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FINITE ELEMENT APPROXIMATION OF

A CONTACT VECTOR EIGENVALUE PROBLEM

��� ��� �����	� 
��  ������� �
, ����� � ��� � � ����� � , Ghent

Abstract. We consider a nonstandard elliptic eigenvalue problem of second order on a
two-component domain consisting of two intervals with a contact point. The interaction
between the two domains is expressed through a coupling condition of nonlocal type, more
specifically, in integral form. The problem under consideration is first stated in its vari-
ational form and next interpreted as a second-order differential eigenvalue problem. The
aim is to set up a finite element method for this problem. The error analysis involved is
shown to be affected by the nonlocal condition, which requires a suitable modification of
the vector Lagrange interpolant on the overall finite element mesh. Nevertheless, we arrive
at optimal error estimates. In the last section, an illustrative numerical example is given,
which confirms the theoretical results.
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1. Problem setting

1.1. Introduction.

In this paper we deal with a variational eigenvalue problem (EVP) on a two-

component domain which consists of two intervals, touching each other at a contact
point. The problem involves a nonlocal coupling condition between the components

of the vector valued eigenfunction, defined on the respective contacting subdomains.
The type of contact EVP considered here arises e.g. when setting up Fourier’s ex-

pansion method for some transient boundary value problems modelling the heat
exchange between two contacting rods, see e.g. [1].

Let Ω1 = ]−1, 1[ and Ω2 = ]0, 1[, as shown in Fig. 1. In Ω1, we will also consider
a subinterval Dε = ]−ε, ε[, where ε ∈ ]0, 1[ is fixed. Next, we introduce the product
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space H = L2(Ω1)× L2(Ω2), endowed with its natural innerproduct

(u, v)H = (u1, v1)L2(Ω1) + (u2, v2)L2(Ω2)

and the associated product norm | · |H , for vector-valued functions u = [u1, u2] and
v = [v1, v2]. In what follows, we will as well use the spaces Hs(Ω1) × Hs(Ω2),
denoted as

�
Hs(Ω), with their natural product norm ‖ · ‖s,Ω and semi-norm | · |s,Ω,

s ∈ � 0 = {0, 1, 2, . . .}. Hence, the norm | · |H may also be denoted as ‖ · ‖0,Ω.

0−1 −ε ε 1

1

Ω1

Ω2

Figure 1. The subdomains Ω1 and Ω2.

To fix the ideas, we will consider the following model problem:

(1) Find [λ, u] ∈ � × V, u 6= 0: a(u, v) = λ(u, v)H ∀v ∈ V,

where the space of trial and test functions is

(2) V =
{
v = [v1, v2] ∈ V1 × V2 | v2(0) =

1
2ε

∫ ε

−ε

v1 dx
}
, ε ∈ ]0, 1[ fixed,

with

V1 = H1
0 (Ω1), V2 = {w ∈ H1(Ω2) | w(1) = 0},

and the bilinear form is given by

(3) a(u, v) =
∫ 1

−1

(p1u
′
1v
′
1 + q1u1v1) dx+

∫ 1

0

(p2u
′
2v
′
2 + q2u2v2) dx

with

(4) pi, qi ∈ L∞(Ωi), ∃p̃i > 0: pi > p̃i and qi > 0 a.e. in Ωi, i = 1, 2.

An outline of the paper is as follows.
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In the next subsection the variational EVP is shown to fit into the general frame-

work of abstract elliptic EVPs for symmetric, bounded and (strongly) coercive bi-
linear forms in Hilbert spaces, studied e.g. in [2], from which we directly infer the
existence of exact eigenpairs, showing some suitable properties. In §1.3 we derive the

underlying differential EVP for the eigenvalue λ and the components of the corre-
sponding vector valued eigenfunction u, being formally equivalent to the variational

EVP above.
In §2, we pass to a proper FE-approximation, introducing first a suitable approxi-

mation space Vh ⊂ V . Due to the nonlocal coupling condition, entering the space V
of trial and test functions, an essential difficulty arises: the vector piecewise Lagrange

interpolant of a test function with smooth components will, in general, not belong
to Vh. Hence the classical interpolation theory, underlying the usual convergence

and error analysis of the FEMs, is no longer applicable. To overcome this problem,
a suitable “modified” or “imperfect” interpolant is introduced by the adaptation of

one single nodal value; by construction, this imperfect interpolant will belong to the
space Vh. The corresponding error estimates are established, from which it follows

that the space Vh shows a suitable approximation property which, together with a
density result of V , implies that the error estimates holding for the eigenpairs of

standard EVPs remain valid in the present case.
Finally, in §3, an illustrative numerical example is given, the exact eigenpairs of

which can be found. The results obtained confirm our theoretical framework.

1.2. Existence of eigenpairs.
The space V , endowed with the product norm ‖ · ‖1,Ω, is directly seen to be a

closed subspace of V1 × V2 and hence is itself a Hilbert space. Evidently, V is also
compactly embedded in the product Hilbert space H . In addition, we show

Lemma 1. The space V is dense in H .
�! #"$"&%

. Take v = [v1, v2] ∈ H and ζ > 0 arbitrarily. By the density of Vi in

L2(Ωi), i = 1, 2, there exists a couple v∗ = [v∗1 , v
∗
2 ] ∈ V1 × V2, such that

‖vi − v∗i ‖0,Ωi <
ζ

2
√

2
and hence ‖v − v∗‖0,Ω <

ζ

2
.

Let
1
2ε

∫ ε

−ε

v∗1 dx = a and v∗2(0) = b

and suppose that a 6= b. Assume first that b 6= 0. As H1
0 (Ω2) is dense in L2(Ω2),

there exists a function w2 ∈ H1
0 (Ω2), such that

‖w2 − v∗2‖0,Ω2 <
ζ

2(1− a
b )
.
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For the function

v∗∗2 =
a

b
v∗2 +

(
1− a

b

)
w2

we have that v∗∗2 ∈ H1(Ω2), v∗∗2 (0) = a by construction, and ‖v∗∗2 − v∗2‖0,Ω2 <
ζ
2 .

Hence, putting v∗∗ = [v∗1 , v∗∗2 ], we conclude that v∗∗ ∈ V and ‖v − v∗∗‖0,Ω < ζ.
Next, let b = 0. As v∗2 ∈ H1(Ω2), we have, recalling the continuous embedding

H1(Ω2) ↪→ C0(Ω2), that v∗2 is continuous on Ω2. Hence, taking 0 < δ < a, there
exists a p0 > 0 such that

0 6 x < p0 =⇒ |v∗1(x) − v∗1(0)| = |v∗1(x)| < δ.

Let p < min
(

ζ2

16a2 , p0

)
and consider the function

v∗∗2 =





v∗2 in ]p, 1],
v∗2(p)− a

p
x+ a in [0, p].

We have that v∗∗2 ∈ H1(Ω2), v∗∗2 (0) = a by construction, and

‖v∗∗2 − v∗2‖20,Ω2
=

∫ p

0

(v∗∗1 − v∗1)2 dx

6
∫ p

0

(v∗1(p)− a

p
x+ a+ δ

)2

dx 6 4pa2 <
ζ2

4
.

Hence, also in this case, we find v∗∗ = [v∗1 , v∗∗2 ] ∈ V with ‖v − v∗∗‖0,Ω < ζ. �

Finally, the symmetric bilinear form a : V ×V → � , defined by (3), is easily found
to be bounded and strongly coercive on account of the assumptions on the coefficient
functions p1, q1, p2 and q2.

The above mentioned properties of the space V and of the bilinear form a(·, ·)
ensure that the EVP (1) fits into the framework of abstract elliptic EVPs in Hilbert

spaces, studied e.g. in [2, §6.2]. Thus, one has

Theorem 1.1. The EVP (1) has an infinite sequence of eigenvalues with no finite
accumulation point. All eigenvalues are strictly positive and have finite multiplicity;

we arrange them as

0 < λ1 6 λ2 6 . . .→ +∞,

where each eigenvalue occurs as many times as given by its multiplicity. Amongst the

corresponding eigenfunctions a Hilbert basis (ul)∞l=1 of V , orthonormal w.r.t. a(·, ·),
can be chosen; furthermore, the set (

√
λlul)∞l=1 then constitutes a Hilbert orthonor-

mal basis of H .
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1.3. Interpretation in differential form.
The aim of this section is to formulate a differential EVP which is, at least formally,

equivalent to the model problem in variational form stated above.

To this end, consider the 2nd order EVP for [λ, u1, u2] ∈ � × Ĥ2(Ω), consisting of
the differential equations (DEs)

− d
dx

[
p1

du1

dx

]
+ q1u1 = λu1 +

1
2ε
p2(0)u′2(0)χ]−ε,ε[ in Ω1,(5)

− d
dx

[
p2

du2

dx

]
+ q2u2 = λu2 in Ω2(6)

along with the classical Dirichlet conditions

u1(−1) = u1(1) = 0,(7.a)

u2(1) = 0,(7.b)

and accompanied with the nonlocal coupling condition

(8) u2(0) =
1
2ε

∫ ε

−ε

u1 dx.

Here, we assume that p1 ∈ H1(Ω1) and p2 ∈ H1(Ω2). Apart from that, the data fulfil
the remaining conditions encompassed in (4). In (5), χ]−ε,ε[ denotes the characteristic

function of ]−ε, ε[.
In order to recover the DEs (5)-(6) from the EVP (1)—at least formally, it means

when u1, u2 and the data are assumed to be sufficiently smooth, we will need the

following lemma.

Lemma 1.2. Let I be an open interval in � and let

D0(I) =
{
ϕ ∈ C∞(I) |

∫

I

ϕ dx = 0
}
.

Then, for an arbitrary function f ∈ L2(I), the following statements are equivalent:
(i)

∫
I
fϕ dx = 0 for all ϕ ∈ D0(I),

(ii) f is constant in I .

Actually, we have

Theorem 1.2. The EVPs (1) and (5)–(8) are formally equivalent.
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�! #"$"&%
. In order to recover from (1) the differential equation (5) on Ω1\Dε, we

take a test function v to be [v1, 0], where

v1 =

{
ϕ1 ∈ D(Ω1\Dε) on Ω1\Dε,

0 on Dε,

apply partial integration and invoke the density of D(Ω1\Dε) in L2(Ω1\Dε). Analo-
gously, taking v = [0, ϕ2] with ϕ2 ∈ D(Ω2), we arrive at the differential equation (6)
on Ω2.
Next, to recover the differential equation (5) on Dε, we again take v = [v1, 0],

however now with

v1 =

{
0 on Ω1\Dε,

ϕ̃1 ∈ D(Dε) on Dε,

with ∫

Dε

ϕ̃1 dx = 0.

Invoking the previous lemma, we infer that

− d
dx

[
p1

du1

dx

]
+ q1u1 = λu1 + C on Dε,

where it remains to determine the constant C. To this end, we reconsider the varia-

tional problem (1) for an arbitrary test function in V . We apply partial integration
to both integrals and invoke the boundary conditions incorporated in V , as well as

the differential equations which we already have recovered. We arrive at

C

∫

Dε

v1 dx− 1
2ε
p2(0)u′2(0)

∫

Dε

v1 dx = 0,

from where it directly follows that C = 1
2εp2(0)u′2(0). �

2. Finite element approximations

2.1. The approximation space Vh.
For simplicity we consider an FE-mesh with first degree polynomials on both Ω1

and Ω2.

Let (xi)2n+2l
i=0 denote the set of nodes in Ω1, where x0 = −1, xn = −ε, xn+l = 0,

xn+2l = ε and x2n+2l = 1. We introduce spaces

X1h1 =
{
v1 ∈ C0(Ω1) | v1|[xi−1,xi] ∈ P1([xi−1, xi]), i = 1, . . . , 2n+ 2l

}
,

V1h1 = {v1 ∈ X1h1 | v1(−1) = v1(1) = 0},
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where h1 is the corresponding mesh parameter. The canonical basis of X1h1 is

denoted by (ϕi)2n+2l
i=0 .

Similarly, (zj)m
j=0 denotes the set of nodes in Ω2, where z0 = 0 and zm = 1, and

we consider

X2h2 =
{
v2 ∈ C0(Ω2) | v2|[zj−1,zj ] ∈ P1([zj−1, zj ]), j = 1, . . . ,m

}
,

V2h2 = {v2 ∈ X2h2 | v2(1) = 0},

with the mesh parameter h2. Here, the canonical basis ofX2h2 is denoted by (ψj)m
j=0.

The family of partitions of Ωi, i = 1, 2, is assumed to be quasi-uniform in the sense
of [3]. Furthermore, we assume that

h1

h2
< β,

with β > 0 independent of the mesh. Finally, we put h = max(h1, h2) and consider
the space

(9) Vh =
{
vh = [v1h, v2h] ∈ V1h1 × V2h2 | v2h(0) =

1
2ε

∫ ε

−ε

v1h dx
}
⊂ V.

The corresponding approximate EVP of (1) reads

(10) Find [λh, uh] ∈ � × Vh, uh 6= 0: a(uh, v) = λh(uh, v)H ∀v ∈ Vh.

For this discrete EVP a counterpart of Theorem 1.2 holds.

Theorem 2.1. Denote the dimension of the finite element space Vh by I ≡ I(h).
Then the EVP (10) has I positive eigenvalues, arranged as

0 < λ1h 6 λ2h 6 . . . 6 λIh.

Moreover, amongst the corresponding approximate eigenfunctions, a basis of Vh or-

thonormal w.r.t. a(·, ·) can be chosen. We denote it as (umh)I
m=1.

2.2. Imperfect interpolation.
Let v ∈ V

(
↪→ C0(Ω1) × C0(Ω2)

)
. Its vector piecewise Lagrange interpolant on

the mesh is Πhv ≡ [Π1h1v1,Π2h2v2] ∈ V1h × V2h with

(Π1h1v1)(xi) = v1(xi), i = 0, . . . , 2n+ 2l,(11)

(Π2h2v2)(zj) = v2(zj), j = 0, . . . ,m.

In general, by the nonlocal coupling condition incorporated in Vh one has that
Πhv /∈ Vh. Consequently, standard interpolation theory, usually underlying the

error analysis of the FEMs, is no longer applicable. To overcome this difficulty, we
introduce the following imperfect interpolant.
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Definition 2.1. Let v = [v1, v2] ∈ V . We define its imperfect piecewise Lagrange
interpolant on the mesh as Π̃hv ≡

[
Π1h1v1,

'
Π2h2v2

]
∈ V1h × V2h with

(12)
( '
Π2h2v2

)
(zj) = v2(zj), j = 1, . . . ,m,

( '
Π2h2v2

)
(z0) =

n+2l∑

i=n

αiv1(xi),

where

αi =
1
2ε

∫ ε

−ε

ϕi dx i = n, . . . , n+ 2l.

By the deliberately chosen value of
'
Π2h2v2 at z = 0, one has

Proposition 2.1. Π̃hv ∈ Vh, ∀v ∈ V ∩ Ĥ2(Ω).

It remains to establish the error v−Π̃hv committed in the imperfect interpolation.
This is achieved in the following proposition.

Proposition 2.2. There exists a constant C > 0, independent of h, such that

(13)
∣∣v − Π̃hv

∣∣
m,Ω

6 Ch2−m‖v‖2,Ω, ∀v ∈ V ∩ Ĥ2(Ω).

�! #"$"&%
. Take v ∈ V ∩ Ĥ2(Ω) arbitrarily. From the definitions (11)–(12) we get

Π2h2v2 −
'
Π2h2v2 =

[
(Π2h2v2(0)− Π̃2hv2(0)

]
ψ0 in Ω2,

from which we infer, taking into account the coupling condition between v1 and v2
and the definition of the imperfect interpolant,

∣∣Π2h2v2 −
'
Π2h2v2

∣∣
m,Ω2

6 1
2ε

[∫ ε

−ε

|v1 −Π1h1v1| dx
]
|ψ0|m,Ω2 , m = 0, 1.

Next, we need to derive upper bounds for the two factors in the right-hand side
of this inequality. Invoking a classical error estimate for piecewise linear Lagrange

interpolation, see [3], we obtain that

∫ ε

−ε

|v1 −Π1h1v1| dx 6 C(ε)‖v1 −Π1h1v1‖0,Ω1 6 C‖v1‖2,Ω1 .

Furthermore, by a straightforward calculation, we find

|ψ0|m,Ω2 6 Ch
1
2−m, m = 0, 1.
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Combining these results, we arrive at

∣∣Π2h2v2 −
'
Π2h2v2

∣∣
m,Ω2

< Ch
5
2−m|v1|2,Ω1 , m = 0, 1.

Writing v2 −
'
Π2h2v2 = (v2 −Π2h2v2) +

(
Π2h2v2 −

'
Π2h2v2

)
leads us to

∣∣v2 −
'
Π2h2v2

∣∣
m,Ω2

< Ch2−m‖v‖2,Ω, m = 0, 1,

from which the estimate (13) readily follows provided we again invoke classical in-
terpolation estimates, see [3]. �

For the error analysis of the FEMs used, the estimate (13) is crucial. In particular,
it underlies the following approximation property for the space Vh relative to V .

Proposition 2.3. Let the spaces Vh and V be given by (9) and (2), respectively.
Then we have

(14) inf
w∈Vh

{
|v − w|0,Ω + h|v − w|1,Ω

}
6 Ch2‖v‖2,Ω, ∀v = [v1, v2] ∈ V ∩ Ĥ2(Ω),

where the constant C is independent of h.

Moreover, on account of (14), the elliptic projection operator P : V → Vh, given

by
a(v − Pv,w) = 0, ∀v ∈ V, ∀w ∈ Vh,

retains its classical properties, see e.g. [4].

Hence, there remains only one auxiliary result to be proved in order to be able to
adapt the well-known method of [2] to the present case:

Proposition 2.4. The space Ĥ2(Ω) ∩ V is dense in V .
�! #"$"&%

. This result is shown in a constructive way, very similar to the proof of
Lemma 1.1. �

2.3. An error estimate.
Leaning upon the above results, similarly as in [2, §6.5] we arrive at

Theorem 2.2. Let the data satisfy the conditions (4); let ([λm, um])m>1 be the

eigenpairs from Theorem 1.2 and let ([λmh, umh])I
m=1 be the corresponding eigenpairs

from Theorem 2.1. First of all, we have

lim
h→0

|λmh − λm| = 0.
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Moreover, if span{u1, . . . , um} ⊂ Ĥ2(Ω), one has

|λmh − λm| 6 Ch2, m = 1, . . . , I.

In case λm is a simple eigenvalue of (1), one gets

lim
h→0

‖umh − um‖1,Ω = 0

and, again if span{u1, . . . , um} ⊂ Ĥ2(Ω), also the estimate

‖umh − um‖1,Ω 6 Ch.

Furthermore, if the BVP associated with (1) is regular in the sense of [3], one has
the order of convergence h2 in the ‖ · ‖0,Ω-norm.

For error estimates in the case of a multiple eigenvalue, also the operator method
of [4] can be adapted to the present situation.

Let us mention that, in practice, the forms a(·, ·) and (·, ·)H will be approxi-
mated by suitable numerical quadrature formulas. This will not affect the orders
of convergence mentioned in the above theorem, provided that the quadrature used

(e.g. Gauss-Legendre for a(·, ·) and Lobatto for (·, ·)H) is sufficiently precise and that
the data of the problem are sufficiently regular.

2.4. Computational aspects.
The main task is to identify a suitable basis (of vector valued functions) for the

approximation space Vh, (9). Recall that the canonical basis of X1h1 is denoted
by (ϕi)2n+2l

i=0 , while the canonical basis of X2h2 is (ψj)m
j=0. Notice that a basis for

V1h1 × V2h2 is given by

(15) {[ϕi, 0] | i = 1, . . . , 2n+ 2l − 1} ∪ {[0, ψj ] | j = 0, . . . ,m− 1}.

Clearly, the dimension of V1h1 × V2h2 is 2n+ 2l +m− 1, directly implying that the
dimension of Vh is 2n+ 2l +m− 2.
In order to construct a basis for Vh, we first identify those functions from (15)

which fulfil (in a trivial way) the nonlocal coupling condition, and hence belong

to Vh. It concerns a set of 2n+m− 3 functions, given by

• (ϕi, 0), i = 1, . . . , n− 1,
• (ϕi, 0), i = n+ 2l + 1, . . . , 2n+ 2l− 1,
• (0, ψj), j = 1, . . . ,m− 1.
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Consequently, we are still looking for 2l + 1 functions which fulfil the coupling con-
dition in a nontrivial way; clearly, we may take

(ϕi, αiψ0), i = n, . . . , n+ 2l.

Introducing a consistent and clear numbering for these function, i.e.

Φk = (ϕk , 0), k = 1, . . . , n− 1,

Φk = (ϕk , αkψ0), k = 1, . . . , n+ 2l,

Φk = (ϕk , 0), k = + 2l+ 1, . . . , 2n+ 2l− 1,

Φk = (0, ψk−2n−2l+1), k = 2n+ 2l, . . . , 2n+ 2l+m− 2

we have

Proposition 2.5. The set of I = 2n+2l+m−2 vector valued functions (Φk)I
k=1

constitutes a basis for Vh.

Putting

uh =
I∑

k=1

ckΦk

the EVP (10) may be rewritten as a generalized algebraic EVP, viz.

Find [λh, ch] ∈ � × � I , ch 6= 0: Kch = λhMch,

where ch = [c1, . . . , cI ]T and K andM are the stiffness and mass matrix, respectively,
defined in the usual way.

Due to the particular form and numbering of the basis functions, the stiffness and
mass matrix will have a transparent structure, reflected in Fig. 2.

n− 1

2l+ 1

n− 1

m− 1

Figure 2. Structure of the stiffness and mass matrix.
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3. An illustrative example

To illustrate the above analysis by a numerical example, the exact eigenpairs of
which can be determined, we resort to a simple model problem, viz. the EVP (1)

with pi ≡ 1, qi ≡ 0, i = 1, 2.
The exact eigenvalues of this EVP are found to be

λ = 4k2 ( 2, k ∈ � 0 , and λ = (2k + 1)2 ( 2, k ∈ �

with respective eigenfunctions [sin(2k ( x), 0] and [sin((2k + 1) ( x), 0], as well as

λ = (2k + 1)2
( 2
4
, k ∈ �

with eigenfunctions

(−1)k

[
cos

(
(2k + 1)

(
2
x
)
,

2
(2k + 1) ( sin

(
(2k + 1)

(
2
ε
)

cos
(
(2k + 1)

(
2
z
)]

and finally, the solutions of the transcendental equation

ε
√
λ cos

√
λ− 2ε2λ sin

√
λ− cos

(√
λ(1− ε)

)
sin

(√
λε

)
.

Let ε = 0.1, then the first three eigenvalues are given by

λ1 = 2.467401; λ2 = 9.869604; λ3 = 10.318218,

the third coming from the transcendental equation. We use uniform meshes, both
in Ω1 and Ω2, where even h1 = h2; hence we have l

n = 1
9 and m = n+ l.

The results, shown below for the third exact eigenvalue, reveal a very good agree-

ment between the exact and the approximated values. Moreover, they are in agree-
ment with the theoretical O(h2)-convergence, as well as the expected approximation
from above.

m λ3,h R in %
10 10.730126 3.9920
20 10.410824 0.8975
40 10.339301 0.2043
80 10.322658 0.0430
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Figure 3. Approximation of λ3 by subsequent mesh refinement.
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