖g‖
2
α + 3

β− 3
2

L2,2 ‖g‖
5
2−( 2

α + 3
β )

L∞,2∩L2,6 ,

where c = c(Ω).

The following lemma is an immediate consequence of Lemma 1.
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Lemma 2. If g ∈ L∞,2 ∩ L2,6, p ∈ [2,∞], q ∈ [2, 6] and

(19)
2
p

+
3
q

=
3
2
,

then

(20) ‖g‖Lp,q 6 c‖g‖L∞,2∩L2,6 ,

where c = c(Ω).

Lemma 3. Let ψ ∈ L2(0, T ; D(A)), ψ′ ∈ L2(0, T ;H), (5) hold and w0 ∈ V .

Then there exists a unique solution (w,Q) of the problem

w′ −∆w + ψ∇w +∇Q = f,(21)

w(0) = w0,(22)

where w ∈ L2(0, T ; D(A)) ∩ L∞(0, T ;V ), w′ ∈ L2(0, T ;H), ∇Q ∈ L2(0, T ;L2(Ω)3),
Q ∈ L2,6,

∫
Ω

Q = 0 for almost every t and

(23) ‖w‖L2(0,T ;V ) + ‖w‖L∞(0,T ;H) 6 c1 · (‖f‖L2(0,T ;H) + ‖w0‖H).

Moreover, if w0 ∈ D(A), then

(24) ‖Q‖Lr,ss , ‖∇Q‖Lr,s 6 c2 · (‖f‖L2(0,T ;H) + ‖w0‖D(A))(‖ψ‖L∞,2∩L2.6 + 1),

where r, s∗ satisfy (17), c2 = c2(Ω),

(25)
2
r

+
3
s

= 4, 1 < s <
3
2

and c1, c2 do not depend on ψ.
���
�����

. Using ([7], Proposition 2) we get that there exists a unique w, w ∈
L2(0, T ; D(A))∩L∞(0, T ;V ), w′ ∈ L2(0, T ;H), which is a weak solution of (21), (22).
Consequently, ∇Q ∈ L2(0, T ;L2(Ω)), Q ∈ L2(0, T ;L6(Ω)) and w, Q solve (21), (22).
Multiplying (21) by w, we get

‖w(t)‖2
H + 2

∫ t

s

‖∇w‖2
L2(Ω) 6 ‖w(s)‖2

H + 2
∫ t

s

‖f‖H ‖w‖H

for every 0 6 s < t 6 T . Set s = 0. Then

‖w(t)‖2
H + 2

∫ t

0

‖∇w‖2
L2(Ω) 6 ‖w(0)‖2

H + 2
∫ t

0

‖f‖H ‖w‖H
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for every t ∈ [0, T ]. The last inequality implies

‖w(t)‖2
H +

∫ T

0

‖∇w‖2
L2(Ω) 6 c1 · (‖w0‖2

H +
∫ T

0

‖f‖2
H)

and (23) follows immediately.

Using the inequality

‖ψ∇w‖Lr,s 6 c‖∇w‖L2,2‖ψ‖Lp,q 6 c‖∇w‖L2,2‖ψ‖L∞,2∩L2,6 ,

where p = 2r
2−r , q = 2s

2−s and r, s satisfy (17) and (25), it is possible to see that also
f − ψ∇w ∈ Lr,s and

‖f − ψ∇w‖Lr,s 6 c(‖f‖L2(0,T ;H) + c‖∇w‖L2,2‖ϕ‖L∞,2∩L2,6).

By virtue of (23), inequality (24) for ‖∇Q‖Lr,s now follows from the famous Lr−Ls

estimates for the Stokes equations (see [2]). Using now the fact that
∫
Ω

Q = 0, we
get (24) for ‖Q‖Lr,s∗ , where r, s∗ satisfy (17). �

Lemma 4. The unique solution (w,Q) obtained in Lemma 3 satisfies the gen-
eralized energy equality for every ϕ ∈ C∞(QT ), ϕ > 0 and every t1, t2 ∈ [0, T ],
t1 < t2:

∫

Ω×{t2}
|w|2ϕ+ 2

∫ t2

t1

∫

Ω

|∇w|2ϕ(26)

=
∫

Ω×{t1}
|w|2ϕ+

∫ t2

t1

∫

Ω

|w|2
(∂ϕ
∂t

+ ∆ϕ
)

+
∫ t2

t1

∫

Ω

(|w|2 · ψ + 2Qw) · ∇ϕ+ 2
∫ t2

t1

∫

Ω

fwϕ.

���
�����
. Multiplying (21) by 2wϕ and integrating by parts, we get (26). �

Definition. Let n ∈ � , δn = T/n and ϕ ∈ C (0, T ;H). Define

(27) Ψn(ϕ)(t) =

{
ϕ(0) for t ∈ (0, δn),

ϕ(t− δn) for t ∈ [δn, T ).

Clearly, Ψn(ϕ) ∈ C (0, T ;H).
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Let (wn,Qn) be the solution of the problem

w′n −∆wn + Ψn(wn)∇wn +∇Qn = f,(28)

wn(0) = u0.(29)

It is possible to see that wn,Ψn(wn) ∈ L2(0, δn; D(A)) and by applying Lemma 3
inductively on each time interval (kδn, (k + 1)δn), k = 1, . . . , n − 1, we get that
wn,Ψn(wn) ∈ L2(0, T ; D(A)). Using (23) and (27), we get that for sufficiently big K

(30) ‖wn‖L2(0,T ;V ), ‖wn‖L∞(0,T ;H), ‖Ψn(wn)‖L2(0,T ;V ) 6 K,

and using (24) and (30), we obtain

(31) ‖Q/R‖Lr,s∗ , ‖∇Qn‖Lr,s 6 K.

Further, using Lemma 3, we get from (27) and (28) that

(32) ‖w′n‖L
4
3 (0,T ;V ∗)

, ‖Ψn(wn)′‖
L

4
3 (0,T ;V ∗)

6 K.

Note that K does not depend on n and r, s, s∗ satisfy (17) and (25). Using (30),

(32) and ([8], Theorem 2.1 in Chapter III), we come to the conclusion that

(33) wn stay in a compact subset of L2(0, T ;H).

Therefore, there exist u, u∗ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) and {wnk
} ⊂ {wn},

{Ψnk
(wnk

)} ⊂ {Ψn(wn)} (for simplicity we will use {wnk
} = {wn}, {Ψnk

(wnk
)} =

{Ψn(wn)}) such that

wn →u weakly in L2(0, T ;V ),(34)

wn →u strongly in L2(0, T ;H),(35)

Ψn(wn) →u∗ weakly in L2(0, T ;V ),(36)

Ψn(wn) →u∗ strongly in L2(0, T ;H).(37)

Lemma 5. The following equality holds:

(38) u = u∗.

���
�����
. We know (see (35), (37)) that {wn}, {Ψn(wn)} are relatively compact

sets in L2(0, T ;H). Using ([4], Theorem 2.13.1, condition (ii)), we get that wk
n are
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2-mean equicontinuous (wk
n is the k-th component of wn, k = 1, 2, 3). It means that

for every ε > 0 there exists δ > 0 such that for every h ∈ � , |h| < δ,

∫

QT

|wk
n(x, t + h)− wk

n(x, t)|2 < ε2.

(If necessary, wn are defined by zero outside QT .) It follows from the last inequality
and from (27) that u = u∗.

It follows immediately from Lemma 1, (34) and (35) that

(39) wn → w strongly in Lα,β, where
2
α

+
3
β
>

3
2
, α ∈ (2,∞), β ∈ (2, 6).

By virtue of (31), there exists P ∈ Lr,s∗ , ∇P ∈ Lr,s such that

Qn → P weakly in Lr,s∗(40)

and

∇Qn → ∇P weakly in Lr,s.(41)

Applying Lemma 4 to (28), (29), we obtain the generalized energy equality for

(wn,Qn):

∫

Ω×{t2}
|wn|2ϕ+ 2

∫ t2

t1

∫

Ω

|∇wn|2ϕ(42)

=
∫

Ω×{t1}
|wn|2ϕ+

∫ t2

t1

∫

Ω

|wn|2
(∂ϕ
∂t

+ ∆ϕ
)

+
∫ t2

t1

∫

Ω

(|wn|2Ψ(wn) + 2Qnwn) · ∇ϕ+ 2
∫ t2

t1

∫

Ω

fwnϕ.

���
�����
of Theorem 2. To prove that u = limwn satisfies (10), (13) and (15) we

proceed similarly as in ([8], Theorem 3.1 in Chapter III). Further, P ∈ Lr,s∗ is the
associated pressure of the weak solution u. Using (35) we get that

(43) ‖wn(t)‖H → ‖u(t)‖H

for almost every t ∈ [0, T ]. The relation (34) implies that

∫ t2

t1

∫

Ω

|∇wn|2 >
∫ t2

t1

∫

Ω

|∇u|2
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for every t1, t2 ∈ [0, T ], t1 < t2. It is possible to prove (note that ϕ > 0 on QT ) that

also

(44) lim inf
∫ t2

t1

∫

Ω

|∇wn|2ϕ >
∫ t2

t1

∫

Ω

|∇u|2ϕ

for every t1, t2, 0 6 t1 6 t2 6 T . Applying (34)–(40), (43) and (44) to (42), we get

also

∫

Ω×{t2}
|u|2ϕ+ 2

∫ t2

t1

∫

Ω

|∇u|2ϕ(45)

6
∫

Ω×{t1}
|u|2ϕ+

∫ t2

t1

∫

Ω

|u|2
(∂ϕ
∂t

+ ∆ϕ
)

+
∫ t2

t1

∫

Ω

(|u|2u+ 2Pu) · ∇ϕ+ 2
∫ t2

t1

∫

Ω

fuϕ

for almost every t1, t2 ∈ [0, T ], t1 < t2. Using the fact that the function

t ∈ [0, T ] →
∫

Ω×{t}
|u|2ϕ

is semi-lower continuous we get (45) for almost every t1 ∈ [0, T ] and for every t2 ∈
[0, T ], t1 < t2. Moreover, as (43) holds for t = 0, (45) is also satisfied for t1 = 0.
Theorem 2 is proved. �
��� �"!#�
$

1. Estimate (24) is important for the proof of Theorem 2. We
prove (24) using Lr − Ls estimates published in [2]. To fulfil all assumptions neces-

sary to apply the results of [2] and for the sake of simplicity, we suppose a smooth
initial condition (6). Note that it is possible to suppose a more general initial

condition (see [2], relation (2.5)).

��� �"!#�
$
2. The general energy inequality proved in [1] was used for the study

of the set of internal singular points of a suitable weak solution. Analogously, using
the general energy inequality proved in this paper may be useful in the study of

boundary singular points.

��� �"!#�
$
3. Notice that we get the classical energy inequality

(46)
∫

Ω×{t2}
|u|2 + 2

∫ t2

t1

∫

Ω

|∇u|2 6
∫

Ω×{t1}
|u|2 + 2

∫ t2

t1

∫

Ω

fu

if we suppose ϕ ≡ 1 in (45).
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��� �"!#�
$
4. A draft version of this paper was published in [3]. The present main

theorem is stronger than that of [3].
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