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Abstract. The subject of the paper is the derivation and analysis of evolution Galerkin 
schemes for the two dimensional Maxwell and linearized Euler equations. The aim is to 
construct a method which takes into account better the infinitely many directions of prop
agation of waves. To do this the initial function is evolved using the characteristic cone 
and then projected onto a finite element space. We derive the divergence-free property and 
estimate the dispersion relation as well. We present some numerical experiments for both 
the Maxwell and the linearized Euler equations. 
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1. INTRODUCTION 

Evolution Galerkin methods, EG methods, were proposed to approximate the 

solution of evolutionary problems of first order hyperbolic systems. Ostkamp in [9] 

as well as Lukacova, Morton and Warnecke in [4], [5] derived such schemes for the 

approximation of the solution of the wave equation system and the Euler equations 

of gas dynamics in two dimensions. In [11] the approximate evolution operator for 

the wave equation system in three space dimensions as well as other 2D EG schemes 

were derived. 

*This research was supported under the DFG grant No. Wa 633/6-2 of Deutsche 
Forschungsgemeinschaft, by the grants no. 201/00/0557 and 201/03/0570 of the Grant 
Agency of the Czech Republic as well as by the Volkswagen Stiftung and DAAD Agencies. 
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It is well-known, see [4], [5], [8], [9], that the basic tool to derive the EG schemes 
is the general theory of bicharacteristics of linear hyperbolic systems. This theory is 
used to derive the system of integral equations which is equivalent to the concerned 
first order system such as the Maxwell equations or the linearized Euler equations. 
Using quadratures, these integral equations lead to the approximate evolution oper
ator that builds up the evolution Galerkin scheme. 

Considering the Maxwell equations in free space, it is straightforward to see that 
the divergence of the electric field as well as of the magnetic field is zero. Numerically, 
in order to have an efficient Maxwell solver, this property must be preserved. Further, 
the dispersion relation associated with the Maxwell equations has a key role with 
regard to the accuracy of the numerical scheme used. 

The content of this paper is as follows: in the next section we briefly derive the 
exact integral equations and construct evolution Galerkin schemes. In Section 3 we 
write down the approximate evolution operators for the Maxwell equations. More
over, we show that these operators preserve the divergence-free property. Further, 
we estimate the dispersion relation for the Maxwell EG solvers that we used. In 
Section 4 we derive the approximate evolution operator for the linearized Euler equa
tions. These results presented here are the basic ingredient in our extension of the 
method to the case of the nonlinear Euler equations, see [6]. Finally, in Section 5 
we present some numerical tests for the Maxwell equations as well as the linearized 
Euler equations. 

2. EXACT INTEGRAL EQUATIONS AND APPROXIMATE 

EVOLUTION OPERATORS 

In this section we derive exact integral equations for a general hyperbolic system 
in d dimensions. Typical physical examples of hyperbolic conservation laws are, 
e.g., the Maxwell equations and the Euler equations of gas dynamics. Using the 
theory of bicharacteristics one can derive the equivalent integral equations for these 
systems which give a basis for the EG schemes. 

Let the general form of a linear hyperbolic system be given as 

d 

(2.1) Vt + ^ A i U E j = 0 , x = ( x 1 , . . . , x d ) T e Ud 

j = i 

where the coefficient matrices Aj , j = l , . . . , d are elements of Upxp and the de-
d 

pendent variables are U = ( u i , . . . , up)
T G IRP. Let A(n) = ^ njAj be the pencil 

j=i 
matrix with n = ( m , . . . ,nd)T being a directional vector in Rd. Then using the 
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eigenvectors of A(n) the system (2.1) can be written in a characteristic form via 

the substitution W = R _ 1 U , where the columns of the matrix R are the linearly 

independent right eigenvectors of A(n). Since the coefficients of the original system 

are constants the bicharacteristics of the resulting characteristic system are straight 

lines PQi and PP1', see Fig. 1. Diagonalizing this system and integrating along the 

bicharacteristics leads to the system of integral equations 

U(P) = ^JQ R(n)W(Q(n) , n) d o + ± J J R(n)S(* + r, n) dr d o 

where O is the unit sphere in Ud, \0\ its surface measure and 5 is a nontrivial term 

which we call the source term; for more details see [8]. 

P = (x,t + At) 

ld?a 
Figure 1. Bicharacteristics along the Mach cone through P and Qi(A(n)). 

Evolution Galerkin schemes 

For simplicity let us consider d — 2. Consider h > 0 to be the mesh size parameter. 

We construct a mesh for (R2, which consists of the square mesh cells 

-ìfc/ = (k-l)h,(k+l)h],[(i-l)h,(i+l)h 
\ h h~\ r h hi 

= h - 2 ' * * + 2 ] X F " 2 ' W + 2 J ' 

where k,l e 1. Let us denote by HK(U2) the Sobolev space of distributions with 

derivatives up to order K, in the L2 space, where K G N. Consider the general 

hyperbolic system given by the equation (2.1). Let us denote by E(s): (H,C(IR2))P ->> 

(HK(U2))P the exact evolution operator for the system (2.1), i.e. 

(2.2) U(-,ť + в ) = В Д U ( - , í ) -
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We suppose that S™ is a finite element space consisting of piecewise polynomials 
of order m ^ 0 with respect to the square mesh. Assume a constant time step, 
i.e. tn = nAt. Let U n be an approximation in the space S™ to the exact solu
tion U(-,*n) at time tn ^ 0. We consider ET: L\oc(U2) -> (HK(U2))P to be a 
suitable approximate evolution operator for E(T). In practice we will use restric
tions of ET to the subspace S™ for m ^ 0. Then we can define the general class of 
evolution Galerkin methods. 

Definition 2.1. Starting from some initial data U° G S™ at time t = 0, an 
evolution Galerkin method (EG-method) is recursively defined by means of 

(2.3) U n + 1 = PhETU
n, 

where Ph is the L2-projection given by the integral averages in the following way: 

AU"|ň t, = --?-- / V{x,y,tn)dxdy. 

We denote by Rh: S™ —•> SJ a recovery operator, r ^ m ^ 0 and consider our 
approximate evolution operator ET on S£. We will limit our further considerations to 

the case where m = 0 and r = 2. Taking piecewise constants the resulting schemes 

will only be of the first order, even when ET is approximated to a higher order. 

Higher order accuracy can be obtained either by taking m > 0, or by inserting a 

recovery stage Rh before the evolution step in equation (2.3) to obtain 

(2.4) U n + 1 = PhETRhU
n. 

This approach involves the computation of multiple integrals and becomes quite 

complex for higher order recoveries. To avoid this we will consider higher order 

evolution Galerkin schemes based on the finite volume formulation instead. 

Definition 2.2. Starting from some initial data U° G S™, the finite volume 

evolution Galerkin method (FVEG) is recursively defined by means of 

1 fAt 2 

(2.5) Un+1 = Un - - / YSx.fjCU^/^dT, 
hJo U 

where 6Xjfj(XJn+r/At) represents an approximation to the edge flux difference and 
Sx is defined by Sx = v(x + \ti) - v(x - \h). The cell boundary value U n + r / A t is 
evolved using the approximate evolution operator ET to tn + r and averaged along 
the cell boundary, i.e. 

(2.6) U"+'!At = £ (j^— f ETRhV
nds)Xkl, 

where \ki is the characteristic function of dflki-
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In this formulation a first order approximation Er to the exact operator E(T) yields 

an overall higher order update from U n to U n + 1 . To obtain this approximation in 

the discrete scheme it is only necessary to carry out a recovery stage at each level to 

generate a piecewise polynomial approximation U n = i?/iUn G Sr

h from the piecewise 

constant U n G S°, to feed into the calculation of the fluxes. To construct the second 

order FVEG schemes, for example, we take the first order accurate approximate 

evolution operator and define a bilinear reconstruction Rh- Among many possible 

recovery schemes which can be used, we will choose a discontinuous bilinear recovery 

using four point averages at each vertex. It is given as 

RhU\akl = U w + ^ ^ ( A 0 x U f e m + 2AOXUJW + A 0 x U f e / _i) 

+ l^L(A0ylJk+u + 2A03/U fc/ + AoyUk-u) 

(x - Xk)(y - Уl) 

h2 
yu/ as/çjyy yij . -

~ł L~9 A 0 з / A 0 x L lfcz, 

where A0zv(z) = \{v(z + h) — v(z — h)). Note that in the updating step (2.5) some 

numerical quadratures are used instead of the exact time integration. Similarly, to 

evaluate the intermediate value f j n + T / A t in (2.6) the two dimensional integrals along 

the cell-interface and around the Mach cone are evaluated either exactly or by means 

of suitable numerical quadratures. 

To close this section note that in this paper we set T to be the absolute end time 

of computation, i.e. T = nAt. Further, the Courant, Friedrichs and Lewy stability 

number is denoted by v and we take it to be v = cAt/h for the Maxwell equations. 

For the linearized Euler equation we set v = mm(\u'\ + c', \v'\ + cr)At/h, where w;, 

v' are the mean flows in the x and y directions respectively and c' is the local sound 

speed. 

3. MAXWELL EQUATIONS 

For the fundamentals of the electromagnetic theory and the Maxwell equations 

see Jackson [3], Balanis [1], Cheng [2]. Throughout this section we will consider the 

transverse magnetic (TM) modes of the electromagnetic fields only. So let us take 

E = Ezz, H = LPx -f Hyy, where x, y, z are unit vectors in the direction of x, y, 

and z, respectively. In free space the Maxwell equations 

f + V x E = 0, 

<9D 

" ¥ + V x H = 0 
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are reduced to 

(з.i) 
дEz _ 1/дHУ 
дt єV дx 

дHx 

дy 

(3.2) 
дHУ 1 дEz 

дt џ дx 

(3.3) 
дHx 1 дEz 

) • 

Here E denotes the electric field, B is the magnetic field, D, H denote the electric 

field density and magnetic field intensity, respectively. Further, we have D = eE, 

B = //H, where e is the permittivity and fi the permeability of the free space. Using 

the transformations <D = Ez /\[~, u = —Hy/y/s, v = Hx /y/e and taking c = l/y/Ejl 

equations (3.1)-(3.3) are reduced to the two dimensional wave equation system 

(ft + C(UX + Vy) = 0, 

(3.4) ut + apx = 0, 

Vt + C(fy = 0. 

Lukacova et.al. [5] analyzed the evolution Galerkin schemes for the system (3.4). 

Namely, they derived the schemes EG1, EG2 and EG3. Moreover, in [11] the author 

derived the EG4 scheme. Note that the system (3.4) has the following property of 

irrotationality: 

-г:(uy - vx) = uty - vtx = -c(ҷxy - ҷ>yx) = 0, 

i.e. a solution with uy — vx = 0 for time t = 0 satisfies this equation of irrotationality 

for later times also. From the above we see that 

0 = Uy-Vx = -^{{Hy)y + (Hx)x] = - ^ V • н . 
yЄ \JЄ 

So the vorticity uy — vx for the wave equation system corresponds to the divergence 

of the magnetic field. Using the above transformations we arrived at the following 

approximate evolution operators for the Maxwell equations. 
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Based on the EG4 scheme 

1 í 
(3.5) EZ(P) =-TI [Ez(Q) + Z(2coseHy(Q)-2sin9Hx(Q))]d0 + O(At2), 

(3.6) H,{P) = ̂ '[l£^p31 + 2axHH.iQ) 

- 2sin0cos6>ír1:(Q)j dé> + 0(At2), 

(3.7) H*(P) = 1 f2*\-2s™0EZ(Q) -2Sm9cos9Hy(Q) 
2K J0 L -4 

+ 2 sin2 0Hx(Q)] d9 + O (Ať). 

Based on the EG3 scheme 

1 t 
(3.8) £ 2 ( P ) = — / [EZ(Q) + Z(2cos6Hy(Q) - 2sin0Hx(Q))] d0 + 0(A*2), 

2* Jo 
(3.9) Hy(P) = \Hy(P') + i - j T [ 2 C ° S ^ ( g ) + (3cos2 0 - l)J^(Q) 

- 3sin0cos<9Hx(Q)] d0 + 0(A*2), 

(3.10) HX(P) = ^H*(P') + --- / 2 T C [ ~ 2 s i n ^ Z ( Q ) -3singcosgH^(Q) 
2 2TC J0 - z: 

+ (3sin2 0 - 1)HX(Q)] d0 + 0(At2), 

where Z = y/Jife is the so-called impedance of free space. Taking the projection 
onto piecewise constant functions we obtain the evolution Galerkin schemes for the 
Maxwell equations. Numerical schemes based on equations (3.5)—(3.7) and (3.8)-
(3.10) are called the EG4 and the EG3 methods, respectively. Note that these 
schemes are first order schemes. In order to have second order methods for the 
Maxwell equations we use the finite volume formulation as given in Definition 2.2. 
Assuming the periodicity of the fields in space we get the following two lemmas. 

Lemma 3.1. The approximate evolution operators for the Maxwell equations 
EG3 and EG4 are divergence-free. 

P r o o f . We prove only the case of the EG4 scheme, the EG3 scheme can be 
treated analogously. To this end, V • E = 0 follows immediately from the assumption 
that E = Ez(x,y,t)z. Now taking the derivatives with respect to y and x of the 
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å . 

equat ions (3.6) and (3 .7), respectively we get 

^-ijf^fwB.wC"'-'--^')* 
(3-12) 

dH*,n. 1 f2*/-2sm6dEz ,„. n . „ ndH* .„. n . 2ndHx,\ 

Adding equa t ion (3.11) t o the equat ion (3.12) we ob ta in 

<"» ^^^ -s f [ !H f«> - - ' £<« ) 
f)fiy f)Hy \ 

+ 2(cos26—(Q)-sm6cos6—(Q)) 
/ f)Hx f)Hx \ i 

+ 2 ( s i n 2 0 - ^ - ( Q ) - s i n 0 c o s 0 ^ — (Q))j dfl. 

Now the integral of the first term of equation (3.13) is zero because 

f §Hl>-si"<'S1«>)<i<> 
/»2it rt /*27t c\ 

= / - ( - sin^, cos 0 ) T - V £ 2 d 0 = / -dEz 

Jo % J0 Z 

and E is a periodic field. We use the periodicity of the magnetic field H and the fact 
that the initial data are divergence-free. Then integration by parts gives 

C2K / „ dHy dHy \ 
(3.14) / ( C o s 2 e - ^ - ( Q ) - s i n 0 c o s ^ ^ ( Q ) ) dO 

f2K (dHy dHy \ 

= i ^e(—(Q)-smO—(Q))dO 
= / cos(9(-sin(9,cos(9)T-VHy(Q)d(9 

Jo 
C2K dHy f2K 

= / c o s ( 9 ^ - — ( Q ) d ( 9 = / sinOHy(Q)d6. 
Jo "# Jo 

Analogously we have 

f2n / BHx f)Hx \ C2K 

(3.15) / ( s i n 2 ( 9 V - ( Q ) - s i n 0 c o s ( 9 — — (Q))d<9 = / cos8Hx(Q)dO. 
Jo ^ ox dy / Jo 
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Summing equations (3.14) and (3.15) we get 

r2x • Mx,_ . „ ndH",„, o ^ f f - , . , . . „ ndHx r**i\.. y\ M 'x ri H y ri H y ri HJl \ 

f (sin2 0^(Q)-sin6cos6^(Q) +cos20^-(Q)-sin6cos$—(Q)) 

/•27C 

= / (cosOHx(Q)+sin6Hy(Q))d0 
Jo 

= / H(Q)-nd0 = * V -H(Q)dS = 0. 

Therefore V • H = 0. This concludes the proof of the lemma. • 

R e m a r k 3.1. Similar results hold also for other EG operators, i.e. EG1, EG2, 

the operator of Ostkamp, cf. [5] for the precise formulation. 

Our next aim is to approximate the dispersion relation. To this end note that 
a frequently used technique of characterizing the error of numerical schemes of the 
Maxwell equations is the Fourier analysis. Neglecting the boundary conditions, we 
assume that the three unknown components can be expressed in the following form: 

(3.16) ipfj = ip0 exp(i(ilh + fjJh - amA*)), 

where i = v7—T, h is the space increment and £ and fj are the x and y components of 
the numerical wave vector, respectively. In the case of the exact solution this gives 

(3.17) ip(x, y, t) = ip0 exp(i(£r + ny - ut)). 

The numerical wave vector k = (£, fj)T will in general differ from the physical wave 
vector k = (£,r/)T satisfying |k| = \ /£ 2 4- rj2 = UJ/C. This is called the dispersion 
relation. Here u is the angular frequency and c is the speed of light. The difference 
between k and k gives rise to numerical phase and group velocities that depart from 
the analytical values. This causes numerical errors that accumulate in time. Hence 
the dispersion analysis is important to assess the accuracy of a numerical solution. 
In the next lemma we study the approximation of the dispersion relation for the 
EG4 method in the case of Maxwell equations. 

Lemma 3.2. For both the EG4 method (3.5)-(3.7) and the EG3 method (3.8)-
(3.10) the following dispersion relation holds: 

(ЗA8) (£) =(?+fř) + ö(h). 
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P r o o f . We present the proof of (3.18) for the EG4 scheme, the proof for the 

EG3 scheme is analogous. First we write out the finite difference formulation of the 

EG4 scheme: 

-+1 
(3.19) Ez— = (1 + an(s2

x + s2

y) + bllS

2

xs
2

y)Ez" + Z(v(l + a12s
2

y)A0xHУ" 

-v(l + a13s
2

x)A0yH
x"), 

(3.20) HУ"+1 = (1 + (a22s
2

x + a'22s
2

y) + Ъ22s
2

xs
2

y)HУ" + Ul + a21s
2

y)A0xE
z 

-у а23А0хА0уН
х , 

n + 1 '* • ' o2 i ^/ 0 2 \ , i 2 Jl\rjxn U ( ~ \ x „ 0 2 > 

\0y* 

(3.21) H*" " = (1 + (a33sî + а 3 3 4 ) + Ъ33slSy)H*" - ^ ( 1 + a31s
2

x)A0yE
z 

^Oyl -v2a32A0xA0yH
yП 

where v = cAt/h, A0z = \(f(z + ft) - f(z - ft)), s2

z = / ( ^ + ft) - 2f(z) + /(z - ft) 

and 

i/ i/2 2i/ 2i/ 
«n = - , on = T~. &12 = — , a i 3 — — , 

TC 4TC 3TC 3TC 

2v \v , 2v v2 _ 1 
«2i — —- «22 — x~, a 2 2 — — , »22 — — , a 2 3 — - , 

OTC OTC OTC 4TC 4 

2i/ 1 2u , 4i/ i/2 

a 3 1 = - , a 3 2 = j , a 3 3 = - , a 3 3 = - , b33 = - . 

Substituting from equation (3.16) into equations (3.19)-(3.21) we get 

(3.22) -iuAt = 2au(cos(ft|) - 1) + 2an(cos(ftf7) - 1) 

+ 46n(cos(ftO - l)(cos(ftr,) - 1) 

Hy 

+ 'lZu~£ sin(ftO[l + 2ai2(cos(ftf7) - 1)] 
&o 

-iZv-£sin(hf})[l + 2ai3(cos(ft|) - 1)], 
ho 

(3.23) -iuAt = 2a22(cos(ftf) - 1) + 2a22(cos(ft?7) - 1) 

+ 4b22(cos(ftf) - l)(cos(ftr7) - 1) 

+ i^-± sin(ft|)[l + 2a21(cos(ftf7) - 1)] 
L nQ 

TTX 

+ ^2a23Tr| sin(ft?7) sin(ftf), 
Ho 

(3.24) -\uAt = 2a33(cos(ft£) - 1) + 2a'33(cos(hf]) - 1) 

+ 4633(cos(ft|) - l)(cos(ftf7) - 1) 
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- 1 ^ H sin(h7))[l + 2a3i(cos(h|) - 1)] 

Hy 

+ ^2a32 7^- sin(hf)) sin(h£). 
^o 

Now equations (3.23) and (3.24) imply, respectively, that 

ff* §sin(hO[l + 2a 2 i (cos(h^)- l ) ] 
(*5.z5) -— = jp - , 

&o — uAt + i[a + iv2a23 -jft sin(h£) sin(hfj)] 

(3.26) 
H§ _ f sin(hrý)[l + 2q 3 i (cos(hf l - 1)] 

E% t.,\t _ \\fí a_ „2„_ # | 
Io 

ô LJAt — i[/3 + v2a32 77S- sin(h£) sin(hr7)] 

where 

a := 2a22(cos(h|) - 1) + 2a22(cos(h?7) - 1) + 4b22(cos(h£) - l)(cos(hfj) - 1), 

/? := 2a33(cos(h|) - 1) + 2a33(cos(hrj) - 1) + 4b33(cos(h£) - l)(cos(hr7) - 1). 

Substituting equations (3.25) and (3.26) into equation (3.22) leads to 

(3.27) ^ = i 7 - ^ ^ ( / t | ) ( l + 2 a . ( c o s ( ^ ) - l ) ) 2 

—uj At + i(a + i/2a23T7^ sin(h^) sin(hfj)) 
• " o 

*/2sin2(fr7?)(l + 2a13(cos(ft|) - l ) ) 2 . - . 
- jk sin(/i£) sm(hr))), 

-u}At + i(0 + v2a32%k 

where 

7 := 2au(cos(hi) - 1) + 2au(cos(hfj) - 1) + 4&n(cos(/if) - l)(cos(hfj) - 1). 

Equation (3.27) can be written in the form 
(3.28) (u>At - 17)(-(jAt + i\a + v2a23—| sin(ft|) sin(/iij)l) 

m 
x (-ujAt + i [/? + v2a32 j£ sin(hŠ) sin(Wj)]) 

= -v2 sin2(ft|)[l + 2ai2(cos(ft»7) - l)]2 

/ r Hy 1 \ 
x (-LjAt + i [/3 + i/2a32 - ^ sin(h|) sin(hr7)j J 

*o 
-v2 sin2(h7,)[l + 2ai3(cos(h|) - l)]2 

x \-uAt + i [a + z/2a23 7 ^ sin(h|) sin(hi)) IJ. 

Using the Taylor expansion we can show that 7, a and /? are of order v20(h2) and 
sin(hx) = hx + 0(h 3 ) . The left- and the right-hand sides of equation (3.28) can be 
written as 

425 



LHS - i-u)2At2 + iuryA* + icj A t [a + v2a23 —% sin(ft|) sin(ftr))] \ 

[ Hx ~ i 

OL + v2a23j~sin(h^) sin(ftr/)J 
/ r Hy ~ i\ 

x 1-uAt + i 10 + v2a32 - ^ sin(ftO sin(ftr,)J J 

[ Hy 1 

/? + -/2a32 -=£ sin(ft|) sin(ftr,) - iu;2 A t 2 7 
• " 0 •" 

r H27 1 
- 7 o;At [/? + v2a32j± sin(ft£) sin(ftr/)J 

r Hx ~ l 
- iu;2 A t 2 a + i/2a23 — | sin(ft^) sin(ft?,) 

L H0 J 
r IIX ~ I r Hy ~ i 

- a;A*[a + v2a23-^ s\i\(hl) sin(ftr,)J [/3 + v2a32j^ sin(ftf) sin(ftr,)J 
*o 

- t jДfryþ + v2a23-~ sin(ft£) sin(ftr/)] 
# 0 

r Hx ~ i r Hy ~ I 

+ i 7 [ a + v2a23^y sin(ft£) sin(ftr/)J | ß + v2a32-^ sin(ftf) sin(ftr))J 

= O ; 3 A * 3 + I / 2 U ; A * 0 ( A 3 ) , 

[ I J2 / -. 

/? + i/2a32 -=£ sin(ft|) sin(ftr)) 
H0 J 

+ z/2a;Atsin2(ft|)4ai2(cos(ftf)) - 1) 
r Hy ~ 1 

- iz/2 sin2(ft£)4ai2(cos(ftr/) - 1) \ß + i/2a32 — | sin(ftf) sin(ftrl) 
L H0 J 

+ z/2d;Atsin2(ft|)4a2
2(cos(ftr}) - l ) 2 

r Hy ~ 1 
-iv2uAtsin2(h£)4al2(cos(hfj) - l ) 2 \ß + v2a32—| sin(ft|) sin(ftr)) 

L H0 J 

[ zix _ 1 

a + t/2a23 —|- sin(ftf) sin(ftf)) 
H0 J 

+ z/2ciJAtsin2(ftr))4ai3(cos(ftcf) - 1) 

[ Hx ~ 1 

a + v2a23—% sin(ft£) sin(ftr]) 
H0 J 

+ z/2cDAtsin2(ftr])4a2
3(cos(ft|) - l ) 2 

[ TJX _ -

ÖL + v2a23 -ßy sin(hi) sin(hfj) 
H0 J 

= z/2a;At[sin2(ftÖ + sin2(ftr))] + v2uAtO(h3). 
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Therefore we have 

(3.29) u3At3 = v2LjAt[sin2(hO + sin2(hfj)] + G(h3). 

Finally, equation (3.29) leads to (3.18), which concludes the proof. 

4 . APPROXIMATE EVOLUTION OPERATORS FOR LINEARIZED 

EULER EQUATIONS IN 2 D 

In this section we derive an evolution Galerkin scheme for the linearized Euler 

equations of gas dynamics written in primitive variables. This will be used in [6] 

for the fully nonlinear case. This scheme is similar to the EG4 scheme for the two-

dimensional wave equation system. To define it we consider the linearized Euler 

equations with frozen coefficients 

(4.1) 

where 

U t + A j ( U ' ) U x + A2(V')VУ = 0 , x = (x, y)т Є 

U : = 
lв\ l Л fu' Q f 0 

0 \ 
u 

, U ' : = 
u' 

, A x 

. 0 u' 0 w 
V v' 0 0 u' 0 

\pj V P'J 

Ґ 0 

V 0 в'(ć)2 

Q' o \ 

0 u' J 

0 v' 0 0 
A 2 : = 0 0 v' l/ß' 

Vo 0 í >'(c') 2 v' ) 

Here g denotes the density, u and v denote the two components of the velocity vector 
and p denotes the pressure. Symbols g', u', v' and p' stay for the local variables at a 
point (x', y'),c' = y/^p'/g' is the local speed of the sound there and 7 is the isotropic 
exponent (7 = 1.4 for the dry air). We use the theory presented in Section 2 to derive 
the integral equations that correspond to the system (4.1), see also [4], [6] for the 
derivation of other approximate evolution operators for the Euler equations. Thus 
we take the direction n(0) := (cos0,sin0)T in 1R2 and define the pencil matrix to be 
A(n) := Ai cos 6 4- A 2 sin 6. The eigenvectors of A(n) are 

Ai = u' cos 0 -F v' sin 6 — c', 

A2 = A3 = u' cos 0 + v1 sin 9, 

A4 = u' cos 0 + v' sin 6 -f- c', 
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and the corr esponding right eigenvectors are 

Í-Q'ІĆ\ (І\ ( * \ (eЧć\ 
COSØ 0 SІПØ COSØ 

Гl = , г 2 = ' r з = , r 4 = 
SІПØ 0 -COSØ SІПØ 

V ~Qfd ) VoУ ^ o ) V g'c' ) 

Take the matrix R to be the matrix of the right eigenvectors. Then multiplying 

system (4.1) from the left by the inverse matrix 

R-* = 

/0 cos0 sin0 -l/(2gfd)\ 

1 0 0 -1/c ' 2 

0 sin0 - c o s 0 0 

Vo cos0 sin0 l/(2^'c') / 

we get the characteristic system 

(4.2) Wt + Bx W x + B2Wy = 0, 

where 

w = 
(Wl\ 

w2 

w3 

\w4) 

= R Ч J = 

/ \(-p/(g'c') +ucos0 + vsin0) \ 

Q-p/c12 

u cos 0 - v sin 0 

\ \(p/(Qfd)+ucos6 + vsin6) / 

is the vector of the characteristic variables and 

B ! = R - x A i R = 

R L A 2 R = 

/u'-dcosO 0 -\dsinS 0 

0 uf 0 0 

—c'sin0 0 uf d sinO 

0 0 k ' s i n 0 uf + dcosd) 2 1 

/vf-dsin 0 |c'cosØ \ 

v 
0 vf 

c'cos0 0 

0 0 

0 

0 0 

vf — d cosi 

-\d cos0 v' + c ' s in0 / 

Diagonalizing system (4.2) we end up with 

(4.3) Wt + Ax Wx + A 2 W y = S, 

where 

s = 
f5Л / 

5 2 

í 5 з 

\sj V 

1 J d (sin 9dw3/dx — cos 6dw3/dy) 

0 

d sin (дw\/дx — ӘWĄ/ӘX) — d cos (дw\/дy — дw^/дy) 

\d (— sin дws/дx + cos дw3/дy) 
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and 

Ai = 

/u'-c'cos9 0 0 ° \ 

0 u' 0 0 

0 Ou' 0 

V 0 0 0 u' + c'cosOj 

л2 = 

V - c ^ s i n Ø 0 0 0 \ 

0 v' 0 0 

0 0 v7 0 

0 0 0 г/ + c ' s i nø / 

Let us define the bicharacteristics x i , x2 , X3, x4 corresponding to each equation of 

system (4.3) as 

dxi 
:= ( i / - c ' c o s 0 , t / - c / s i n 0 ) ' 2 

d x 2 f , ,ҳт 

HГ:={U'V) ' 
d x 3 f , ,ҳт 

- ж : = ( u > v ) ' 
dX4 

~ďT 
:= (u' + c' cos0, v' + c' s in0) T . 

Note that as 0 varies from 0 to 2K the resulting geometry is a Mach cone shown 
in Fig. 2 for the supersonic case c'2 > u'2 + v'2. Moreover, we use the initial data 
Xi(n, t + At) = x to solve the above ordinary differential equations backwards and 

P = (x,£ + A*)" 

1^ У 

Figure 2. Bicharacteristic along t h e Mach cone through P a n d Qi(0), supersonic case. 
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get the footpoints Qi(0) of the bicharacteristics. The final result reads 

Qi = {x- (u' - c'cos6)At,y - (v' - c'sinO)At,t), 

Q* = Qs = P' = (x - u'At, y - v'At, t), 

Q4 = (x- (u' + c'cos6)At,y-(v' + c'sin8)At, t). 

Now we integrate each equation of the characteristic system (4.3) along the cor

responding bicharacteristic from the point P = (x,y,t + At) down to the point Q 

where it hits the base of the Mach cone, see Fig. 2. Further, multiplying the resulting 

system by the matrix R from the left we obtain the following integral equations: 

(4.4) U P 
- J_ Ґ 
~2кУo 

/ - Q' WI /c' + w2 + Q'W4 /d \ 

tví cos 8 + ws sin 8 + w4 cos 8 

w\ cos 8 — ws sin 8 + w4 cos 8 

—Q'C'W\ + Q'C'W4 ) \ 

d 

+ _L f2к 

2^jo 

/ -Q'S[/C' + S'2 + Q'S'JĆ Ҳ 

S[ cosØ + S'4 sinØ + S'4 cosø 

S[ sinØ - S'3 cosØ + S'4 sinØ 

V -Q'ĆS[ + Q'C'S'4 } 

d , 

rt+At where S'{ = / t"
t"" t Si(xi(i,8),i,8) At. We use the symmetry between the points Q\ 

and Qs and the fact that the functions W{ as well as the points Qi are 27t-periodic. 
Then using the notation 

S(x,t,8) := c'[sin82ux(x,t,8) - sin8cos8(uy(x,t,8) + vx(x,t,8)) + cos82vy(x,t,8)] 

and Q := Q\ we can rewrite system (4.4) in the following form: 

(4.5) 6(x,t + At) = e(P')-^p-

+ ^ j f ( ^ - £«(<?)«** - ^v(Q)sm9) dO 

--V-r- / / S(x-(u'-c'n(6))T,t + At-T,6)dTd6, 
c 2TI J0 JO 

1 1 rAt 

(4.6) _(x, t + At) = ±u(P')-— Px (P') dr 
-- *Q Jo 

+ -T" / f - ^ ^ c o s ( 9 + u(Q)cos2(9 + v(Q)sin(9cosl9)d<9 
2^ Jo v . ? c ' 

+ — / / cos 0S(x - (u' - C'U(8))T, t + At-T,8) dr d<9, 
--* J0 Jo 
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(4.7) v(x,t + M) = ±v(P')-±J Py(P')dT 

+ — í f---i-r sin9 + u(Q) sin O cos 6 + v(Q) sin2 0) d6 
2KJ0 V £>'C' / 

-i V»2TC / > A í 

+ — / / sin6>5(x - (u' - Jn(0))T,t + át-T,9) drdB, 
2it jo jo 

1 .f 
(4.8) p(x,* + A*) = — / ( p ( Q ) - ^ V u ( Q ) c o s 0 - p V v ( g ) s i n 0 ) d 0 

2ft Jo 
-i /»2TX p A t 

-Q'C' — / / 5(x - (u' - c'n(0))T, t + At - T,6) dT 
2TI Jo Jo 

Now from the second and the third equation of system (4.1) we get 

px = -Qf(ut + u'ux + v'uy), 

Py = -Q'(vt + u'vx + v'vy). 

Hence the second term of equation (4.6) can be written as 

1 fAt 1 fAt 

(4.9) - — / px(P')dT=- (uT+ u'ux + v'uy) dT 
*Q Jo * Jo 

rAt 
= / VT,x,yw- (l,v!,v')T dr. 

Jo 

Since the vector (l,u',v')T represents the direction of the bicharacteristics joining 

the two points P' and P, see Fig. 2, equation (4.9) implies that 

1 f*1 

-vL "•(ndr= 

Therefore equation (4.6) takes the form 

u(P) - u(P') 

(4.10) u(x, t + At) = --- / f -2-- -^cos0-F2w(Q)cos 2 0 + 2v(Q)sin0cos0>)d0 
2K Jo V Q'C' J 

i /»2TC pAt 

+ — l 2cos<9S(x-(u' -c'n(8))r,t +At-T,0)drdO. 
2rcjo jo 

Analogously we can show that 

L fAt 

71 "•<p')dT = 
_L Ґ-,Ыл _V(P)-V(P>) 
2Q' 
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and 
r2ҡ 

(4.11) v(x1t + At) = ^- [ (-2^^sme + 2u(Q)smOcos0 + 2v(Q)sm20)d6 
2K Jo v Q C / 

+ — / / 2sin(95(x-(u'-c'n(<9))T,^ + Af-T,0)dTd(9 . 
2^ Jo Jo 

Using [5, Lemma 2.1] and the fact that Scos0 and SsinO can be neglected, because 
they are second order terms in time evolution, i.e. 0(At2), cf. [9], we can derive the 
following approximate evolution operator to the linearized Euler equations (4.1): 

(4.12) <,(x, t + At) = Q(P') - ?(p- + 1 £ * ( ^ ~ 2^u(Q) cos* 

- 2^-v(Q) sine) d0 + 0(At2), 
c / 

(4.13) u(x,t + At) = ^- [ (-2^^-cose + 2u(Q)cos20 + 2v(Q)smOcos0)d6 
2K Jo V Q'C' / 
+ 0(A12), 

(4.14) v(x,t + At) = ^- [ (-2^-sm0 + 2u(Q)sm0cos9 + 2v(Q)sm29)d0 
2K Jo V Q'C' / 
+ 0(A12), 

(4.15) p(x, t + At) = YI (P(Q) ~ 2Q'C'U(Q) COS0 ~ 2Q'C'V(Q) sinfl) d0 

+ 0(A*2). 

As we mentioned before this scheme is analogous to the EG4 scheme of the wave 

equation system. We call it the EG4-Kuler scheme. 

5. NUMERICAL EXAMPLES 

E x a m p l e 5.1. Rectangular waveguide 

We consider a rectangular waveguide with rectangular cross section of sizes a and b. 

The dielectric parameters are e and /i. For transverse magnetic waves, i.e. TM modes, 
Hz = 0 and Ez satisfies the differential equation 

1 d2E 
(5.1) AE-?^=°' 
where c = l/y/eji is the speed of wave propagation. Note that the fields E and H 

have in the Cartesian coordinates the form 

E = Exx + Eyy + Ezz, 

H = Hxx + Hyy + Hzz. 
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If the time convention eluJt is used then equation (5.1) will change to 

u2 

(5.2) AE + — E - 0. 
& 

Further, if we assume Ez(x,y,z) = E$(x,y)e~lz then (5.2) implies that 

Using the boundary conditions 

Ez(0,y) = 0, Ez(a,y) = 0, Ez(x,0) = 0, Ez(x,b) = 0, 

where 0 ^ x ^ a and 0 ^ y ^ b, we obtain EQ from the above differential equation 
and thus determine the electric field components Ex, Ey, Ez and the magnetic field 
components Hx and Hy. For example, 

Ez(x,y,z,t) = Eflsinf -x\ sinf -y) cos(ut — /3z), 

where 7 = i/3 = iJuj2^ie — (rrnz/a) — (niz/b) for more details see [1] or [2]. If we 

take u) = cTiy (m/a) + (n/b) , i.e. the cutoff frequency, then for the case a = b = 1 
and m = n = 1 the exact solution Ez(x,y,z,t) has the form 

Ez(x,y, t) = sin(Tix) sin(7iy) cos(y/2izct), 

where we set E0 = 1. To use the EG4 scheme denote Ez(x,y,t) by jp(x,y,t) and 

solve the wave equation 

*l>tt =C2(lpxx +1pyy) 

together with the initial conditions 

ip(x, y, 0) = sin (TUX) sin(ny), \pt(x, y, 0) = 0, 

and the boundary conditions 

^(0,y,t) = 0, t>0, 0 < y ^ l , 

*P(l,y,t) = 0, t^O, 0 < y < l , 

%l>(x, 0, t) = 0, t^ 0, 0 ^ x ^ 1, 

il>(x,l,t) = 0, t^O, O^x ^ 1. 
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Defining (D, u, and v so that (p = ipt, u = c0x , t> = cifcy we obtain the system 

(ft - c(wx + uy) = 0, 

ut - apx = 0, 

vt - cify = 0 on ]0,1[2 x [0, oo[, 

(D(x,y,0) = 0 , 

Lt(x, y, 0) = CTC cos(Tc.T) sin(.r/u), 

Lt(.r, H, 0) = CTC sin(Tcx) COS(TCI/) on [0, l ] 2 . 

The exact solution is 

cp = - v^Tccsin(Tcx) sin(Tcy) SUI(>/2TCC£), 

u = crccos(Tc.T) sin(TH/) COS(\/2TCC^), 

v = CTcsin(Tc.r) COS(TCL/) cos(\/2Tccf). 

We take (D = 0 on the boundary of Q, and extrapolate Li and v there. We apply 
the transformations t —> t/to, <D -» <p£o7 ^ -> ^ o and L> -> vto where to = V^TCC. 

The following two tables show the L2-error and the experimental order of conver
gence (EOC), which is defined in the following way using the solutions computed on 
two meshes of sizes jNi, IV2: 

EOC = log 
| | U N 2 ( T ) - U ^ | 

Nľ 
Ытè) 

Scheme N L2-error-far L2-error-near L2-error 

EG4 40 0.000219 0.000872 0.000899 

80 0.000091 0.000438 0.000447 

100 0.000067 0.000362 0.000368 

120 0.000054 0.000312 0.000317 

140 0.000047 0.000276 0.000280 

160 0.000039 0.000247 0.000250 

Table 1. T = 0.2, CFL = 0.55, L -error between the discrete and the exact solutions. 

In Tab. 1 the L2-error-far represents the error in the region far from the boundary 
while the L2-error-near stands for the error near the boundary. 
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jү ЫT)-Ҷ>n\\ ҜГ)-u»|| ||u(Г)-iн EOC 

40 0.000219 0.000368 0.000564 

80 0.000091 0.000178 0.000267 1.078855 

160 0.000039 0.000084 0.000125 1.094912 

320 0.000019 0.000042 0.000062 1.011588 

640 0.000009 0.000021 0.000031 1.000000 

Table 2. EG4 scheme, T = 0.2, CFL = 0.55. 

In Table 2 we measure the speed of convergence of the EG4 scheme. We see 

that it is approximately equal to 1, which is correct since the approximate evolution 

operator EG4 is of the first order in time and the shape functions are piecewise 

constant in space. From the tables we see that the overall L2-error decreases as 

the mesh is refined. This shows that the method converges. Note that the error is 

dominated by an error produced due to the numerical boundary conditions, namely 

the extrapolation for u and v. In [7] we were able to improve this situation by using 

more sophisticated numerical boundary conditions. Observe again that the error in u 

due to the numerical boundary condition is much higher than the error in <D. For (D 

we can use the Dirichlet condition directly. 

E x a m p l e 5.2. Divergence test 

Let Q, = [-1,1] x [—1,1]. Consider the Maxwell equations (3.1)-(3.3). Let the 

initial data be 

Ez(x,y,0) = s i n Q x ) s i n ( ^ y ) , 

Hx(x,y,0) = Hy(x,y,0) = 0 in tt 

and suppose that the boundary of Q is a perfect conductor. Then using the trans

formations t -> t/c, Ez —• (D, Hy ->- u/Z0 and Hx -> —v/Z0, these equations read 

дҷ> 

~дt 

дu дv 
дx дyђ 

дu 

~дt 

дҷ> 

дx' 

дv 
~дt 

дҷ> 

дy' 

To test that the magnetic field is divergence-free remember that by the definition 
dEz/dz = 0. Further, 

дHx дHy 

дx -F дy 
1 ídu 

Then V • H = 0 can be written as du/dy — dv/dx = 0, i.e. the divergence-free 

property is equivalent to the vanishing vorticity in the case of TM modes. In Tab. 3 
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we present the vorticity preservation for the EG4 scheme. We compute the discrete 

vorticity DV given by the formula 

DVa>p' = HxSyua',p' - fJ>ySxva>^i for each a',/?' G Z, 

where we have denoted by u^^i values at vertices of square mesh cells, 6X is used as 
defined before, and fixu = | [u(x + \h) + u(x — \h)]. In Tab. 3 we show reference 
values for DVa'p', namely, the average value (vor-aver), the minimum (vor-min) and 
the maximum (vor-max). The values of vor-aver demonstrate that the EG4 scheme 
preserves the divergence-free property in a good manner. 

100 x 100 200 x 200 400 x 400 

vor-aver 0.00092521478 0.00029260981 0.00010088980 

vor-min -0.01221328952 -0.00948232290 -0.01140008104 

vor-max 0.01221328952 0.00948232290 0.01140008104 

Table 3. Preservation of zero divergence, CFL = 0.55, 100 time steps. 

E x a m p l e 5.3. Linearized Euler equations problem 

In this experiment we consider linearized Euler equations 

(5.3) U t + Ai(U ; )U x + A 2 (U')U y = 0 , x = (a,y)T e ] - l , 1[ x ] - l , 1[, 

where 

U : = 
u 
v 

\p) 

U':= 
/ 1 \ 

I u 
I v 

V1/7/ 

A i : = 

/ u 1 0 0 \ 

0 u 0 1 

0 0 u 0 

V 0 1 0 u ) 

A 2 : = 

/v 0 1 0 

0 v 0 0 

0 0 

\ 0 0 1 

Note that this system is a special case of system (4.1) with g' = c' = 1. Here u' 
and v' are given constants representing the mean flow in the direction of x and y, 
respectively. We consider system (5.3) together with initial data containing acoustic, 
entropy and vorticity pulses as follows 

g(x, y, 0) = 2.5 exp(-40((x - xa)
2 + (y - ya)

2)) 

+ 0.5exp(-40((x - xbf + (y- yb)
2)), 

u(x,y,0) = 0.05exp(-40((x - xb)
2 + (y - yb)

2)), 

v(x,y,0) = -0.05exp(-40((a; - xb)
2 + (y - yb)2)), 

p(x, y, 0) = 2.5 exp(-40((a; - xa)
2 + (y - ya)

2)). 
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We suppose that the main flow is in the direction making a 45° angle with the X-axis 

and that u' = v' = 0.5sin(^7r.). Moreover, we assume that the initial location of the 

acoustic pulse is at (xa,ya) = (-0.31,-0.31), whereas the entropy and vorticity is 

at (xb,yb) = (0.39,0.39). We set the CFL number v to be 0.45 and take a mesh 

consisting of 100 x 100 cells. In Fig. 3, top-left, we compare the exact solution, the 

numerical solution using the first order FVEG4-Euler scheme and the Lax-Priedrichs 

(tensor product) scheme, which is defined by 

jx jy • jy . jx 
(5.4) U n + 1 = L*'Lh + Lh Lh U n , 

where the operator Lx
h for the linear one dimensional system with constant coefficients 

U£ + A ! U x = 0 

is given as 

- i I - i A . 

LI = - ^ ^ - -^M(4 - r i j , where T£kU$ = U ? ± l j . 

The solutions are plotted along the line y = x at time T = 0.166. In the top-right 

figure we show the same comparison between the second order FVEG4-Euler scheme, 

the Lax-Wendroff (tensor product) scheme and the exact solution. Note that the 

Lax-Wendroff (tensor product) scheme is defined by equation (5.7) with Lh given as 

Ч-/-(f)A1л.. + |(Ş)-AÎ«, 
\ h ) L K i X ' 2 V ft ) 

where A0xv(x) = \[v(x + ft) - v(x - ft)], 5%v(x) = v(x + ft) - 2v(x) + v(x - ft). 
This is the symmetrical product also known as Strang splitting, see Strang [10]. In 
the bottom-left figure we give the comparison between the second order FVEG4-
Euler scheme, the Lax-Wendroff (tensor product) scheme and the exact solution at 
time T = 0.332. In the bottom-right figure we compare the second order FVEG4-
Euler scheme and the Lax-Wendroff (tensor product) scheme at time T = 0.665. We 
conclude that the acoustic part of the solution is moving faster than the entropy 
part and that the result using the FVEG4 first order is more accurate than that of 
the Lax-Friedrichs scheme. Moreover, both the FVEG4 second order and the Lax-
Wendroff (tensor product) schemes give a comparable approximation of the exact 
solution. The difference between the schemes FVEG4 second order and the Lax-
Wendroff (tensor product) as the time developed (see Fig. 3 bottom-right) is quite 
small for smooth solution. 
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Figure 3. Density along the line y = x, v! = v' = 0.5sin(^K), CFL = 0.45, mesh: 
100 x 100. Top-left: T = 0A66, comparison between the first order FVEG4-
Euler scheme, Lax-Friedrichs (tensor product) scheme and the exact solution, top-
right: T = 0.166, comparison between the second order FVEG4-Euler scheme, 
the Lax-Wendroff (tensor product) scheme and the exact solution, bottom-left: 
T = 0.332, bottom-right: T = 0.665, comparison between the second order 
FVEG4-Euler and the Lax-Wendroff (tensor product) scheme. 

Conc lus ion s . 

In this paper we have derived and analyzed two approximate evolution operators 

(EG3, EG4) for the Maxwell equation of the electromagnetics. Both the operators 

are of the first order in time and are based on a general theory for multidimensional 

linear hyperbolic systems of the first order. As a result the numerical schemes take 

into account all of the infinitely many directions of wave propagation along the so-

called bicharacteristic cone. Further, for the Maxwell equations the approximation 

of the dispersion relation was studied. It is shown that this relation is approxi

mated with the first order error, which is correct for the piece wise constant shape 

functions. Moreover, it is shown tha t an important divergence-free property of the 

solution to the Maxwell equations is satisfied exactly by the approximate EG opera

tors, i.e. E G 1 , EG2, EG3, EG4. In the second par t of this paper we have applied the 

general technique of the EG-operators to the linearized Euler equations and derive 

a new EG4 operator for the Euler equation system. Some numerical experiments for 

the Maxwell equations and for the Euler equations are presented in the last section. 
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These experiments demonstrate good higher order as well as multi-dimensional be
haviour of the FVEG schemes for linear hyperbolic systems. Generalization of the 
results presented in this paper to nonlinear problems can be found e.g. in [4], [6]. 
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Abstract. The subject of the paper is the derivation and analysis of evolution Galerkin
schemes for the two dimensional Maxwell and linearized Euler equations. The aim is to
construct a method which takes into account better the infinitely many directions of prop-
agation of waves. To do this the initial function is evolved using the characteristic cone
and then projected onto a finite element space. We derive the divergence-free property and
estimate the dispersion relation as well. We present some numerical experiments for both
the Maxwell and the linearized Euler equations.

Keywords: hyperbolic systems, wave equation, evolution Galerkin schemes, Maxwell
equations, linearized Euler equations, divergence-free, vorticity, dispersion

MSC 2000 :

1. Introduction

Evolution Galerkin methods, EG methods, were proposed to approximate the
solution of evolutionary problems of first order hyperbolic systems. Ostkamp in [9]

as well as Lukáčová, Morton and Warnecke in [4], [5] derived such schemes for the
approximation of the solution of the wave equation system and the Euler equations

of gas dynamics in two dimensions. In [11] the approximate evolution operator for
the wave equation system in three space dimensions as well as other 2D EG schemes

were derived.

*This research was supported under the DFG grant No. Wa 633/6-2 of Deutsche
Forschungsgemeinschaft, by the grants no. 201/00/0557 and 201/03/0570 of the Grant
Agency of the Czech Republic as well as by the Volkswagen Stiftung and DAADAgencies.

415



It is well-known, see [4], [5], [8], [9], that the basic tool to derive the EG schemes

is the general theory of bicharacteristics of linear hyperbolic systems. This theory is
used to derive the system of integral equations which is equivalent to the concerned
first order system such as the Maxwell equations or the linearized Euler equations.

Using quadratures, these integral equations lead to the approximate evolution oper-
ator that builds up the evolution Galerkin scheme.

Considering the Maxwell equations in free space, it is straightforward to see that
the divergence of the electric field as well as of the magnetic field is zero. Numerically,

in order to have an efficient Maxwell solver, this property must be preserved. Further,
the dispersion relation associated with the Maxwell equations has a key role with

regard to the accuracy of the numerical scheme used.
The content of this paper is as follows: in the next section we briefly derive the

exact integral equations and construct evolution Galerkin schemes. In Section 3 we
write down the approximate evolution operators for the Maxwell equations. More-

over, we show that these operators preserve the divergence-free property. Further,
we estimate the dispersion relation for the Maxwell EG solvers that we used. In

Section 4 we derive the approximate evolution operator for the linearized Euler equa-
tions. These results presented here are the basic ingredient in our extension of the

method to the case of the nonlinear Euler equations, see [6]. Finally, in Section 5
we present some numerical tests for the Maxwell equations as well as the linearized

Euler equations.

2. Exact integral equations and approximate

evolution operators

In this section we derive exact integral equations for a general hyperbolic system
in d dimensions. Typical physical examples of hyperbolic conservation laws are,

e.g., the Maxwell equations and the Euler equations of gas dynamics. Using the
theory of bicharacteristics one can derive the equivalent integral equations for these

systems which give a basis for the EG schemes.
Let the general form of a linear hyperbolic system be given as

(2.1) Ut +
d∑

j=1

AjUxj = 0, x = (x1, . . . , xd)T ∈ + d

where the coefficient matrices Aj , j = 1, . . . , d are elements of + p×p and the de-

pendent variables are U = (u1, . . . , up)T ∈ + p . Let A(n) =
d∑

j=1

njAj be the pencil

matrix with n = (n1, . . . , nd)T being a directional vector in + d . Then using the
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eigenvectors of A(n) the system (2.1) can be written in a characteristic form via
the substitution W = R−1U, where the columns of the matrix R are the linearly
independent right eigenvectors of A(n). Since the coefficients of the original system
are constants the bicharacteristics of the resulting characteristic system are straight

lines PQi and PP ′, see Fig. 1. Diagonalizing this system and integrating along the
bicharacteristics leads to the system of integral equations

U(P ) =
1
|O|

∫

O

R(n)W(Q(n),n) dO +
1
|O|

∫

O

∫ ∆t

0

R(n)S(t+ τ,n) dτ dO

where O is the unit sphere in + d , |O| its surface measure and S is a nontrivial term
which we call the source term; for more details see [8].

x

t
y

P ′

P = (x, t+ ∆t)

Qi(n)

θ

Figure 1. Bicharacteristics along the Mach cone through P and Qi(A(n)).

Evolution Galerkin schemes
For simplicity let us consider d = 2. Consider h > 0 to be the mesh size parameter.

We construct a mesh for + 2 , which consists of the square mesh cells

Ωkl =
[(
k − 1

2

)
h,

(
k +

1
2

)
h

]
×

[(
l − 1

2

)
h,

(
l +

1
2

)
h

]

=
[
xk −

h

2
, xk +

h

2

]
×

[
yl −

h

2
, yl +

h

2

]
,

where k, l ∈ , . Let us denote by Hκ( + 2 ) the Sobolev space of distributions with
derivatives up to order κ in the L2 space, where κ ∈ - . Consider the general
hyperbolic system given by the equation (2.1). Let us denote by E(s) : (Hκ( + 2 ))p →
(Hκ( + 2 ))p the exact evolution operator for the system (2.1), i.e.

(2.2) U(·, t+ s) = E(s)U(·, t).
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We suppose that Sm
h is a finite element space consisting of piecewise polynomials

of order m > 0 with respect to the square mesh. Assume a constant time step,
i.e. tn = n∆t. Let Un be an approximation in the space Sm

h to the exact solu-
tion U(·, tn) at time tn > 0. We consider Eτ : L1

loc( + 2 ) → (Hκ( + 2 ))p to be a

suitable approximate evolution operator for E(τ). In practice we will use restric-
tions of Eτ to the subspace Sm

h for m > 0. Then we can define the general class of
evolution Galerkin methods.

Definition 2.1. Starting from some initial data U0 ∈ Sm
h at time t = 0, an

evolution Galerkin method (EG-method) is recursively defined by means of

(2.3) Un+1 = PhEτUn,

where Ph is the L2-projection given by the integral averages in the following way:

PhUn|Ωkl
=

1
|Ωkl|

∫

Ωkl

U(x, y, tn) dx dy.

We denote by Rh : Sm
h → Sr

h a recovery operator, r > m > 0 and consider our
approximate evolution operator Eτ on Sr

h. We will limit our further considerations to

the case where m = 0 and r = 2. Taking piecewise constants the resulting schemes
will only be of the first order, even when Eτ is approximated to a higher order.

Higher order accuracy can be obtained either by taking m > 0, or by inserting a
recovery stage Rh before the evolution step in equation (2.3) to obtain

(2.4) Un+1 = PhEτRhUn.

This approach involves the computation of multiple integrals and becomes quite

complex for higher order recoveries. To avoid this we will consider higher order
evolution Galerkin schemes based on the finite volume formulation instead.

Definition 2.2. Starting from some initial data U0 ∈ Sm
h , the finite volume

evolution Galerkin method (FVEG) is recursively defined by means of

(2.5) Un+1 = Un − 1
h

∫ ∆t

0

2∑

j=1

δxj fj(Ũ
n+τ/∆t) dτ,

where δxj fj(Ũ
n+τ/∆t) represents an approximation to the edge flux difference and

δx is defined by δx = v
(
x + 1

2h
)
− v

(
x − 1

2h
)
. The cell boundary value Ũn+τ/∆t is

evolved using the approximate evolution operator Eτ to tn + τ and averaged along

the cell boundary, i.e.

(2.6) Ũn+τ/∆t =
∑

k,l∈ .

(
1

|∂Ωkl|

∫

∂Ωkl

EτRhUn dS
)
χkl,

where χkl is the characteristic function of ∂Ωkl.
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In this formulation a first order approximationEτ to the exact operatorE(τ) yields
an overall higher order update from Un to Un+1. To obtain this approximation in
the discrete scheme it is only necessary to carry out a recovery stage at each level to
generate a piecewise polynomial approximation Ũn = RhUn ∈ Sr

h from the piecewise

constant Un ∈ S0
h, to feed into the calculation of the fluxes. To construct the second

order FVEG schemes, for example, we take the first order accurate approximate

evolution operator and define a bilinear reconstruction Rh. Among many possible
recovery schemes which can be used, we will choose a discontinuous bilinear recovery

using four point averages at each vertex. It is given as

RhU|Ωkl
= Ukl +

x− xk

4h
(∆0xUkl+1 + 2∆0xUkl + ∆0xUkl−1)

+
y − yl

4h
(∆0yUk+1l + 2∆0yUkl + ∆0yUk−1l)

+
(x− xk)(y − yl)

h2
∆0y∆0xUkl,

where ∆0zv(z) = 1
2

(
v(z + h)− v(z − h)

)
. Note that in the updating step (2.5) some

numerical quadratures are used instead of the exact time integration. Similarly, to
evaluate the intermediate value Ũn+τ/∆t in (2.6) the two dimensional integrals along

the cell-interface and around the Mach cone are evaluated either exactly or by means
of suitable numerical quadratures.

To close this section note that in this paper we set T to be the absolute end time
of computation, i.e. T = n∆t. Further, the Courant, Friedrichs and Lewy stability
number is denoted by ν and we take it to be ν = c∆t/h for the Maxwell equations.
For the linearized Euler equation we set ν = min(|u′| + c′, |v′| + c′)∆t/h, where u′,
v′ are the mean flows in the x and y directions respectively and c′ is the local sound
speed.

3. Maxwell equations

For the fundamentals of the electromagnetic theory and the Maxwell equations

see Jackson [3], Balanis [1], Cheng [2]. Throughout this section we will consider the
transverse magnetic (TM) modes of the electromagnetic fields only. So let us take

E = Ezẑ, H = Hxx̂ +Hyŷ, where x̂, ŷ, ẑ are unit vectors in the direction of x, y,
and z, respectively. In free space the Maxwell equations

∂B
∂t

+∇×E = 0,

−∂D
∂t

+∇×H = 0

419



are reduced to

∂Ez

∂t
=

1
ε

(∂Hy

∂x
− ∂Hx

∂y

)
,(3.1)

∂Hy

∂t
=

1
µ

∂Ez

∂x
,(3.2)

∂Hx

∂t
= − 1

µ

∂Ez

∂y
.(3.3)

Here E denotes the electric field, B is the magnetic field, D, H denote the electric
field density and magnetic field intensity, respectively. Further, we have D = εE,
B = µH, where ε is the permittivity and µ the permeability of the free space. Using
the transformations ϕ = Ez/

√
µ, u = −Hy/

√
ε, v = Hx/

√
ε and taking c = 1/

√
εµ

equations (3.1)–(3.3) are reduced to the two dimensional wave equation system

(3.4)

ϕt + c(ux + vy) = 0,

ut + cϕx = 0,

vt + cϕy = 0.

Lukáčová et.al. [5] analyzed the evolution Galerkin schemes for the system (3.4).
Namely, they derived the schemes EG1, EG2 and EG3. Moreover, in [11] the author

derived the EG4 scheme. Note that the system (3.4) has the following property of
irrotationality:

d
dt

(uy − vx) = uty − vtx = −c(ϕxy − ϕyx) = 0,

i.e. a solution with uy− vx = 0 for time t = 0 satisfies this equation of irrotationality
for later times also. From the above we see that

0 = uy − vx =
−1√
ε
[(Hy)y + (Hx)x] =

−1√
ε
∇ ·H.

So the vorticity uy − vx for the wave equation system corresponds to the divergence

of the magnetic field. Using the above transformations we arrived at the following
approximate evolution operators for the Maxwell equations.
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Based on the EG4 scheme

Ez(P ) =
1
2

π
∫ 2 /

0

[Ez(Q) + Z(2 cos θHy(Q)− 2 sin θHx(Q))] dθ +O(∆t2),(3.5)

Hy(P ) =
1
2π

∫ 2 /
0

[2 cos θEz(Q)
Z

+ 2 cos2 θHy(Q)(3.6)

− 2 sin θ cos θHx(Q)
]
dθ +O(∆t2),

Hx(P ) =
1
2π

∫ 2 /
0

[−2 sin θEz(Q)
Z

− 2 sin θ cos θHy(Q)(3.7)

+ 2 sin2 θHx(Q)
]
dθ +O(∆t2).

Based on the EG3 scheme

Ez(P ) =
1
2π

∫ 2 /
0

[Ez(Q) + Z(2 cos θHy(Q)− 2 sin θHx(Q))] dθ +O(∆t2),(3.8)

Hy(P ) =
1
2
Hy(P ′) +

1
2π

∫ 2 /
0

[2 cos θEz(Q)
Z

+ (3 cos2 θ − 1)Hy(Q)(3.9)

− 3 sin θ cos θHx(Q)
]
dθ +O(∆t2),

Hx(P ) =
1
2
Hx(P ′) +

1
2π

∫ 2 /
0

[−2 sin θEz(Q)
Z

− 3 sin θ cos θHy(Q)(3.10)

+ (3 sin2 θ − 1)Hx(Q)
]
dθ +O(∆t2),

where Z =
√
µ/ε is the so-called impedance of free space. Taking the projection

onto piecewise constant functions we obtain the evolution Galerkin schemes for the
Maxwell equations. Numerical schemes based on equations (3.5)—(3.7) and (3.8)–

(3.10) are called the EG4 and the EG3 methods, respectively. Note that these
schemes are first order schemes. In order to have second order methods for the

Maxwell equations we use the finite volume formulation as given in Definition 2.2.
Assuming the periodicity of the fields in space we get the following two lemmas.

Lemma 3.1. The approximate evolution operators for the Maxwell equations
EG3 and EG4 are divergence-free.

021435376
. We prove only the case of the EG4 scheme, the EG3 scheme can be

treated analogously. To this end, ∇·E = 0 follows immediately from the assumption
that E = Ez(x, y, t)ẑ. Now taking the derivatives with respect to y and x of the
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equations (3.6) and (3.7), respectively we get

(3.11)

∂Hy

∂y
(P ) =

1
2π

∫ 2 /
0

(2 cos θ
Z

∂Ez

∂y
(Q) + 2 cos2 θ

∂Hy

∂y
(Q)− 2 sin θ cos θ

∂Hx

∂y
(Q)

)
dθ,

(3.12)

∂Hx

∂x
(P ) =

1
2π

∫ 2 /
0

(−2 sin θ
Z

∂Ez

∂x
(Q)− 2 sin θ cos θ

∂Hy

∂x
(Q) + 2 sin2 θ

∂Hx

∂x
(Q)

)
dθ.

Adding equation (3.11) to the equation (3.12) we obtain

∂Hx

∂x
(P ) +

∂Hy

∂y
(P ) =

1
2π

∫ 2 /
0

[ 2
Z

(
cos θ

∂Ez

∂y
(Q)− sin θ

∂Ez

∂x
(Q)

)
(3.13)

+ 2
(
cos2 θ

∂Hy

∂y
(Q)− sin θ cos θ

∂Hy

∂x
(Q)

)

+ 2
(
sin2 θ

∂Hx

∂x
(Q)− sin θ cos θ

∂Hx

∂y
(Q)

)]
dθ.

Now the integral of the first term of equation (3.13) is zero because

∫ 2 /
0

2
Z

(
cos θ

∂Ez

∂y
(Q)− sin θ

∂Ez

∂x
(Q)

)
dθ

=
∫ 2 /

0

2
Z

(− sin θ, cos θ)T · ∇Ez dθ =
∫ 2 /

0

2
Z
dEz

and E is a periodic field. We use the periodicity of the magnetic field H and the fact
that the initial data are divergence-free. Then integration by parts gives

∫ 2 /
0

(
cos2 θ

∂Hy

∂y
(Q)− sin θ cos θ

∂Hy

∂x
(Q)

)
dθ(3.14)

=
∫ 2 /

0

cos θ
(∂Hy

∂y
(Q)− sin θ

∂Hy

∂x
(Q)

)
dθ

=
∫ 2 /

0

cos θ(− sin θ, cos θ)T · ∇Hy(Q) dθ

=
∫ 2 /

0

cos θ
dHy

dθ
(Q) dθ =

∫ 2 /
0

sin θHy(Q) dθ.

Analogously we have

(3.15)
∫ 2 /

0

(
sin2 θ

∂Hx

∂x
(Q)− sin θ cos θ

∂Hx

∂y
(Q)

)
dθ =

∫ 2 /
0

cos θHx(Q) dθ.
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Summing equations (3.14) and (3.15) we get

∫ 2 /
0

(
sin2 θ

∂Hx

∂x
(Q)− sin θ cos θ

∂Hy

∂x
(Q) + cos2 θ

∂Hy

∂y
(Q)− sin θ cos θ

∂Hx

∂y
(Q)

)
dθ

=
∫ 2 /

0

(cos θHx(Q) + sin θHy(Q))dθ

=
∫ 2 /

0

H(Q) · n dθ =
∮
∇ ·H(Q) dS = 0.

Therefore ∇ ·H = 0. This concludes the proof of the lemma. �
8:9<;>=?14@

3.1. Similar results hold also for other EG operators, i.e. EG1, EG2,

the operator of Ostkamp, cf. [5] for the precise formulation.

Our next aim is to approximate the dispersion relation. To this end note that

a frequently used technique of characterizing the error of numerical schemes of the
Maxwell equations is the Fourier analysis. Neglecting the boundary conditions, we

assume that the three unknown components can be expressed in the following form:

(3.16) ψn
IJ = ψ0 exp

(
i(ξ̃Ih+ η̃Jh− ωn∆t)

)
,

where i =
√
−1, h is the space increment and ξ̃ and η̃ are the x and y components of

the numerical wave vector, respectively. In the case of the exact solution this gives

(3.17) ψ(x, y, t) = ψ0 exp
(
i(ξx+ ηy − ωt)

)
.

The numerical wave vector k̃ = (ξ̃, η̃)T will in general differ from the physical wave

vector k = (ξ, η)T satisfying |k| =
√
ξ2 + η2 = ω/c. This is called the dispersion

relation. Here ω is the angular frequency and c is the speed of light. The difference

between k and k̃ gives rise to numerical phase and group velocities that depart from
the analytical values. This causes numerical errors that accumulate in time. Hence

the dispersion analysis is important to assess the accuracy of a numerical solution.
In the next lemma we study the approximation of the dispersion relation for the

EG4 method in the case of Maxwell equations.

Lemma 3.2. For both the EG4 method (3.5)–(3.7) and the EG3 method (3.8)–
(3.10) the following dispersion relation holds:

(3.18)
(ω
c

)2

= (ξ̃2 + η̃2) +O(h).
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021435376
. We present the proof of (3.18) for the EG4 scheme, the proof for the

EG3 scheme is analogous. First we write out the finite difference formulation of the
EG4 scheme:

Ezn+1
= (1 + a11(s2x + s2y) + b11s

2
xs

2
y)Ezn

+ Z(ν(1 + a12s
2
y)∆0xH

yn

(3.19)

−ν(1 + a13s
2
x)∆0yH

xn

),

Hyn+1
= (1 + (a22s

2
x + a′22s

2
y) + b22s

2
xs

2
y)Hyn

+
ν

Z
(1 + a21s

2
y)∆0xE

zn

(3.20)

−ν2a23∆0x∆0yH
xn

,

Hxn+1
= (1 + (a33s

2
x + a′33s

2
y) + b33s

2
xs

2
y)Hxn − ν

Z
(1 + a31s

2
x)∆0yE

zn

(3.21)

−ν2a32∆0x∆0yH
yn

,

where ν = c∆t/h, ∆0z = 1
2

(
f(z + h)− f(z − h)

)
, s2z = f(z + h)− 2f(z) + f(z − h)

and

a11 =
ν

π
, b11 =

ν2

4π
, a12 =

2ν
3π
, a13 =

2ν
3π
,

a21 =
2ν
3π
, a22 =

4ν
3π
, a′22 =

2ν
3π
, b22 =

ν2

4π
, a23 =

1
4
,

a31 =
2ν
3π
, a32 =

1
4
, a33 =

2ν
3π
, a′33 =

4ν
3π
, b33 =

ν2

4π
.

Substituting from equation (3.16) into equations (3.19)–(3.21) we get

−iω∆t = 2a11(cos(hξ̃)− 1) + 2a11(cos(hη̃)− 1)(3.22)

+ 4b11(cos(hξ̃)− 1)(cos(hη̃)− 1)

+ iZν
Hy

0

Ez
0

sin(hξ̃)[1 + 2a12(cos(hη̃)− 1)]

−iZν
Hx

0

Ez
0

sin(hη̃)[1 + 2a13(cos(hξ̃)− 1)],

−iω∆t = 2a22(cos(hξ̃)− 1) + 2a′22(cos(hη̃)− 1)(3.23)

+ 4b22(cos(hξ̃)− 1)(cos(hη̃)− 1)

+ i
ν

Z

Ez
0

Hy
0

sin(hξ̃)[1 + 2a21(cos(hη̃)− 1)]

+ ν2a23
Hx

0

Hy
0

sin(hη̃) sin(hξ̃),

−iω∆t = 2a33(cos(hξ̃)− 1) + 2a′33(cos(hη̃)− 1)(3.24)

+ 4b33(cos(hξ̃)− 1)(cos(hη̃)− 1)
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−i
ν

Z

Ez
0

Hx
0

sin(hη̃)[1 + 2a31(cos(hξ̃)− 1)]

+ ν2a32
Hy

0

Hx
0

sin(hη̃) sin(hξ̃).

Now equations (3.23) and (3.24) imply, respectively, that

Hy
0

Ez
0

=
ν
Z sin(hξ̃)[1 + 2a21(cos(hη̃)− 1)]

−ω∆t+ i[α+ ν2a23
Hx

0
Hy

0
sin(hξ̃) sin(hη̃)]

,(3.25)

Hx
0

Ez
0

=
ν
Z sin(hη̃)[1 + 2a31(cos(hξ̃)− 1)]

ω∆t− i[β + ν2a32
Hy

0
Hx

0
sin(hξ̃) sin(hη̃)]

,(3.26)

where

α := 2a22(cos(hξ̃)− 1) + 2a′22(cos(hη̃)− 1) + 4b22(cos(hξ̃)− 1)(cos(hη̃)− 1),

β := 2a33(cos(hξ̃)− 1) + 2a′33(cos(hη̃)− 1) + 4b33(cos(hξ̃)− 1)(cos(hη̃)− 1).

Substituting equations (3.25) and (3.26) into equation (3.22) leads to

ω∆t = iγ − ν2 sin2(hξ̃)(1 + 2a12(cos(hη̃)− 1))2

−ω∆t+ i(α+ ν2a23
Hx

0
Hy

0
sin(hξ̃) sin(hη̃))

(3.27)

−ν
2 sin2(hη̃)(1 + 2a13(cos(hξ̃)− 1))2

−ω∆t+ i(β + ν2a32
Hy

0
Hx

0

sin(hξ̃) sin(hη̃)),

where

γ := 2a11(cos(hξ̃)− 1) + 2a11(cos(hη̃)− 1) + 4b11(cos(hξ̃)− 1)(cos(hη̃)− 1).

Equation (3.27) can be written in the form

(ω∆t− iγ)
(
−ω∆t+ i

[
α+ ν2a23

Hx
0

Hy
0

sin(hξ̃) sin(hη̃)
])

(3.28)

×
(
−ω∆t+ i

[
β + ν2a32

Hy
0

Hx
0

sin(hξ̃) sin(hη̃)
])

= −ν2 sin2(hξ̃)[1 + 2a12(cos(hη̃)− 1)]2

×
(
−ω∆t+ i

[
β + ν2a32

Hy
0

Hx
0

sin(hξ̃) sin(hη̃)
])

−ν2 sin2(hη̃)[1 + 2a13(cos(hξ̃)− 1)]2

×
(
−ω∆t+ i

[
α+ ν2a23

Hx
0

Hy
0

sin(hξ̃) sin(hη̃)
])
.

Using the Taylor expansion we can show that γ, α and β are of order ν2O(h2) and
sin(hx) = hx +O(h3). The left- and the right-hand sides of equation (3.28) can be
written as
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LHS =
(
−ω2∆t2 + iωγ∆t+ iω∆t

[
α+ ν2a23

Hx
0

Hy
0

sin(hξ̃) sin(hη̃)
])

+ γ
[
α+ ν2a23

Hx
0

Hy
0

sin(hξ̃) sin(hη̃)
]

×
(
−ω∆t+ i

[
β + ν2a32

Hy
0

Hx
0

sin(hξ̃) sin(hη̃)
])

= ω3∆t3 − iω2∆t2
[
β + ν2a32

Hy
0

Hx
0

sin(hξ̃) sin(hη̃)
]
− iω2∆t2 γ

− γω∆t
[
β + ν2a32

Hy
0

Hx
0

sin(hξ̃) sin(hη̃)
]

− iω2∆t2
[
α+ ν2a23

Hx
0

Hy
0

sin(hξ̃) sin(hη̃)
]

− ω∆t
[
α+ ν2a23

Hx
0

Hy
0

sin(hξ̃) sin(hη̃)
][
β + ν2a32

Hy
0

Hx
0

sin(hξ̃) sin(hη̃)
]

− ω∆tγ[α+ ν2a23
Hx

0

Hy
0

sin(hξ̃) sin(hη̃)]

+ iγ
[
α+ ν2a23

Hx
0

Hy
0

sin(hξ̃) sin(hη̃)
][
β + ν2a32

Hy
0

Hx
0

sin(hξ̃) sin(hη̃)
]

= ω3∆t3 + ν2ω∆tO(h3),

RHS = ν2ω∆t sin2(hξ̃)− ν2 sin2(hξ̃)i
[
β + ν2a32

Hy
0

Hx
0

sin(hξ̃) sin(hη̃)
]

+ ν2ω∆t sin2(hξ̃)4a12(cos(hη̃)− 1)

−iν2 sin2(hξ̃)4a12(cos(hη̃)− 1)
[
β + ν2a32

Hy
0

Hx
0

sin(hξ̃) sin(hη̃)
]

+ ν2ω∆t sin2(hξ̃)4a2
12(cos(hη̃)− 1)2

−iν2ω∆t sin2(hξ̃)4a2
12(cos(hη̃)− 1)2

[
β + ν2a32

Hy
0

Hx
0

sin(hξ̃) sin(hη̃)
]

+ ν2ω∆t sin2(hη̃)− ν2 sin2(hη̃)i
[
α+ ν2a23

Hx
0

Hy
0

sin(hξ̃) sin(hη̃)
]

+ ν2ω∆t sin2(hη̃)4a13(cos(hξ̃)− 1)

−iν2 sin2(hη̃)4a13(cos(hξ̃)− 1)
[
α+ ν2a23

Hx
0

Hy
0

sin(hξ̃) sin(hη̃)
]

+ ν2ω∆t sin2(hη̃)4a2
13(cos(hξ̃)− 1)2

−iν2ω∆t sin2(hη̃)4a2
13(cos(hξ̃)− 1)2

[
α+ ν2a23

Hx
0

Hy
0

sin(hξ̃) sin(hη̃)
]

= ν2ω∆t[sin2(hξ̃) + sin2(hη̃)] + ν2ω∆tO(h3).
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Therefore we have

(3.29) ω3∆t3 = ν2ω∆t[sin2(hξ̃) + sin2(hη̃)] +O(h3).

Finally, equation (3.29) leads to (3.18), which concludes the proof. �

4. Approximate evolution operators for linearized
Euler equations in 2D

In this section we derive an evolution Galerkin scheme for the linearized Euler

equations of gas dynamics written in primitive variables. This will be used in [6]
for the fully nonlinear case. This scheme is similar to the EG4 scheme for the two-

dimensional wave equation system. To define it we consider the linearized Euler
equations with frozen coefficients

(4.1) Ut + A1(U′)Ux + A2(U′)Uy = 0, x = (x, y)T ∈ + 2 ,

where

U :=




%

u

v

p


 , U′ :=




%′

u′

v′

p′


 , A1 :=




u′ %′ 0 0
0 u′ 0 1/%′

0 0 u′ 0
0 %′(c′)2 0 u′


 ,

A2 :=




v′ 0 %′ 0
0 v′ 0 0
0 0 v′ 1/%′

0 0 %′(c′)2 v′


 .

Here % denotes the density, u and v denote the two components of the velocity vector

and p denotes the pressure. Symbols %′, u′, v′ and p′ stay for the local variables at a
point (x′, y′), c′ =

√
γp′/%′ is the local speed of the sound there and γ is the isotropic

exponent (γ = 1.4 for the dry air). We use the theory presented in Section 2 to derive
the integral equations that correspond to the system (4.1), see also [4], [6] for the

derivation of other approximate evolution operators for the Euler equations. Thus
we take the direction n(θ) := (cos θ, sin θ)T in + 2 and define the pencil matrix to be

A(n) := A1 cos θ + A2 sin θ. The eigenvectors of A(n) are

λ1 = u′ cos θ + v′ sin θ − c′,

λ2 = λ3 = u′ cos θ + v′ sin θ,

λ4 = u′ cos θ + v′ sin θ + c′,

427



and the corresponding right eigenvectors are

r1 =




−%′/c′
cos θ
sin θ
−%′c′


 , r2 =




1
0
0
0


 , r3 =




0
sin θ
− cos θ

0


 , r4 =




%′/c′

cos θ
sin θ
%′c′


 .

Take the matrix R to be the matrix of the right eigenvectors. Then multiplying
system (4.1) from the left by the inverse matrix

R−1 =




0 cos θ sin θ −1/(2%′c′)
1 0 0 −1/c′2

0 sin θ − cos θ 0
0 cos θ sin θ 1/(2%′c′)




we get the characteristic system

(4.2) Wt + B1Wx + B2Wy = 0,

where

W =




w1

w2

w3

w4


 = R−1U =




1
2

(
−p/(%′c′) + u cos θ + v sin θ

)

%− p/c′2

u cos θ − v sin θ
1
2

(
p/(%′c′) + u cos θ + v sin θ

)




is the vector of the characteristic variables and

B1 = R−1A1R =




u′ − c′ cos θ 0 − 1
2c
′ sin θ 0

0 u′ 0 0
−c′ sin θ 0 u′ c′ sin θ

0 0 1
2c
′ sin θ u′ + c′ cos θ


 ,

B2 = R−1A2R =




v′ − c′ sin θ 0 1
2c
′ cos θ 0

0 v′ 0 0
c′ cos θ 0 v′ −c′ cos θ

0 0 − 1
2c
′ cos θ v′ + c′ sin θ


 .

Diagonalizing system (4.2) we end up with

(4.3) Wt + Λ1Wx + Λ2Wy = S,

where

S =




S1

S2

S3

S4


 =




1
2c
′(sin θ∂w3/∂x− cos θ∂w3/∂y

)

0
c′ sin θ

(
∂w1/∂x− ∂w4/∂x

)
− c′ cos θ

(
∂w1/∂y − ∂w4/∂y

)
1
2c
′(− sin θ∂w3/∂x+ cos θ∂w3/∂y

)
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and

Λ1 =




u′ − c′ cos θ 0 0 0
0 u′ 0 0
0 0 u′ 0
0 0 0 u′ + c′ cos θ


 ,

Λ2 =




v′ − c′ sin θ 0 0 0
0 v′ 0 0
0 0 v′ 0
0 0 0 v′ + c′ sin θ


 .

Let us define the bicharacteristics x1, x2, x3, x4 corresponding to each equation of
system (4.3) as

dx1

dt̃
:= (u′ − c′ cos θ, v′ − c′ sin θ)T ,

dx2

dt̃
:= (u′, v′)T ,

dx3

dt̃
:= (u′, v′)T ,

dx4

dt̃
:= (u′ + c′ cos θ, v′ + c′ sin θ)T .

Note that as θ varies from 0 to 2π the resulting geometry is a Mach cone shown
in Fig. 2 for the supersonic case c′2 > u′2 + v′2. Moreover, we use the initial data

xi(n, t + ∆t) = x to solve the above ordinary differential equations backwards and

x

t
y

P ′

P = (x, t+ ∆t)

Qi(θ)

θ

Figure 2. Bicharacteristic along the Mach cone through P and Qi(θ), supersonic case.
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get the footpoints Qi(θ) of the bicharacteristics. The final result reads

Q1 = (x− (u′ − c′ cos θ)∆t, y − (v′ − c′ sin θ)∆t, t),

Q2 = Q3 = P ′ = (x− u′∆t, y − v′∆t, t),

Q4 = (x− (u′ + c′ cos θ)∆t, y − (v′ + c′ sin θ)∆t, t).

Now we integrate each equation of the characteristic system (4.3) along the cor-

responding bicharacteristic from the point P = (x, y, t + ∆t) down to the point Q
where it hits the base of the Mach cone, see Fig. 2. Further, multiplying the resulting

system by the matrix R from the left we obtain the following integral equations :

UP =
1
2π

∫ 2 /
0




−%′w1/c
′ + w2 + %′w4/c

′

w1 cos θ + w3 sin θ + w4 cos θ
w1 cos θ − w3 sin θ + w4 cos θ

−%′c′w1 + %′c′w4


 dθ(4.4)

+
1
2π

∫ 2 /
0




−%′S′1/c′ + S′2 + %′S′4/c
′

S′1 cos θ + S′4 sin θ + S′4 cos θ
S′1 sin θ − S′3 cos θ + S′4 sin θ

−%′c′S′1 + %′c′S′4


 dθ,

where S′i =
∫ t+∆t

t Si(xi(t̃, θ), t̃, θ) dt̃. We use the symmetry between the points Q1

and Q3 and the fact that the functions wi as well as the points Qi are 2π-periodic.
Then using the notation

S(x, t, θ) := c′[sin θ2ux(x, t, θ)− sin θ cos θ(uy(x, t, θ) + vx(x, t, θ)) + cos θ2vy(x, t, θ)]

and Q := Q1 we can rewrite system (4.4) in the following form:

%(x, t+ ∆t) = %(P ′)− p(P ′)
c′2

(4.5)

+
1
2π

∫ 2 /
0

(p(Q)
c′2

− %′

c′
u(Q) cos θ − %′

c′
v(Q) sin θ

)
dθ

−%
′

c′
1
2π

∫ 2 /
0

∫ ∆t

0

S(x− (u′ − c′n(θ))τ, t+ ∆t− τ, θ) dτ dθ,

u(x, t+ ∆t) =
1
2
u(P ′)− 1

2%′

∫ ∆t

0

px(P ′) dτ(4.6)

+
1
2π

∫ 2 /
0

(
−p(Q)
%′c′

cos θ + u(Q) cos2 θ + v(Q) sin θ cos θ
)

dθ

+
1
2π

∫ 2 /
0

∫ ∆t

0

cos θS(x− (u′ − c′n(θ))τ, t+ ∆t− τ, θ) dτ dθ,
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v(x, t+ ∆t) =
1
2
v(P ′)− 1

2%′

∫ ∆t

0

py(P ′) dτ(4.7)

+
1
2π

∫ 2 /
0

(
−p(Q)
%′c′

sin θ + u(Q) sin θ cos θ + v(Q) sin2 θ
)

dθ

+
1
2π

∫ 2 /
0

∫ ∆t

0

sin θS(x− (u′ − c′n(θ))τ, t + ∆t− τ, θ) dτ dθ,

p(x, t+ ∆t) =
1
2π

∫ 2 /
0

(p(Q)− %′c′u(Q) cos θ − %′c′v(Q) sin θ
)
dθ(4.8)

−%′c′ 1
2π

∫ 2 /
0

∫ ∆t

0

S(x− (u′ − c′n(θ))τ, t+ ∆t− τ, θ) dτ dθ.

Now from the second and the third equation of system (4.1) we get

px = −%′(ut + u′ux + v′uy),

py = −%′(vt + u′vx + v′vy).

Hence the second term of equation (4.6) can be written as

− 1
2%′

∫ ∆t

0

px(P ′) dτ =
1
2

∫ ∆t

0

(uτ + u′ux + v′uy) dτ(4.9)

=
∫ ∆t

0

∇τ,x,yu · (1, u′, v′)T dτ.

Since the vector (1, u′, v′)T represents the direction of the bicharacteristics joining
the two points P ′ and P , see Fig. 2, equation (4.9) implies that

− 1
2%′

∫ ∆t

0

px(P ′) dτ =
u(P )− u(P ′)

2
.

Therefore equation (4.6) takes the form

u(x, t+ ∆t) =
1
2π

∫ 2 /
0

(
−2

p(Q)
%′c′

cos θ + 2u(Q) cos2 θ + 2v(Q) sin θ cos θ
)

dθ(4.10)

+
1
2π

∫ 2 /
0

∫ ∆t

0

2 cos θS(x− (u′ − c′n(θ))τ, t+ ∆t− τ, θ) dτ dθ.

Analogously we can show that

− 1
2%′

∫ ∆t

0

py(P ′) dτ =
v(P )− v(P ′)

2
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and

v(x, t+ ∆t) =
1
2π

∫ 2 /
0

(
−2

p(Q)
%′c′

sin θ + 2u(Q) sin θ cos θ + 2v(Q) sin2 θ
)

dθ(4.11)

+
1
2π

∫ 2 /
0

∫ ∆t

0

2 sin θS(x− (u′ − c′n(θ))τ, t+ ∆t− τ, θ) dτ dθ.

Using [5, Lemma 2.1] and the fact that S cos θ and S sin θ can be neglected, because
they are second order terms in time evolution, i.e. O(∆t2), cf. [9], we can derive the
following approximate evolution operator to the linearized Euler equations (4.1):

%(x, t+ ∆t) = %(P ′)− p(P ′)
c′2

+
1
2π

∫ 2 /
0

(p(Q)
c′2

− 2
%′

c′
u(Q) cos θ(4.12)

− 2
%′

c′
v(Q) sin θ

)
dθ +O(∆t2),

u(x, t+ ∆t) =
1
2π

∫ 2 /
0

(
−2

p(Q)
%′c′

cos θ + 2u(Q) cos2 θ + 2v(Q) sin θ cos θ
)

dθ(4.13)

+O(∆t2),

v(x, t + ∆t) =
1
2π

∫ 2 /
0

(
−2

p(Q)
%′c′

sin θ + 2u(Q) sin θ cos θ + 2v(Q) sin2 θ
)

dθ(4.14)

+O(∆t2),

p(x, t+ ∆t) =
1
2π

∫ 2 /
0

(
p(Q)− 2%′c′u(Q) cos θ − 2%′c′v(Q) sin θ

)
dθ(4.15)

+O(∆t2).

As we mentioned before this scheme is analogous to the EG4 scheme of the wave
equation system. We call it the EG4-Euler scheme.

5. Numerical Examples

A BC=?;EDGFH9
5.1. Rectangular waveguide

We consider a rectangular waveguide with rectangular cross section of sizes a and b.

The dielectric parameters are ε and µ. For transverse magnetic waves, i.e. TMmodes,
Hz = 0 and Ez satisfies the differential equation

(5.1) ∆E− 1
c2
∂2E
∂t2

= 0,

where c = 1/
√
εµ is the speed of wave propagation. Note that the fields E and H

have in the Cartesian coordinates the form

E = Exx̂ +Eyŷ +Ezẑ,

H = Hxx̂ +Hyŷ +Hzẑ.
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If the time convention eiωt is used then equation (5.1) will change to

(5.2) ∆E +
ω2

c2
E = 0.

Further, if we assume Ez(x, y, z) = Ez
0 (x, y)e−γz then (5.2) implies that

[ ∂2

∂x2
+

∂2

∂y2
+ (γ2 +

ω2

c2
)
]
Ez

0 = 0.

Using the boundary conditions

Ez
0 (0, y) = 0, Ez

0 (a, y) = 0, Ez
0 (x, 0) = 0, Ez

0 (x, b) = 0,

where 0 6 x 6 a and 0 6 y 6 b, we obtain Ez
0 from the above differential equation

and thus determine the electric field components Ex, Ey, Ez and the magnetic field
components Hx and Hy. For example,

Ez(x, y, z, t) = E0 sin
(π
a
x
)

sin
(π
b
y
)

cos(ωt− βz),

where γ = iβ = i
√
ω2µε−

(
mπ/a

)2 −
(
nπ/b

)2
for more details see [1] or [2]. If we

take ω = cπ
√(

m/a
)2 +

(
n/b

)2
, i.e. the cutoff frequency, then for the case a = b = 1

and m = n = 1 the exact solution Ez(x, y, z, t) has the form

Ez(x, y, t) = sin(πx) sin(πy) cos(
√

2πct),

where we set E0 = 1. To use the EG4 scheme denote Ez(x, y, t) by ψ(x, y, t) and
solve the wave equation

ψtt = c2(ψxx + ψyy)

together with the initial conditions

ψ(x, y, 0) = sin(πx) sin(πy), ψt(x, y, 0) = 0,

and the boundary conditions

ψ(0, y, t) = 0, t > 0, 0 6 y 6 1,

ψ(1, y, t) = 0, t > 0, 0 6 y 6 1,

ψ(x, 0, t) = 0, t > 0, 0 6 x 6 1,

ψ(x, 1, t) = 0, t > 0, 0 6 x 6 1.
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Defining ϕ, u, and v so that ϕ = ψt, u = cψx, v = cψy we obtain the system

ϕt − c(ux + vy) = 0,

ut − cϕx = 0,

vt − cϕy = 0 on ]0, 1[2 × [0,∞[,

ϕ(x, y, 0) = 0,

u(x, y, 0) = cπ cos(πx) sin(πy),

v(x, y, 0) = cπ sin(πx) cos(πy) on [0, 1]2.

The exact solution is

ϕ = −
√

2πc sin(πx) sin(πy) sin(
√

2πct),

u = cπ cos(πx) sin(πy) cos(
√

2πct),

v = cπ sin(πx) cos(πy) cos(
√

2πct).

We take ϕ = 0 on the boundary of Ω and extrapolate u and v there. We apply
the transformations t → t/t0, ϕ → ϕt0, u → ut0 and v → vt0 where t0 =

√
2πc.

The following two tables show the L2-error and the experimental order of conver-
gence (EOC), which is defined in the following way using the solutions computed on

two meshes of sizes N1, N2:

EOC = log
‖UN1(T )−Un

N1
‖

‖UN2(T )−Un
N2
‖

/
log

(N1

N2

)
.

Scheme N L2-error-far L2-error-near L2-error

EG4 40 0.000219 0.000872 0.000899

80 0.000091 0.000438 0.000447

100 0.000067 0.000362 0.000368

120 0.000054 0.000312 0.000317

140 0.000047 0.000276 0.000280

160 0.000039 0.000247 0.000250

Table 1. T = 0.2, CFL = 0.55, L2-error between the discrete and the exact solutions.

In Tab. 1 the L2-error-far represents the error in the region far from the boundary
while the L2-error-near stands for the error near the boundary.
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N ‖ϕ(T )− ϕn‖ ‖u(T )− un‖ ‖U(T )−Un‖ EOC

40 0.000219 0.000368 0.000564

80 0.000091 0.000178 0.000267 1.078855

160 0.000039 0.000084 0.000125 1.094912

320 0.000019 0.000042 0.000062 1.011588

640 0.000009 0.000021 0.000031 1.000000

Table 2. EG4 scheme, T = 0.2, CFL = 0.55.

In Table 2 we measure the speed of convergence of the EG4 scheme. We see
that it is approximately equal to 1, which is correct since the approximate evolution

operator EG4 is of the first order in time and the shape functions are piecewise
constant in space. From the tables we see that the overall L2-error decreases as

the mesh is refined. This shows that the method converges. Note that the error is
dominated by an error produced due to the numerical boundary conditions, namely

the extrapolation for u and v. In [7] we were able to improve this situation by using
more sophisticated numerical boundary conditions. Observe again that the error in u

due to the numerical boundary condition is much higher than the error in ϕ. For ϕ
we can use the Dirichlet condition directly.

A BC=?;EDGFH9
5.2. Divergence test

Let Ω = [−1, 1] × [−1, 1]. Consider the Maxwell equations (3.1)–(3.3). Let the
initial data be

Ez(x, y, 0) = sin
(π

2
x
)

sin
(π

2
y
)
,

Hx(x, y, 0) = Hy(x, y, 0) = 0 in Ω

and suppose that the boundary of Ω is a perfect conductor. Then using the trans-
formations t→ t/c, Ez → ϕ, Hy → u/Z0 and Hx → −v/Z0, these equations read

∂ϕ

∂t
=
∂u

∂x
+
∂v

∂y
,

∂u

∂t
=
∂ϕ

∂x
,

∂v

∂t
=
∂ϕ

∂y
.

To test that the magnetic field is divergence-free remember that by the definition

∂Ez/∂z = 0. Further,

∂Hx

∂x
+
∂Hy

∂y
=

1
Z0

(∂u
∂y

− ∂v

∂x

)
.

Then ∇ · H = 0 can be written as ∂u/∂y − ∂v/∂x = 0, i.e. the divergence-free
property is equivalent to the vanishing vorticity in the case of TM modes. In Tab. 3
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we present the vorticity preservation for the EG4 scheme. We compute the discrete

vorticity DV given by the formula

DVα′β′ = µxδyuα′,β′ − µyδxvα′,β′ for each α′, β′ ∈ , ,

where we have denoted by uα′,β′ values at vertices of square mesh cells, δx is used as
defined before, and µxu = 1

2

[
u
(
x+ 1

2h
)

+ u
(
x − 1

2h
)]
. In Tab. 3 we show reference

values for DVα′β′ , namely, the average value (vor-aver), the minimum (vor-min) and
the maximum (vor-max). The values of vor-aver demonstrate that the EG4 scheme

preserves the divergence-free property in a good manner.

100× 100 200× 200 400× 400

vor-aver 0.00092521478 0.00029260981 0.00010088980

vor-min −0.01221328952 −0.00948232290 −0.01140008104

vor-max 0.01221328952 0.00948232290 0.01140008104

Table 3. Preservation of zero divergence, CFL = 0.55, 100 time steps.

A BC=?;EDGFH9
5.3. Linearized Euler equations problem

In this experiment we consider linearized Euler equations

(5.3) Ut + A1(U′)Ux + A2(U′)Uy = 0, x = (x, y)T ∈ ]−1, 1[× ]−1, 1[,

where

U :=




%

u

v

p


, U′ :=




1

u′

v′

1/γ


, A1 :=




u′ 1 0 0

0 u′ 0 1

0 0 u′ 0

0 1 0 u′


, A2 :=




v′ 0 1 0

0 v′ 0 0

0 0 v′ 1

0 0 1 v′


.

Note that this system is a special case of system (4.1) with %′ = c′ = 1. Here u′

and v′ are given constants representing the mean flow in the direction of x and y,

respectively. We consider system (5.3) together with initial data containing acoustic,
entropy and vorticity pulses as follows

%(x, y, 0) = 2.5 exp(−40((x− xa)2 + (y − ya)2))

+ 0.5 exp(−40((x− xb)2 + (y − yb)2)),

u(x, y, 0) = 0.05 exp(−40((x− xb)2 + (y − yb)2)),

v(x, y, 0) = −0.05 exp(−40((x− xb)2 + (y − yb)2)),

p(x, y, 0) = 2.5 exp(−40((x− xa)2 + (y − ya)2)).
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We suppose that the main flow is in the direction making a 45◦ angle with the x-axis
and that u′ = v′ = 0.5 sin( 1

4π). Moreover, we assume that the initial location of the
acoustic pulse is at (xa, ya) = (−0.31,−0.31), whereas the entropy and vorticity is
at (xb, yb) = (0.39, 0.39). We set the CFL number ν to be 0.45 and take a mesh
consisting of 100× 100 cells. In Fig. 3, top-left, we compare the exact solution, the
numerical solution using the first order FVEG4-Euler scheme and the Lax-Friedrichs

(tensor product) scheme, which is defined by

(5.4) Un+1 =
Lx

h · Ly
h + Ly

h · Lx
h

2
Un,

where the operatorLx
h for the linear one dimensional system with constant coefficients

Ut + A1Ux = 0

is given as

Lx
h =

τ i
h + τ i

−h

2
− ∆t

2h
A1(τ i

h − τ i
−h), where τ i

±hU
n
ij = Un

i±1j .

The solutions are plotted along the line y = x at time T = 0.166. In the top-right
figure we show the same comparison between the second order FVEG4-Euler scheme,

the Lax-Wendroff (tensor product) scheme and the exact solution. Note that the
Lax-Wendroff (tensor product) scheme is defined by equation (5.7) with Lh given as

Lx
h = I −

(∆t
h

)
A1∆0x +

1
2

(∆t
h

)2

A2
1δ

2
x,

where ∆0xv(x) = 1
2 [v(x + h) − v(x − h)], δ2xv(x) = v(x + h) − 2v(x) + v(x − h).

This is the symmetrical product also known as Strang splitting, see Strang [10]. In
the bottom-left figure we give the comparison between the second order FVEG4-

Euler scheme, the Lax-Wendroff (tensor product) scheme and the exact solution at
time T = 0.332. In the bottom-right figure we compare the second order FVEG4-
Euler scheme and the Lax-Wendroff (tensor product) scheme at time T = 0.665. We
conclude that the acoustic part of the solution is moving faster than the entropy

part and that the result using the FVEG4 first order is more accurate than that of
the Lax-Friedrichs scheme. Moreover, both the FVEG4 second order and the Lax-

Wendroff (tensor product) schemes give a comparable approximation of the exact
solution. The difference between the schemes FVEG4 second order and the Lax-

Wendroff (tensor product) as the time developed (see Fig. 3 bottom-right) is quite
small for smooth solution.
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Figure 3. Density along the line y = x, u′ = v′ = 0.5 sin( 14 I ), CFL = 0.45, mesh:
100 × 100. Top-left: T = 0.166, comparison between the first order FVEG4-
Euler scheme, Lax-Friedrichs (tensor product) scheme and the exact solution, top-
right: T = 0.166, comparison between the second order FVEG4-Euler scheme,
the Lax-Wendroff (tensor product) scheme and the exact solution, bottom-left:
T = 0.332, bottom-right: T = 0.665, comparison between the second order
FVEG4-Euler and the Lax-Wendroff (tensor product) scheme.

Conclusions.
In this paper we have derived and analyzed two approximate evolution operators

(EG3, EG4) for the Maxwell equation of the electromagnetics. Both the operators

are of the first order in time and are based on a general theory for multidimensional
linear hyperbolic systems of the first order. As a result the numerical schemes take

into account all of the infinitely many directions of wave propagation along the so-
called bicharacteristic cone. Further, for the Maxwell equations the approximation

of the dispersion relation was studied. It is shown that this relation is approxi-
mated with the first order error, which is correct for the piecewise constant shape

functions. Moreover, it is shown that an important divergence-free property of the
solution to the Maxwell equations is satisfied exactly by the approximate EG opera-

tors, i.e. EG1, EG2, EG3, EG4. In the second part of this paper we have applied the
general technique of the EG-operators to the linearized Euler equations and derive

a new EG4 operator for the Euler equation system. Some numerical experiments for
the Maxwell equations and for the Euler equations are presented in the last section.
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These experiments demonstrate good higher order as well as multi-dimensional be-

haviour of the FVEG schemes for linear hyperbolic systems. Generalization of the
results presented in this paper to nonlinear problems can be found e.g. in [4], [6].
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