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Abstract. The subject of the paper is the derivation and analysis of evolution Galerkin
schemes for the two dimensional Maxwell and linearized Euler equations. The aim is to
construct a method which takes into account better the infinitely many directions of prop-
agation of waves. To do this the initial function is evolved using the characteristic cone
and then projected onto a finite element space. We derive the divergence-free property and
estimate the dispersion relation as well. We present some numerical experiments for both
the Maxwell and the linearized Euler equations.
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1. INTRODUCTION

Evolution Galerkin methods, EG methods, were proposed to approximate the
solution of evolutionary problems of first order hyperbolic systems. Ostkamp in [9]
as well as Luka€ova, Morton and Warnecke in [4], [5] derived such schemes for the
approximation of the solution of the wave equation system and the Euler equations
of gas dynamics in two dimensions. In [11] the approximate evolution operator for
the wave equation system in three spa,ée dimensions as well as other 2D EG schemes
were derived.

* This research was supported under the DFG grant No. Wa 633/6-2 of Deutsche
Forschungsgemeinschaft, by the grants no. 201/00/0557 and 201/03/0570 of the Grant
Agency of the Czech Republic as well as by the Volkswagen Stiftung and DAAD Agencies.
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It is well-known, see [4], [5], [8], [9], that the basic tool to derive the EG schemes
is the general theory of bicharacteristics of linear hyperbolic systems. This theory is
used to derive the system of integral equations which is equivalent to the concerned
first order system such as the Maxwell equations or the linearized Euler equations.
Using quadratures, these integral equations lead to the approximate evolution oper-
ator that builds up the evolution Galerkin scheme.

Considering the Maxwell equations in free space, it is straightforward to see that
the divergence of the electric field as well as of the magnetic field is zero. Numerically,
in order to have an efficient Maxwell solver, this property must be preserved. Further,
the dispersion relation associated with the Maxwell equations has a key role with
regard to the accuracy of the numerical scheme used.

The content of this paper is as follows: in the next section we briefly derive the
exact integral equations and construct evolution Galerkin schemes. In Section 3 we
write down the approximate evolution operators for the Maxwell equations. More-
over, we show that these operators preserve the divergence-free property. Further,
we estimate the dispersion relation for the Maxwell EG solvers that we used. In
Section 4 we derive the approximate evolution operator for the linearized Euler equa-
tions. These results presented here are the basic ingredient in our extension of the
method to the case of the nonlinear Euler equations, see [6]. Finally, in Section 5
we present some numerical tests for the Maxwell equations as well as the linearized
Euler equations.

2. EXACT INTEGRAL EQUATIONS AND APPROXIMATE
EVOLUTION OPERATORS

In this section we derive exact integral equations for a general hyperbolic system
in d dimensions. Typical physical examples of hyperbolic conservation laws are,
e.g., the Maxwell equations and the Euler equations of gas dynamics. Using the
theory of bicharacteristics one can derive the equivalent integral equations for these
systems which give a basis for the EG schemes.

Let the general form of a linear hyperbolic system be given as

d

(2.1) U+ Y AUy, =0, x=(21,...,24)" € R
=1
where the coefficient matrices A;, j = 1,...,d are elements of RP*? and the de-

d
pendent variables are U = (uy,...,u,)T € RP. Let A(n) = 3 n;A; be the pencil
i=1

matriz with n = (ny,...,nq4)7 being a directional vector in R?. Then using the
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eigenvectors of A(n) the system (2.1) can be written in a characteristic form via
the substitution W = R~1U, where the columns of the matrix R are the linearly
independent right eigenvectors of A(n). Since the coefficients of the original system
are constants the bicharacteristics of the resulting characteristic system are straight
lines PQ; and PP, see Fig. 1. Diagonalizing this system and integrating along the
bicharacteristics leads to the system of integral equations

1 1 At
U(P) =i /O R(2)W(Q(n), ) d0 + 17 /0 /0 R(n)S(t + 7,n) dr dO

where O is the unit sphere in R?, |O| its surface measure and S is a nontrivial term
which we call the source term; for more details see [8].

P = (x,t+ At)
() i(n)
75 )
P’

t
Ly,

Figure 1. Bicharacteristics along the Mach cone through P and Q;(A(n)).

Evolution Galerkin schemes

For simplicity let us consider d = 2. Consider h > 0 to be the mesh size parameter.
We construct a mesh for R2, which consists of the square mesh cells

O = [(k— l)h, (k+ %)h] x [(1— %)h (l+%)h]
= [mk Sz + ] [y[ 3t ]

where k,l € Z. Let us denote by H"(R?) the Sobolev space of distributions with
derivatives up to order x in the L? space, where k € N. Consider the general
hyperbolic system given by the equation (2.1). Let us denote by E(s): (H®(R?))? —
(H*~(R?))P the exact evolution operator for the system (2.1), i.e.

(2.2) U(-,t+s) = E(s)U(+, ).
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We suppose that S} is a finite element space consisting of piecewise polynomials
of order m > 0 with respect to the square mesh. Assume a constant time step,
i.e. t, = nAt. Let U™ be an approximation in the space Sj* to the exact solu-
tion U(-,t,) at time ¢, > 0. We consider E.: L] _(R?) - (H"(R?))? to be a
suitable approximate evolution operator for E(7). In practice we will use restric-
tions of E, to the subspace S;* for m > 0. Then we can define the general class of

evolution Galerkin methods.

Definition 2.1. Starting from some initial data U° € S at time t = 0, an
evolution Galerkin method (EG-method) is recursively defined by means of

(2.3) U™t = P, E, U™,
where P, is the L2-projection given by the integral averages in the following way:
1
P U q,, = = U(z,y,t,) dzdy.
1| Jay,

We denote by R,: S;* — S} a recovery operator, r > m > 0 and consider our
approximate evolution operator E; on S}. We will limit our further considerations to
the case where m = 0 and r = 2. Taking piecewise constants the resulting schemes
will only be of the first order, even when E, is approximated to a higher order.
Higher order accuracy can be obtained either by taking m > 0, or by inserting a
recovery stage R}, before the evolution step in equation (2.3) to obtain

(2.4) U™ = P,E, R, U™

This approach involves the computation of multiple integrals and becomes quite
complex for higher order recoveries. To avoid this we will consider higher order
evolution Galerkin schemes based on the finite volume formulation instead.

Definition 2.2. Starting from some initial data U° € SJ*, the finite volume
evolution Galerkin method (FVEG) is recursively defined by means of

At 2
(2.5) Ut = Ut - % / > 6, £5(0m /4 dr,
(U —
where 4, £;(U™t7/A%) represents an approximation to the edge flux difference and
4. is defined by 6, = v(x + %h) — v(m — % ) The cell boundary value Untr/At g
evolved using the approximate evolution operator E, to t, + 7 and averaged along
the cell boundary, i.e.

1

2.6) f:]"n+T/At — (__
( szel 1092%1| Joq,,

ETRhUn dS) Xkl

where x4, is the characteristic function of 9.
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In this formulation a first order approximation E. to the exact operator E(7) yields
an overall higher order update from U™ to U™*!. To obtain this approximation in
the discrete scheme it is only necessary to carry out a recovery stage at each level to
generate a piecewise polynomial approximation U™ = R,U" € S}, from the piecewise
constant U™ € S?, to feed into the calculation of the fluxes. To construct the second
order FVEG schemes, for example, we take the first order accurate approximate
evolution operator and define a bilinear reconstruction R,. Among many possible
recovery schemes which can be used, we will choose a discontinuous bilinear recovery
using four point averages at each vertex. It is given as

T — Tk

4h
L LYY\ Aoy Ukt + Ao, U
+ _Zh—( 0y Uk+11 + 280y Ui + Aoy Uk—11)

z—2z -
+ @—aly ) k}zz(y 1) AgyAoz Ur,

RhUIQH =Uy +

(AozUkig1 + 2802 Uks + Aoz Uki—1)

where Ao,v(z) = (v(z + k) — v(z — h)). Note that in the updating step (2.5) some
numerical quadratures are used instead of the exact time integration. Similarly, to
evaluate the intermediate value U™+7/A% in (2.6) the two dimensional integrals along
the cell-interface and around the Mach cone are evaluated either exactly or by means
of suitable numerical quadratures.

To close this section note that in this paper we set T to be the absolute end time
of computation, i.e. T = nAt. Further, the Courant, Friedrichs and Lewy stability
number is denoted by v and we take it to be v = cAt/h for the Maxwell equations.
For the linearized Euler equation we set v = min(|u'| + ¢, |v'| + ¢/)At/h, where «’,
v’ are the mean flows in the z and y directions respectively and ¢’ is the local sound
speed.

3. MAXWELL EQUATIONS

For the fundamentals of the electromagnetic theory and the Maxwell equations
see Jackson [3], Balanis [1], Cheng [2]. Throughout this section we will consider the
transverse magnetic (TM) modes of the electromagnetic fields only. So let us take
E = F?2, H = H*x + HYy, where X, ¥, Z are unit vectors in the direction of z, y,
and z, respectively. In free space the Maxwell equations

oB

- E =
at-i—Vx 0,
oD
—W'FVXH—O
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are reduced to

0E* 1/0HY OH*"

(3.1) ot E( dr  dy )’
OHY 10FE*

2 = ==

(3.2) ot u oz’
OH* 1 0F~

3.3 = —— .

(3:3) ot u Oy

Here E denotes the electric field, B is the magnetic field, D, H denote the electric
field density and magnetic field intensity, respectively. Further, we have D = ¢E,
B = uH, where ¢ is the permittivity and u the permeability of the free space. Using
the transformations ¢ = E*/,/u, u = —HY/\/e, v = H* [\/e and taking ¢ = 1/,/en1
equations (3.1)—(3.3) are reduced to the two dimensional wave equation system

ot + c(ug +vy) =0,
(3.4) Uus + cpr =0,
vy + cpy = 0.

Lukacova et.al. [5] analyzed the evolution Galerkin schemes for the system (3.4).
Namely, they derived the schemes EG1, EG2 and EG3. Moreover, in [11] the author
derived the EG4 scheme. Note that the system (3.4) has the following property of
irrotationality:

'd_t('u'y —Vg) = Uty — Vtz = —C(Pzy — ‘Pyz) =0,

i.e. a solution with u, — v, = 0 for time ¢ = 0 satisfies this equation of irrotationality
for later times also. From the above we see that

1. oy —1
Ozuy—"uz=—\7_t:[(H )y + (H )z]—ﬁv’ﬂ-

So the vorticity u, — v, for the wave equation system corresponds to the divergence
of the magnetic field. Using the above transformations we arrived at the following
approximate evolution operators for the Maxwell equations.
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Based on the EG4 scheme

2r

(3.5) E*(P)= %n / [E*(Q) + Z(2cos 0HY(Q) — 2sin 0H*(Q))] d8 + O(AL),
0
27 Z
(3.6) HY(P)= 51; / [%E(Q) +2cos? OHY(Q)
0
— 2sinf cos§H® (Q)] o + O(AL2),

2 . z
(3.7) H*(P)= zl—n /0 [1@5‘%—@2 — 25inf cosOHY(Q)

+2sin 9H® (Q)] dé + O(At?).

Based on the EG3 scheme

38)  E*(P)=— / 2K[EZ(Q) + Z(2cosOHY(Q) — 2sin0H*(Q))] d8 + O(AL2),
0

2n
1 [*[2cos0E*(Q)
[ B

2
% 7 + (3cos* 6 — 1)HY(Q)

39)  HY(P)= %Hy(P’) +

— 3sinf cos BHI(Q)] dé + O(A¢?),

—25in0E*(Q)
Z

+ (3sin? 6 — 1)HI(Q)] do + O(A2),

2n
(3.10)  H*(P)= %HE(P’)+i/O [

— 3si y
o 3sinfcosHY(Q)

where Z = \/l% is the so-called impedance of free space. Taking the projection
onto piecewise constant functions we obtain the evolution Galerkin schemes for the
Maxwell equations. Numerical schemes based on equations (3.5)—(3.7) and (3.8)-
(3.10) are called the EG4 and the EG3 methods, respectively. Note that these
schemes are first order schemes. In order to have second order methods for the
Maxwell equations we use the finite volume formulation as given in Definition 2.2.
Assuming the periodicity of the fields in space we get the following two lemmas.

Lemma 3.1. The approximate evolution operators for the Maxwell equations
EG3 and EG4 are divergence-free.

Proof. We prove only the case of the EG4 scheme, the EG3 scheme can be
treated analogously. To this end, V- E = 0 follows immediately from the assumption
that E = E*(z,y,t)Z. Now taking the derivatives with respect to y and z of the
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equations (3.6) and (3.7), respectively we get

(3.11)

%(P) - 51’;/0 (_z_(i;s_aa_E_.(Q)+2 %(Q)—2sin0cos€6;‘;x (Q)) de
(3.12)

8;1: (P)= 217[/0 ( 2;11103Ez Q) - 281n0('os0a—6}i—( : )) dé
Adding equation (3.11) to the equation (3.12) we obtain

¢13) 2P+ 9%’(13) =5 /O 2[%( ~sin0 22 (@))

+ 2(cos® Oaa—T(Q) — siné cos G?E(Q))

ox
0H® OH*
.2 o
+2(sm 0 e (Q) —sinfcosh 9 (Q))] dé

Now the integral of the first term of equation (3.13) is zero because
2 o OE*
/0 2 (coso " (@) — sin 0°°-(Q)) a6
2 2 ) 2 o
= /0 - (—sinb,cos 0)T - VE*df = /0 ZE

and E is a periodic field. We use the periodicity of the magnetic field H and the fact
that the initial data are divergence-free. Then integration by parts gives

2n
(3.14) /0 (cos20?ai;(Q)—sin00030§(f7y(Q))d0

- /02“ cosO(a—[;y(Q) _ sin 0‘%(@)) do

2n
=/ cos@(—sin8,cos8)” - VHY(Q) df
0

2n edHy
= /0 COs a0

(Q)d6 = / " sin 6HY(Q) do.

Analogously we have

(3.15) /0 2n( in?

422

(Q)) dé = / - cos OH®(Q) dé.
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Summing equations (3.14) and (3.15) we get

2% T Y Y OH*
/0 (sin2 Ba;i (Q)— sinf cos H%Ii—(Q) + cos? 0%(Q) — sinf cos oy (Q)) dé
2n
= / (cos8H®(Q) +sin0HY(Q))db
0
2n
= [ H(©Q) ndo= fv.H(Q)dszo.
0
Therefore V - H = 0. This concludes the proof of the lemma. O

Remark 3.1. Similar results hold also for other EG operators, i.e. EG1, EG2,
the operator of Ostkamp, cf. [5] for the precise formulation.

Our next aim is to approximate the dispersion relation. To this end note that
a frequently used technique of characterizing the error of numerical schemes of the
Maxwell equations is the Fourier analysis. Neglecting the boundary conditions, we
assume that the three unknown components can be expressed in the following form:

(3.16) ¥}, = o exp(i(éTh + iJh — wnAt)),

where i = v/—1, h is the space increment and € and 7 are the z and y components of
the numerical wave vector, respectively. In the case of the exact solution this gives

(3.17) ¥(z,y,t) = Yo exp(i(z + ny — wt)).

The numerical wave vector k = (£,7)7 will in general differ from the physical wave
vector k = (£,n)7 satisfying |k| = /€2 +n? = w/c. This is called the dispersion
relation. Here w is the angular frequency and c is the speed of light. The difference
between k and k gives rise to numerical phase and group velocities that depart from
the analytical values. This causes numerical errors that accumulate in time. Hence
the dispersion analysis is important to assess the accuracy of a numerical solution.
In the next lemma we study the approximation of the dispersion relation for the
EG4 method in the case of Maxwell equations.

Lemma 3.2. For both the EG4 method (3.5)-(3.7) and the EG3 method (3.8)-
(3.10) the following dispersion relation holds:

(3.18) (2)" = @+ +om.

C
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Proof.

We present the proof of (3.18) for the EG4 scheme, the proof for the

EG3 scheme is analogous. First we write out the finite difference formulation of the

EG4 scheme:

(3.19) E= = (14 aui(s2 + 82) + bus?s2)E”" + Z(v(1 + ar1252) Ao HY"

—V(]. + a13si)A0yH$"),

(3.20) HY = (1 + (az082 + ahys2) + bass2s2)HY" + %(1 + azlsi)A%E}’"

Yy

) o
—v a3 Ao Doy H”

n n 124 n
(3.21) H® = (1+ (asssz + ag3s§) + baasisz)Hm - 2(1 + aslsi)AoyEz

n

2
-V a32A0zA0yHy ’

where v = cAt/h, Ag. = (f(z+h) = f(z = b)), 52 = f(z + h) = 2f(2) + f(z = h)

and

v V2 2v 2v
0'11—? bu—ﬂ’ 012=§E, 013=3—n,
2v w 2v N 1
_37;, 022_§E, 022=3;, 22—5, 023—2,
2v 1 o, A bas — v?
5;, aszz Z’ ags = 5, aggz = EE’ 33 = E'

Substituting from equation (3.16) into equations (3.19)-(3.21) we get

(3.22)

(3.23)

(3.24)

424

—iwAt = 2a1;(cos(h€) — 1) + 2a;; (cos(hij) — 1)
+ 4by ;1 (cos(h€) — 1)(cos(hij) — 1)

+iZv gg sin(h€)[1 + 2a;2(cos(hij) — 1)]
0
—iZl/Héc sin(h#j)[1 + 2a;3(cos(h€) — 1)],

Eg
—iwAt = 2ag;(cos(h€) — 1) + 2ah, (cos(hij) — 1)
+ 4byy(cos(hE) — 1)(cos(hij) — 1)

+ i% f;‘o,’, sin(hé)[1 + 2as; (cos(hij) — 1)]

HE .
+ v2ags H—% sin(h7) sin(h€),
0
—iwAt = 2ag3(cos(hf) — 1) + 2a}3(cos(hij) — 1)

+ 4bs3(cos(h€) — 1)(cos(hi) — 1)



Z II;O (1 + 2a31(cos(h§) —1)]

+ v®asy — sin(hd)) sin(h¢).
H;

Now equations (3.23) and (3.24) imply, respectively, that

H{ % sin(hé)[1 + 2az; (cos(hij) — 1)]
(3.25) Bz - HE . Ao ]

Ef  —wAt+ifa+ 1/2a23ﬁ%- sin(h€) sin(h7)]

H? % sin(hfq)[1 + 2a31(cos(h§~) - 1)
(3.26) 20 -

E§  wAt—i[8 + v2agy oo it sm(h{) sm(hn)]
where

a := 2a2(cos(hé) — 1) + 2ah,(cos(hfj) — 1) + 4bgz(cos(hé) — 1)(cos(hij) — 1),
B := 2a33(cos(h€) — 1) + 2a%3(cos(hfj) — 1) + 4bsz(cos(hé) — 1)(cos(hij) — 1).
Substituting equations (3.25) and (3.26) into equation (3.22) leads to
V2 sin? (h€)(1 + 2a13(cos(hii) — 1))2
—wAt +i(a + Vzagggg} sin(h€) sin(hij))
_ V2sin® (h)(1 + 2a13(cos(h€) — 1))2
—wAt+i(8 + V2a32%§-

(327)  wAt=iy—

sin(h€) sin(hj)),

where
7 := 2a3; (cos(h€) — 1) + 2a31 (cos(hif) — 1) + 4b11 (cos(h€) — 1)(cos(hff) — 1).

Equation (3.27) can be written in the form

(3.28) (wAt-— i'y)( —wAt +1i [a +v (123% sin(h€) sin(hf))])

HY =
_ At . 2 —0 . h . h~
X ( w +1[ﬁ+u angg sin(h&) sin( n)])
= —v2sin?(hé)[1 + 2a;2(cos(hif) — 1)]?

X ( —wAt + i[ﬂ + 1/2a32H—g sin(h€) sin(hﬁ)] )
Hg

—v?sin?(hif)[1 + 2a13(cos(hé) — 1))?

X (—wAt + i[a + v2ags3 gy sin(h€) sm(hn)])

Using the Taylor expansion we can show that v, a and 3 are of order »2O(h?) and
sin(hz) = hz + O(h3). The left- and the right-hand sides of equation (3.28) can be
written as
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&z ~
LHS = (—w2At2 + iwyAt + iwAt [a + v2ags3 —Z—Oy sin(h&) sin(hﬁ)])
0

+ 'y[a + 12ag3 =2 Hs 9 sin(hé) sm(hn)]

Hy

i (oAt 4[5 + a8 sin(hf)sin(r)

= w3 A3 — W’ At? [ﬂ + a3y % sin(hé) sin(hﬁ)] —iw?At?y
0

— ywAt [ﬁ +v an% sin(h€) sm(hn)]

Hf
—iw?At? [a +1an—y sin(h€) sin(hﬁ)]
H,

2 Hg . N ~ 2 Hg . &\ e ~
— wAt [a + v®ag3— sin(hg) sm(hn)] [ﬂ + v*azo —= sin(hf) sm(hn)]
Hy Hg

T

— wAty[a + vags % sin(h€) sin(h7)]

. 2 Hy oo o HY .o
+ iy [a + v¥ag3 Y sin(h¢) sm(hn)] [ﬁ + v°ass e sin(h€) sm(hn)]
= WAL + V2wAtO(h?),
-~ ~ y ~
RHS = v2wAtsin?(h€) — 2 sin2(h§)i[ﬁ + v?az: % sin(h§) sin(hf])]
0
+ v2wAtsin?(h€)4ay2(cos(hif) — 1)

—iv? sin?(h€)4ai2(cos(hf) — 1) [ﬁ +v agzﬁ—z sin(hé) sm(hn)]
+ v2wAtsin? (h€)4a?, (cos(hij) — 1)?

—iv2wAt sin?(h€)4a2,(cos(hij) — 1)? [,B + V2(l32% sin(h€) sm(hn)]

+ V2wAtsin®(hij) — v? sin® (hij)i [a + v%ag3 % sin(h€) sin(hf))]

+ v2wAtsin® (hij)4a;3(cos(hé) — 1)

—iv? sin? (hij)days (cos(hé) — 1) [a + vags f{y sin(hé) sm(hn)]

+ v wAtsin® (hij)4a2;(cos(h€) — 1)?

—iv2wAt sin®(hij)da25 (cos(h€) — 1) [a + 1/2a23g—§ sin(hé) sin(hﬁ)]
= vPwAt[sin®(h€) + sin®(hi})] + v2wALO(R®).

426



Therefore we have

(3.29) WAL = v wAt[sin? (h€) + sin?(hi})] + O(h3).

Finally, equation (3.29) leads to (3.18), which concludes the proof. O

4. APPROXIMATE EVOLUTION OPERATORS FOR LINEARIZED
EULER EQUATIONS IN 2D

In this section we derive an evolution Galerkin scheme for the linearized Euler
equations of gas dynamics written in primitive variables. This will be used in [6]
for the fully nonlinear case. This scheme is similar to the EG4 scheme for the two-
dimensional wave equation system. To define it we consider the linearized Euler
equations with frozen coefficients

(4.1) U; 4+ A, (U)U, + A2(U)U, =0, x=(z,y)T € R?,
where
0 o v o 0 0
u u’ 0 u’ 0 1/¢
U= U’ = y A; = )
v ]’ v ! 0 0 u 0
P p/ 0 01(01)2 0 ’
v 0 0 0
0 0 0
A,y =
? 0 0 o 1/¢
0 0 Q'(C’)2 v

Here p denotes the density, v and v denote the two components of the velocity vector
and p denotes the pressure. Symbols o', u’, v' and p’ stay for the local variables at a
point (z',y'), ¢ = \/WE is the local speed of the sound there and +y is the isotropic
exponent (y = 1.4 for the dry air). We use the theory presented in Section 2 to derive
the integral equations that correspond to the system (4.1), see also [4], [6] for the
derivation of other approximate evolution operators for the Euler equations. Thus
we take the direction n(f) := (cos#,sinf)7 in R? and define the pencil matrix to be
A(n) := A cosf + Ay sinf. The eigenvectors of A(n) are

A =1u' cosf +v'sinf — ¢,
A2 = A3 = u'cos@ + v'sinb,

Ay =u' cos@ +v'sinf + ¢,
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and the corresponding right eigenvectors are

-d'/c 1 0 0'/c

cosf 0 sin @ cosf

5 sing |0 T o] BT —cost |0 T | sing
-o'd 0 0 oc

Take the matrix R to be the matrix of the right eigenvectors. Then multiplying
system (4.1) from the left by the inverse matrix

0 cosf@ sinf —1/(20¢")
1 0 0 ~1/c?

0 sind —cosf 0

0 cosf sinf 1/(20¢)

R!'=

we get the characteristic system

(4.2) W:+B{W,+B,W, =0,
where
e 1(-p/(@'c') + ucosd + vsinb)
w=|"|=Rr"U= o—p/c?
w3 ucosf — vsiné
wa 1 (p/(0'c') +ucosf + vsinb)
is the vector of the characteristic variables and
u'—ccosh 0 —ic'sinf 0
0 'u,’ 0 0
B - R_lA R = ,
' ! “‘C’ sin 6 0 u’ cl sin @
0 0 3csin@ o +c cosb
v'—c'sinf 0 1c cosf 0
0 'U’ 0 0
B == R_IA R =
? 2 C’ COs 9 0 v’ _cl cos 0
0 0 Le'cos® v +c'sinf

2

Diagonalizing system (4.2) we end up with

(43) Wt + A1W3 + A2Wy = S,
where
S 3¢ (sin 00ws /dz — cos BOws /dy)
s_ |5 _ 0
| S3 ] | ¢sinf(0w:/0z — Ows/Bz) — C cos 0w, /By — Bw,/By)
S 1/ (- sin08ws /dz + cos 90ws /By)
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and

v —ccos® 0 O 0
0 v 0 0
A = )

! 0 0 o 0
0 0 0 o +ccosb

v —c'sinf 0 O 0

0 v 0 0

Az = 0 0 v 0
0 0 0 v +c'sinf

Let us define the bicharacteristics x;, X2, X3, X4 corresponding to each equation of

system (4.3) as

d
% = (u' — ¢/ cos,v’ — 'sinh)T,
d
o,
d
(lxi:; = (u’7U,)T7
dx4 ’ ’ ' ! T
5 = (u' + ' cosh,v" + ¢'sinf)" .

Note that as 8 varies from 0 to 2r the resulting geometry is a Mach cone shown
in Fig. 2 for the supersonic case ¢’> > u'? + v'2. Moreover, we use the initial data
x;(n,t + At) = x to solve the above ordinary differential equations backwards and

P=(x,t+At)

Q:(0)

5 )

t
Loy,

Figure 2. Bicharacteristic along the Mach cone through P and Q;(6), supersonic case.
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get the footpoints Q;(6) of the bicharacteristics. The final result reads

Q1= (z— (v — ' cosb)At,y — (v' — ' sinf)At, t),
Q2=Q3 =P = (z—u'At,y —v'At,t),
Q4= (z— (u' + ' cos)At,y — (v' + ¢’ sin ) At, t).

Now we integrate each equation of the characteristic system (4.3) along the cor-
responding bicharacteristic from the point P = (z,y,t + At) down to the point Q
where it hits the base of the Mach cone, see Fig. 2. Further, multiplying the resulting
system by the matrix R from the left we obtain the following integral equations:

—o'wy /¢ + wa + 0wy /c
1 (% | wycosf + wssinh + wy cos
(4.4) Up=— ! 37 4 dé
2n Jo wi cos @ — w3 sinf + wy4 cos

—o'cdwy + o'cwy

—0'S1/c + S5+ 0'Sy/c
+ 1 /2" S; cosf + S;sinf + S cosd
2 Jo Sisinf — S} cosf + S, sinéf
—0'dS] + S,
where S} = :+At Si(xi(%,0),1,0) di. We use the symmetry between the points Q1
and @3 and the fact that the functions w; as well as the points Q; are 2n-periodic.
Then using the notation

S(x,t,0) := '[sin 6u, (x,t,0) — sin cos B(uy(x, t,0) + v2(x,t,0)) + cos 82vy(x, t,8)]

and Q := Q; we can rewrite system (4.4) in the following form:

(4.5) o(x,t+ At) = o(P') - p(c,le)
2 / /

gl 1 2n pAL
e / S(x — (u' — ¢'n(0))r t + At — 7,0) dr d,
C 4T Jq 0

1 1 At
(16) ulxt+a0 = JuP) - 5o [ pa(P)dr
2 2¢" Jo

2n Ic!

2n
+ ! / (_p(Q) cos 0 + u(Q) cos® 6 + v(Q) sin f cos 0) dé
0
1 2r pAt
+ — / cosfS(x — (u' — 'n(9))1,t + At — 7,6) dT db,
2n 0 0
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1 1 At
@) o+ a0 =300 - 50 [ p(Pydr
2 20" Jo

1 2n

Q
(_p( c’)

/

— sin 6 + u(Q) sin 8 cos 8 + v(Q) sin® o) 9
21 0

2r pAL
+ % / sindS(x — (0’ — /n(9))7,t + At — 7,6)dr db,
o Jo

2
(4.8) p(x,t+ At) = 2—171/ (p(Q) — o'c'u(Q) cosd — o'cv(Q) sin6) dO
0

1 2r pAL
—g'c’—/ S(x — (u' — n(9))r,t + At — 7,0) dr db.
2n o Jo
Now from the second and the third equation of system (4.1) we get

pe = —0' (uy + u'uy +v'uy),

py = —0' (v + u'vy +V'vy).

Hence the second term of equation (4.6) can be written as

1 At At

(4.9) - p(P)dr = % (ur + u'ug +v'uy) dr
0 0

At
= Vozyu- (1L, 0)T dr.
0

Since the vector (1,u’,v’')T represents the direction of the bicharacteristics joining
the two points P’ and P, see Fig. 2, equation (4.9) implies that

| uw(P) — u(P’)
“2—9‘7 A pI(P)dT——z—‘—‘*

Therefore equation (4.6) takes the form

2
(4.10) u(x,t+ At) = % / (—21;(3) cos 0 + 2u(Q) cos® 6 + 2v(Q) sin f cos 0) dé
0

2rn pAL
+ 51; / 2cos0S(x — (0’ — 'n(8))7,t + At — 1,0) d d6.
o Jo

Analogously we can show that

At /
N _ V(P) —v(P)
291 o py(P )dT - 2
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and

(4.11) w(x,t+ At) = 21n /21‘(—21;(3)

sin 6 + 2u(Q) sin # cos § + 2v(Q) sin® 0) dé

2n pAL
— / 2sin0S(x — (v’ — 'n(9))7,t + At — 7,0) dr d6.
o Jo

Using [5, Lemma 2.1] and the fact that Scosf and Ssin# can be neglected, because
they are second order terms in time evolution, i.e. O(At?), cf. [9], we can derive the
following approzimate evolution operator to the linearized Euler equations (4.1):

CI2 2K Cl2

412) o+ a0 = o) - 204 L (B 52 gy ost
- 2%11(@) sin 9) 6 + O(AL?),

2n
(4.13) u(x,t+ At) = — / 2p(Q cos 0 + 2u(Q) cos® 8 + 2v(Q) sin f cos 0) dé
+ O(At?),

2n
(4.14) v(x,t+ At) = 1 / (_2p(Q) sin @ + 2u(Q) sin cos 8 + 2v(Q) sin® 0) dé
2n Jo oc

+ O(At?),
21:
(4.15) p(x,t+ At) = —/ p(Q) — 20'c'u(Q) cos b — 2¢'c'v(Q) sin 0) de
+O(At?).

As we mentioned before this scheme is analogous to the EG4 scheme of the wave
equation system. We call it the EG4-Fuler scheme.

5. NUMERICAL EXAMPLES

Example 5.1. Rectangular waveguide

We consider a rectangular waveguide with rectangular cross section of sizes a and b.
The dielectric parameters are € and u. For transverse magnetic waves, i.e. TM modes,
H, =0 and E, satisfies the differential equation

19’E _

“aa
where ¢ = 1/,/ep is the speed of wave propagation. Note that the fields E and H
have in the Cartesian coordinates the form

(5.1)

E = E°x+ EYy + E*2,
H=H"%x+ HYy + H*Z.
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If the time convention e!“? is used then equation (5.1) will change to

2

w
(5.2) AE+ZE=0.

Further, if we assume E*(z,y,z) = E¢(z,y)e~ 7" then (5.2) implies that

hﬁ 61+h+—ﬂ —o.

Using the boundary conditions
E§(0,y) =0, Ei(a,y)=0, Ej(z,0)=0, E§(z,b)=0,

where 0 < z < a and 0 < y < b, we obtain E§ from the above differential equation
and thus determine the electric field components E*, EY, E* and the magnetic field
components H® and HY. For example,

E.(z,y,2,t) = Eg sin(gz) sin(%y) cos(wt — Bz),

where v = i = '\/w2ue - mn/a)2 - (mt/b)2 for more details see [1] or [2]. If we

take w = cn\[ (m/a)” + (n/ b) , i.e. the cutoff frequency, then for the casea=b=1
and m = n =1 the exact solution E,(z,y, z,t) has the form

E*(z,y,t) = sin(nz) sin(ny) cos(v/2net),

where we set Ep = 1. To use the EG4 scheme denote E,(z,y,t) by ¥(z,y,t) and
solve the wave equation

Py = c (d)zz + 'wyy)

together with the initial conditions

11’(33,!/, O) = Sin(n:c) Sin(ny)7 1j’t(w7 Y, 0) =0,

and the boundary conditions

¥(0,y,t) =0, t>0, 0<y<1,
P(1l,y,t)=0, t>0, 0<y<1,
¥(2,0,t) =0, t>0, 0<z <1,
¥(z,1,t) =0, t>0, 0<z<1.
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Defining ¢, u, and v so that ¢ = 1, u = ¢¥;, v = ¢y, we obtain the system

o0 — clug +vy) =0,
Uy — cpz =0,
v —cpy =0 on 0,1[* x [0, 00],
o(z,y,0) =0,
u(z,y,0) = crcos(nz) sin(ny),

v(z,y,0) = cnsin(nz) cos(ny) on [0,1]%
The exact solution is

¢ = —V/2nesin(nz) sin(ny) sin(v2net),
u = cn cos(nz) sin(ny) cos(v/2ret),

v = ensin(nz) cos(ny) cos(v/2net).

We take ¢ = 0 on the boundary of {2 and extrapolate v and v there. We apply
the transformations t — t/ty, ¢ — @ty, u = utp and v — vty where to = /2nc.
The following two tables show the L2-error and the experimental order of conver-
gence (EOC), which is defined in the following way using the solutions computed on
two meshes of sizes Ny, Ns:

U, (T)
Mm:blml@)tmu/ o8( ;)

Scheme | N | L2-error-far | L?-error-near | L2-error
EG4 40 | 0.000219 0.000872 0.000899
80 | 0.000091 0.000438 0.000447

100 0.000067 0.000362 0.000368

120 | 0.000054 0.000312 0.000317
140 | 0.000047 0.000276 0.000280
160 | 0.000039 0.000247 0.000250

Table 1. T = 0.2, CFL = 0.55, L2-error between the discrete and the exact solutions.

In Tab. 1 the L2?-error-far represents the error in the region far from the boundary
while the L2-error-near stands for the error near the boundary.
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N | lle(@) = oIl | (@) —w)l | 1) - U | EOC

40 0.000219 0.000368 0.000564

80 0.000091 0.000178 0.000267 1.078855
160 0.000039 0.000084 0.000125 1.094912
320 0.000019 0.000042 0.000062 1.011588
640 0.000009 0.000021 0.000031 1.000000

Table 2. EG4 scheme, 7' = 0.2, CFL = 0.55.

In Table 2 we measure the speed of convergence of the EG4 scheme. We see
that it is approximately equal to 1, which is correct since the approximate evolution
operator EG4 is of the first order in time and the shape functions are piecewise
constant in space. From the tables we see that the overall L2-error decreases as
the mesh is refined. This shows that the method converges. Note that the error is
dominated by an error produced due to the numerical boundary conditions, namely
the extrapolation for u and v. In [7] we were able to improve this situation by using
more sophisticated numerical boundary conditions. Observe again that the error in u
due to the numerical boundary condition is much higher than the error in ¢. For ¢
we can use the Dirichlet condition directly.

Example 5.2. Divergence test
Let @ = [-1,1] x [-1,1]. Consider the Maxwell equations (3.1)—(3.3). Let the
initial data be

E*(z,y,0) = sin(gx) sin(gy),

H*(z,y,0) = HY(z,y,0) =0 in Q

and suppose that the boundary of 2 is a perfect conductor. Then using the trans-
formations ¢t — t/c, E* = ¢, HY — u/Zy and H® — —v/Zy, these equations read
Op Gu v Ju_ 8¢ v _dyp

5t —or 9y ot ox ot oy

To test that the magnetic field is divergence-free remember that by the definition
0FE* [0z = 0. Further,

6H$+6Hy__1~(53_u__8_v)
oz dy  Zo\dy 09zx/°

Then V- H = 0 can be written as du/dy — dv/dz = 0, i.e. the divergence-free
property is equivalent to the vanishing vorticity in the case of TM modes. In Tab. 3
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we present the vorticity preservation for the EG4 scheme. We compute the discrete
vorticity DV given by the formula

DVyg = pzdytiar gr — pybzvar g for each o', B’ € Z,

where we have denoted by u, g values at vertices of square mesh cells, 4, is used as
defined before, and p,u = 1 [u(z + $h) + u(z — h)]. In Tab. 3 we show reference
values for DV,sg/, namely, the average value (vor-aver), the minimum (vor-min) and
the maximum (vor-max). The values of vor-aver demonstrate that the EG4 scheme
preserves the divergence-free property in a good manner.

100 x 100 200 x 200 400 x 400

vor-aver | 0.00092521478 | 0.00029260981 0.00010088980
vor-min | —0.01221328952 | —0.00948232290 | —0.01140008104
vor-max | 0.01221328952 | 0.00948232290 | 0.01140008104

Table 3. Preservation of zero divergence, CFL = 0.55, 100 time steps.

Example 5.3. Linearized Fuler equations problem

In this experiment we consider linearized Euler equations

(5.3) U; 4+ A (U)U, + A, (U)U, =0, x=(z,9)T €]-1,1[x]-1,1],

where
0 1 ¥ 1 0 0 v 0 1 0
u vl u' A 0« 0 1 A 0 v 0 0
B R T v ’ e 0 0 « o] 2 0 0 v 1
P 1/ 0 1 0 4 0 0 1 o

Note that this system is a special case of system (4.1) with ¢’ = ¢/ = 1. Here '
and v' are given constants representing the mean flow in the direction of z and y,
respectively. We consider system (5.3) together with initial data containing acoustic,
entropy and vorticity pulses as follows

o(z,y,0) = 2.5exp(—40((z — za)* + (y — ¥a)*))
+0.5exp(—40((z — 2)* + (¥ — v)?)),
u(z,y,0) = 0.05 exp(—40((z — z5)* + (y — u)?)),
v(z,y,0) = —0.05 exp(—40((z — 25)? + (y — u»)?)),
p(z,y,0) = 2.5exp(—40((z — z4)* + (¥ — ¥a)?)).
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We suppose that the main flow is in the direction making a 45° angle with the z-axis
and that v’ = v’ = 0.5sin(}7). Moreover, we assume that the initial location of the
acoustic pulse is at (z,,y.) = (—0.31, —0.31), whereas the entropy and vorticity is
at (zs,y5) = (0.39,0.39). We set the CFL number v to be 0.45 and take a mesh
consisting of 100 x 100 cells. In Fig. 3, top-left, we compare the exact solution, the
numerical solution using the first order FVEG4-Euler scheme and the Lax-Friedrichs
(tensor product) scheme, which is defined by

ZAR 22 0: 20

(5.4) Ut =
where the operator L} for the linear one dimensional system with constant coefficients
U:+A,U0,=0

is given as

T T At i i i T n
’IL = “h——‘—- - “-“Al(Th - T—h)? where Tﬂ:hUij = Ui:tlj'
2 2h
The solutions are plotted along the line y = x at time 7" = 0.166. In the top-right
figure we show the same comparison between the second order FVEG4-Euler scheme,
the Lax-Wendroff (tensor product) scheme and the exact solution. Note that the

Lax-Wendroff (tensor product) scheme is defined by equation (5.7) with L, given as

(3) a3,

h=1-— (%t')AlAOz+l -

2
where Agzv(z) = 3[v(z + h) — v(z — h)], §2v(z) = v(z + h) — 20(z) + v(z — h).
This is the symmetrical product also known as Strang splitting, see Strang [10]. In
the bottom-left figure we give the comparison between the second order FVEG4-
Euler scheme, the Lax-Wendroff (tensor product) scheme and the exact solution at
time T = 0.332. In the bottom-right figure we compare the second order FVEG4-
Euler scheme and the Lax-Wendroff (tensor product) scheme at time T' = 0.665. We
conclude that the acoustic part of the solution is moving faster than the entropy
part and that the result using the FVEG4 first order is more accurate than that of
the Lax-Friedrichs scheme. Moreover, both the FVEG4 second order and the Lax-
Wendroff (tensor product) schemes give a comparable approximation of the exact
solution. The difference between the schemes FVEG4 second order and the Lax-
Wendroff (tensor product) as the time developed (see Fig. 3 bottom-right) is quite
small for smooth solution.
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Figure 3. Density along the line y = z, v/ = v/ = 0.5sin(4ln), CFL = 0.45, mesh:
100 x 100. Top-left: T' = 0.166, comparison between the first order FVEG4-
Euler scheme, Lax-Friedrichs (tensor product) scheme and the exact solution, top-
right: T = 0.166, comparison between the second order FVEG4-Euler scheme,
the Lax-Wendroff (tensor product) scheme and the exact solution, bottom-left:
T = 0.332, bottom-right: T = 0.665, comparison between the second order
FVEG4-Euler and the Lax-Wendroff (tensor product) scheme.

Conclusions.

In this paper we have derived and analyzed two approximate evolution operators
(EG3, EG4) for the Maxwell equation of the electromagnetics. Both the operators
are of the first order in time and are based on a general theory for multidimensional
linear hyperbolic systems of the first order. As a result the numerical schemes take
into account all of the infinitely many directions of wave propagation along the so-
called bicharacteristic cone. Further, for the Maxwell equations the approximation
of the dispersion relation was studied. It is shown that this relation is approxi-
mated with the first order error, which is correct for the piecewise constant shape
functions. Moreover, it is shown that an important divergence-free property of the
solution to the Maxwell equations is satisfied exactly by the approximate EG opera-
tors, i.e. EG1, EG2, EG3, EG4. In the second part of this paper we have applied the
general technique of the EG-operators to the linearized Euler equations and derive
a new EG4 operator for the Euler equation system. Some numerical experiments for
the Maxwell equations and for the Euler equations are presented in the last section.
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These experiments demonstrate good higher order as well as multi-dimensional be-
haviour of the FVEG schemes for linear hyperbolic systems. Generalization of the
results presented in this paper to nonlinear problems can be found e.g. in [4], [6].
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ON EVOLUTION GALERKIN METHODS FOR THE MAXWELL
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Abstract. The subject of the paper is the derivation and analysis of evolution Galerkin
schemes for the two dimensional Maxwell and linearized Euler equations. The aim is to
construct a method which takes into account better the infinitely many directions of prop-
agation of waves. To do this the initial function is evolved using the characteristic cone
and then projected onto a finite element space. We derive the divergence-free property and
estimate the dispersion relation as well. We present some numerical experiments for both
the Maxwell and the linearized Euler equations.

Keywords: hyperbolic systems, wave equation, evolution Galerkin schemes, Maxwell
equations, linearized Euler equations, divergence-free, vorticity, dispersion

MSC 2000:

1. INTRODUCTION

Evolution Galerkin methods, EG methods, were proposed to approximate the
solution of evolutionary problems of first order hyperbolic systems. Ostkamp in [9]
as well as Lukacova, Morton and Warnecke in [4], [5] derived such schemes for the
approximation of the solution of the wave equation system and the Euler equations
of gas dynamics in two dimensions. In [11] the approximate evolution operator for
the wave equation system in three space dimensions as well as other 2D EG schemes

were derived.

*This research was supported under the DFG grant No. Wa 633/6-2 of Deutsche
Forschungsgemeinschaft, by the grants no. 201/00/0557 and 201/03/0570 of the Grant
Agency of the Czech Republic as well as by the Volkswagen Stiftung and DAAD Agencies.
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It is well-known, see [4], [5], [8], [9], that the basic tool to derive the EG schemes
is the general theory of bicharacteristics of linear hyperbolic systems. This theory is
used to derive the system of integral equations which is equivalent to the concerned
first order system such as the Maxwell equations or the linearized Euler equations.
Using quadratures, these integral equations lead to the approximate evolution oper-
ator that builds up the evolution Galerkin scheme.

Considering the Maxwell equations in free space, it is straightforward to see that
the divergence of the electric field as well as of the magnetic field is zero. Numerically,
in order to have an efficient Maxwell solver, this property must be preserved. Further,
the dispersion relation associated with the Maxwell equations has a key role with
regard to the accuracy of the numerical scheme used.

The content of this paper is as follows: in the next section we briefly derive the
exact integral equations and construct evolution Galerkin schemes. In Section 3 we
write down the approximate evolution operators for the Maxwell equations. More-
over, we show that these operators preserve the divergence-free property. Further,
we estimate the dispersion relation for the Maxwell EG solvers that we used. In
Section 4 we derive the approximate evolution operator for the linearized Euler equa-
tions. These results presented here are the basic ingredient in our extension of the
method to the case of the nonlinear Euler equations, see [6]. Finally, in Section 5
we present some numerical tests for the Maxwell equations as well as the linearized
Euler equations.

2. EXACT INTEGRAL EQUATIONS AND APPROXIMATE
EVOLUTION OPERATORS

In this section we derive exact integral equations for a general hyperbolic system
in d dimensions. Typical physical examples of hyperbolic conservation laws are,
e.g., the Maxwell equations and the Euler equations of gas dynamics. Using the
theory of bicharacteristics one can derive the equivalent integral equations for these
systems which give a basis for the EG schemes.

Let the general form of a linear hyperbolic system be given as

d
(2.1) Ui+ Y AU, =0, x=(21,...,20)" € R*
j=1
where the coefficient matrices A, j = 1,...,d are elements of RP*P and the de-

d
pendent variables are U = (u1,...,u,)T € RP. Let A(n) = Y n;jA; be the pencil
j=1

matriz with n = (ng,...,n4)7 being a directional vector in R?. Then using the
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eigenvectors of A(n) the system (2.1) can be written in a characteristic form via
the substitution W = R~!U, where the columns of the matrix R are the linearly
independent right eigenvectors of A(n). Since the coefficients of the original system
are constants the bicharacteristics of the resulting characteristic system are straight
lines PQ; and PP’, see Fig. 1. Diagonalizing this system and integrating along the
bicharacteristics leads to the system of integral equations

At
U(P) = ﬁ /O R(n)W(Q(n),n)dO + ﬁ /O/o R(n)S(t + 7,n)drdO

where O is the unit sphere in R?, |O| its surface measure and S is a nontrivial term
which we call the source term; for more details see [8].

P =(x,t+ At)
Qi(n)
5
P/

t
Ly

Figure 1. Bicharacteristics along the Mach cone through P and Q;(A(n)).

Evolution Galerkin schemes
For simplicity let us consider d = 2. Consider h > 0 to be the mesh size parameter.
We construct a mesh for R?, which consists of the square mesh cells

Opy = [(k %)h <k+%>h} x [(z %)h <l+%>h}

= [Ik*?IkJFE} X [yl*§7yl+§}»

where k,l € Z. Let us denote by H*(R?) the Sobolev space of distributions with
derivatives up to order x in the L? space, where k € N. Consider the general
hyperbolic system given by the equation (2.1). Let us denote by E(s): (H®(R?))? —
(H"(R?))P the exact evolution operator for the system (2.1), i.e.

(2.2) U(t+s) = B(s)U(,1).
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We suppose that S}" is a finite element space consisting of piecewise polynomials
of order m > 0 with respect to the square mesh. Assume a constant time step,
ie. t, = nAt. Let U" be an approximation in the space S;* to the exact solu-
tion U(-,t,) at time ¢, > 0. We consider E.: L] (R?) — (H"(R?))? to be a
suitable approximate evolution operator for E(7). In practice we will use restric-
tions of E; to the subspace S} for m > 0. Then we can define the general class of

evolution Galerkin methods.

Definition 2.1. Starting from some initial data U® € S at time ¢t = 0, an
evolution Galerkin method (EG-method) is recursively defined by means of

(2.3) U™ttt = p,E.U",
where P, is the L?-projection given by the integral averages in the following way:
1
P, U"%q,, = — U(z,y,t,)dzdy.
Q| Ja,,

We denote by Rj,: S;* — S} a recovery operator, r > m > 0 and consider our
approximate evolution operator £ on S} . We will limit our further considerations to
the case where m = 0 and r = 2. Taking piecewise constants the resulting schemes
will only be of the first order, even when E. is approximated to a higher order.
Higher order accuracy can be obtained either by taking m > 0, or by inserting a
recovery stage R}, before the evolution step in equation (2.3) to obtain

(2.4) U™t = p,E. R, U™

This approach involves the computation of multiple integrals and becomes quite
complex for higher order recoveries. To avoid this we will consider higher order
evolution Galerkin schemes based on the finite volume formulation instead.

Definition 2.2. Starting from some initial data U? € Si", the finite volume
evolution Galerkin method (FVEG) is recursively defined by means of

1 [At 2 ~
(2.5) Ut = U - - / > 0, £ (T2 dr,
(Ut

where J;; fj(fJ’”T/ At) represents an approximation to the edge flux difference and
8 is defined by 6, = v(z + k) — v(z — 3h). The cell boundary value UntT/At §g
evolved using the approximate evolution operator E, to t, + 7 and averaged along
the cell boundary, i.e.

1

— E.R,U" dS) Xkl
10Q2%1] Joq,,

(26) ﬁn+T/At — Z (
k,leZ

where xy; is the characteristic function of 9€;.
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In this formulation a first order approximation E to the exact operator E (1) yields
an overall higher order update from U™ to U""!. To obtain this approximation in
the discrete scheme it is only necessary to carry out a recovery stage at each level to
generate a piecewise polynomial approximation U = R, U" € S} from the piecewise
constant U™ € S?, to feed into the calculation of the fluxes. To construct the second
order FVEG schemes, for example, we take the first order accurate approximate
evolution operator and define a bilinear reconstruction Rj;. Among many possible
recovery schemes which can be used, we will choose a discontinuous bilinear recovery
using four point averages at each vertex. It is given as

r — Tk
4h

(AoyUpq1 + 280y Uy + Aoy Up—11)

RyUlq,, = Uy +

(AozUpis1 + 2805 Ukt + Aoz Uki—1)

Yy—u

R

where Ag.v(z) = 3 (v(z + h) — v(z — h)). Note that in the updating step (2.5) some
numerical quadratures are used instead of the exact time integration. Similarly, to
evaluate the intermediate value Ut7/A% in (2.6) the two dimensional integrals along
the cell-interface and around the Mach cone are evaluated either exactly or by means
of suitable numerical quadratures.

To close this section note that in this paper we set T' to be the absolute end time
of computation, i.e. T = nAt. Further, the Courant, Friedrichs and Lewy stability
number is denoted by v and we take it to be v = cAt/h for the Maxwell equations.
For the linearized Euler equation we set v = min(|u’| + ¢/, |v'| + ¢/)At/h, where v/,
v’ are the mean flows in the z and y directions respectively and ¢’ is the local sound
speed.

3. MAXWELL EQUATIONS

For the fundamentals of the electromagnetic theory and the Maxwell equations
see Jackson [3], Balanis [1], Cheng [2]. Throughout this section we will consider the
transverse magnetic (TM) modes of the electromagnetic fields only. So let us take
E = E?z, H= H*X + HYy, where X, §, Z are unit vectors in the direction of x, ¥,
and z, respectively. In free space the Maxwell equations

0B

EJFVXE—O,

oD
*EJFVXH—O
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are reduced to

OF* 1,0HY OH"
(3.1) ot :E( or Oy )
OHY  10E*
(32) ot p oz’
OH® 1 9B*
(3-3) 7 —_ _pﬁ—y.

Here E denotes the electric field, B is the magnetic field, D, H denote the electric
field density and magnetic field intensity, respectively. Further, we have D = ¢E,
B = uH, where ¢ is the permittivity and p the permeability of the free space. Using
the transformations ¢ = E%/,/i, u = —HY/\/e, v = H* /\/¢ and taking c = 1/,/ep
equations (3.1)—(3.3) are reduced to the two dimensional wave equation system

o+ c(ug +vy) =0,
(3.4) Ut + cpg =0,
v + cpy = 0.

Lukacova et.al. [5] analyzed the evolution Galerkin schemes for the system (3.4).
Namely, they derived the schemes EG1, EG2 and EG3. Moreover, in [11] the author
derived the EG4 scheme. Note that the system (3.4) has the following property of
irrotationality:

d
E(uy - U;v) = Uty — Vtg = _C((Pwy - Spyw) =0,

i.e. a solution with u, — v, = 0 for time ¢ = 0 satisfies this equation of irrotationality
for later times also. From the above we see that

—1 y x ___1 .
= ), + (7)) = 2V H

0=1uy — v,

So the vorticity u, — v, for the wave equation system corresponds to the divergence
of the magnetic field. Using the above transformations we arrived at the following
approximate evolution operators for the Maxwell equations.
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Based on the EG4 scheme

2n
(3.5) E*(P)= ln/o [E*(Q) + Z(2cosHY(Q) — 2sin0H*(Q))] df + O(At?),

2
(3.6) HY(P)= % /OQK[%EZ(Q) +2cos? OHY(Q)

— 2sinfcos GH””(Q)} 49+ O(AP),

2% . z
(3.7) H*(P) = %/0 [%E(Q) — 2infcos OHY(Q)

+ 2sin? em(Q)} 49 + O(AL2).

Based on the EG3 scheme

(38)  EA(P)— % /0 T B4(Q) + Z(2cosbHY(Q) — 25imbH(Q))] d6 + O(AR),
2 2T A
— 3sinfcos eHz(Q)} 49 + O(AL2),
—2sinE*(Q)
Z
+ (3sin20 — 1)HI(Q)} 46 + O(A2),

3.9)  HY(P)= 1mY(P)+ i/0 ' [M ¥ (3cos? 0 — 1)HY(Q)

(3.10) H*(P) = %Hw(P’) + i/ozn[

o — 3sinfcos0HY(Q)

where Z = \/m is the so-called impedance of free space. Taking the projection
onto piecewise constant functions we obtain the evolution Galerkin schemes for the
Maxwell equations. Numerical schemes based on equations (3.5)—(3.7) and (3.8)—
(3.10) are called the EG4 and the EG3 methods, respectively. Note that these
schemes are first order schemes. In order to have second order methods for the
Maxwell equations we use the finite volume formulation as given in Definition 2.2.
Assuming the periodicity of the fields in space we get the following two lemmas.

Lemma 3.1. The approximate evolution operators for the Maxwell equations
EG3 and EG4 are divergence-free.

Proof. We prove only the case of the EG4 scheme, the EG3 scheme can be
treated analogously. To this end, V- E = 0 follows immediately from the assumption
that E = E*(x,y,t)z. Now taking the derivatives with respect to y and z of the
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equations (3.6) and (3.7), respectively we get

(3.11)
881?;/ (P)= 21_71 02“ (26289 88E; (Q) + 2 cos? an—T(Q) — 2sin900508§; (Q)) dé,
(3.12)
a;f (P) = 217: 02“(_2;1119 65 Q) — 2sinecosea£ Q) + 2sin29‘9£ (Q)) de.
Adding equation (3.11) to the equation (3.12) we obtain
(3.13) a;f P) + ‘Zzy (P) = ;—n/jn[%(cowa@iz @) —sine‘?;: @)
+2(cos? eaa—lj(cg) - sinecoseagf (Q))
+2(sin? 9855 Q) - sin@cosGaﬁlzw @)] a0

Now the integral of the first term of equation (3.13) is zero because

2 OE* OE*
/0 E(COSH By (Q) —sinfb B (Q)) dé

2n 2 T 2r 2
= —(—sind 0)" -VE*df = —dE*
/0 Z( sin @, cos 0) /0 7

and E is a periodic field. We use the periodicity of the magnetic field H and the fact
that the initial data are divergence-free. Then integration by parts gives

o OHY OHY
(3.14) /0 <c052 Ha—y(Q)f sin 0 cos 0 o (Q)) dé

:/Ohcose(agy(cg)—sine%(cg))de

2n
= / cosf(—sin @, cos )T - VHY(Q) df
0
2n Y 21
:/ Cosodi(Q)doz/ sin OHY(Q) do.
0 do 0

Analogously we have

x

o OH" OH o
(3.15) /0 <Sin29 3 (Q) —sinfcosb 3 (Q)) d@z/o cos 0H™(Q) db.

€ Y
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Summing equations (3.14) and (3.15) we get

m OH” OHY OHY OH”
) T 2 oo
/0 (sm 0 92 (Q)—sinf cos b o (Q) + cos G—ay (Q) —sinfcosb a9 (Q)) dé

= ,/0 7‘(cosé’Hr(Q)-l-SiHehw(Q))da

2n

= H(Q)-ndezfv-H(Q)dszo.

0
Therefore V - H = 0. This concludes the proof of the lemma. d

Remark 3.1. Similar results hold also for other EG operators, i.e. EG1, EG2,
the operator of Ostkamp, cf. [5] for the precise formulation.

Our next aim is to approximate the dispersion relation. To this end note that
a frequently used technique of characterizing the error of numerical schemes of the
Maxwell equations is the Fourier analysis. Neglecting the boundary conditions, we
assume that the three unknown components can be expressed in the following form:

(3.16) Py = o exp(i(ETh + ijJh — wnAt)),

where i = v/—1, h is the space increment and é and 7 are the z and y components of
the numerical wave vector, respectively. In the case of the exact solution this gives

(3.17) U(z,y,t) = voexp(i(x + ny — wt)).

The numerical wave vector k = (§~ ,m)7T will in general differ from the physical wave
vector k = (£,1)T satisfying |k| = /€2 +7n? = w/c. This is called the dispersion
relation. Here w is the angular frequency and c is the speed of light. The difference
between k and k gives rise to numerical phase and group velocities that depart from
the analytical values. This causes numerical errors that accumulate in time. Hence
the dispersion analysis is important to assess the accuracy of a numerical solution.
In the next lemma we study the approximation of the dispersion relation for the
EG4 method in the case of Maxwell equations.

Lemma 3.2. For both the EG4 method (3.5)—(3.7) and the EG3 method (3.8)—
(3.10) the following dispersion relation holds:

(3.18) (5)2 = (& +7%) + O(h).

Cc
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Proof. We present the proof of (3.18) for the EG4 scheme, the proof for the
EG3 scheme is analogous. First we write out the finite difference formulation of the
EG4 scheme:

(3.19) E*" = (1+ani(s2 + 52) + bus?s2) B + Z(v(1 + a1252) Ao HY"
—V(l + algsi)AoyHmn),
n 1% n
= (14 (a8 + a’22532/) + bgzsisi)Hy + E(l + aglsz)AOIEz

n+1

(3.20) HY
—1%a23 00, D00, H®

(321) H™" =1+ (asssy + asssy) + b33535§)Hzn - %(1 +ag1s3) Aoy B
—12a320M0, A0, HY"

where v = cAt/h, Ao, = 3(f(z+h) — f(z—h)), s2 = f(z+h) —2f(z) + f(z— h)
and

v V2 2v 2v
011:? bllzﬁv a12:§, a13:§,

2v v 2v v? 1
a21:§, 22:a7 azzzﬁ, 22 i 023:1

2v 1 v, 4y v?
gL = 5, Gsa =7, 33 =g, 33 =g, 533:E

Substituting from equation (3.16) into equations (3.19)—(3.21) we get

(3.22) —iwAt = 2a1; (cos(h€) — 1) + 2a11 (cos(hij) — 1)

+ 4by1(cos(h€) — 1)(cos(hij) — 1)
+ 12/23 sin(hé)[1 + 2a1a(cos(hij) — 1)]
0

—iZV% sin(hf)[1 + 2a13(cos(h) — 1)],
0

(3.23) —iwAt = 2a95(cos(h) — 1) + 2ahy(cos(hij) — 1)
+ 4bgy(cos(h€) — 1)(cos(hij) — 1)

z

v E§ s _
+ 1§H_g’ sin(h&)[1 4 2a21 (cos(hn) — 1)]
o HE ooy
+v 23 7y sin(h7n) sin(hE),
0
(3.24) —iwAt = 2a33(cos(h) — 1) + 2abs(cos(hij) — 1)

+ 4bgs(cos(h€) — 1)(cos(hij) — 1)
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in(h))[1 + 2az1(cos(h§) — 1)]

E§
ZHC”
y

Hy
+ 12 aggm sin(h#) sin(h€).

Now equations (3.23) and (3.24) imply, respectively, that

(3.25) HY _ 2 sin(h€)[1 + 2as1 (cos(hij) — 1)]

Ef  —wAt+i[a+ l/%tgg% sin(h€) sin(hij)]’
(3.26) HE Z sin(h)[1 + 2a31 (cos(h€) — 1)]

E5 wAt—i[g+ V2a32%§; sin(hé) sin(h)] ,
where

o = 2ag5(cos(h) — 1) + 2aly(cos(hij) — 1) + 4bas(cos(h€) — 1)(cos(hij) — 1),
B := 2asz(cos(h€) — 1) + 2a43(cos(hij) — 1) + 4bsz(cos(h&) — 1)(cos(hif) — 1).
Substituting equations (3.25) and (3.26) into equation (3.22) leads to
v2 sin?(h€)(1 + 2a12(cos(hij) — 1))2
—wAt +i(a + l/2a23#fj sin(hé) sin(hi}))
u sin?(h7]) (1 + 2a13(cos(h) — 1))?
—wAt +i( + u2a325—§

(3.27) WAL =iy —

sin(hé) sin(hn)),

where
7 := 2a11(cos(h€) — 1) + 2ay1 (cos(hij) — 1) + 4b11 (cos(hé) — 1)(cos(hij) — 1).

Equation (3.27) can be written in the form

(3.28)  (wAt—1iy) (fwAt +i {a + V2aggg—(0; sin(hé) sin(hﬁ)D
y

X (ﬂ.uAt +i ﬂ +v agg% sin(hé) sm(hn)
= — 12 sin?(hé)[1 + 2a12(cos(hij) — 1)]?
X ( WAL +1 ﬁ + 12 a32H—y sin(hé) sm(hn)

HLE
—?sin?(hij)[1 + 2a13(cos(h€) — 1)]?

- H;E _ .
X (—wAt +ijla+ u2a23H—% sin(h€) sin(h7) )
! 5 ]

vv

Using the Taylor expansion we can show that +, a and 3 are of order v?2O(h?) and
sin(hz) = ha + O(h3). The left- and the right-hand sides of equation (3.28) can be

written as
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LHS = (waAt2 + iwyAt + iwAt [oz + V2a23% sin(hé) Sin(hﬁ)D
0

Hf ~
+ {a + V2CL23H—% sin(h&) sin(hﬁ)]
0

x (—wAt +i [ﬁ + V2a3zg—é sin(hé) Sin(hﬁ)D

0
HY ~
= WAL — iw?At? [ﬂ + V2a32H_?” sin(hg) sin(hﬁ)] — iw?At? y
0
HY ~
— YwAt {ﬁ + v2azy—2 sin(hé) Sin(hﬁ)]
Hg
L2 A2 o HF . oa s
—iwAt [a +v a23 7y sin(hg) sm(hn)}
0
He . HY .
_ 2 270 o : ~ 2 o - . ~
wAt {a + v aos HY sin(h§) sm(hn)] [ﬁ + viase He sin(h&) Sm(hn)]
Hf ~
— wAty[a + 1/2a23H—g! sin(hg) sin(hn))
Hf ~ HY ~
+ iy [a + Va3 —9 sin(h€) Sin(hﬁ)} [ﬁ + v?az—2 sin(h§) sin(hﬁ)}
Hy H;

= WIAL + 2WALO(R?),

RHS = v2wAtsin?(h€) — v?sin?(h€)i [ﬁ + u2aggg—§z sin(hé) sin(hﬁ)}
0
+ v2wAtsin® (h€)daya(cos(hif) — 1)
—iv? sin2 (h€)4ara (cos(hif) — 1) [ﬁ n u2a32g—§ sin(hé) sin(hﬁ)}
0

+ PwAt sin2(h§~)4a?2(COS(hﬁ) - 1)2

- HY -
—iv2wAt sin?(hé)4a?,(cos(hij) — 1)? [ﬁ + u2a32H—g sin(hg) Sin(hﬁ)}
0

+ v2wAtsin? (hfy) — v? sin® (ha))i {oz + 1/2a23f1—% sin(hé) Sin(hﬁ)}
+ v2wAt sin?(hij)4a1s(cos(h€) — 1)

—iv? sin?(hi})4a13(cos(hé) — 1) {a + V2a23% sin(hé) sin(hﬁ)}
0
+ v2wAt sin?(hij)4a2; (cos(hé) — 1)?

B He .
—ivlwAtsin®(hij)da?s(cos(h€) — 1)? [a + u2a23H—% sin(hg) sin(hﬁ)}
0

= 2wAt[sin?(h€) + sin? (hi})] + V2w ALtO(h®).
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Therefore we have
(3.29) WAL = V2wAt[sin? (h€) 4 sin’(hij)] + O(h®).

Finally, equation (3.29) leads to (3.18), which concludes the proof. O

4. APPROXIMATE EVOLUTION OPERATORS FOR LINEARIZED
EULER EQUATIONS IN 2D

In this section we derive an evolution Galerkin scheme for the linearized Euler
equations of gas dynamics written in primitive variables. This will be used in [6]
for the fully nonlinear case. This scheme is similar to the EG4 scheme for the two-
dimensional wave equation system. To define it we consider the linearized Euler
equations with frozen coefficients

(4.1) U; + A (U)U, + Ax(U)U, =0, x=(z,y)" € R?,
where
0 o u 0 0
U u’ 0 u' 0 1/¢
U= v » U= v » A= 0 0 u' . ’
p p/ 0 Q/(C/)Q O u/
v 0 o 0
0 2 0 0
Ay =
? 00 v 1/
O 0 Q/ C/)Q U/

Here ¢ denotes the density, u and v denote the two components of the velocity vector
and p denotes the pressure. Symbols o', u’, v" and p’ stay for the local variables at a
point (2',y'), ¢ = \/'yp’—/g’ is the local speed of the sound there and ~ is the isotropic
exponent (v = 1.4 for the dry air). We use the theory presented in Section 2 to derive
the integral equations that correspond to the system (4.1), see also [4], [6] for the
derivation of other approximate evolution operators for the Euler equations. Thus
we take the direction n(#) := (cos,sin6)” in R?> and define the pencil matrix to be
A(n) := Ajcosf + Aysinf. The eigenvectors of A(n) are

M =u'cosf + v sinf — ¢,
X2 = A3 = v cosf + v’ siné,

A =1 cosf + v sinf + ¢,
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and the corresponding right eigenvectors are

—o0'/c 1 0 o'/

cos 6 0 sin 6 cos 6

T sing |0 T ol BT —eoso |0 T | sing
—o'c 0 0 o

Take the matrix R to be the matrix of the right eigenvectors. Then multiplying

system (4.1) from the left by the inverse matrix

0 cosf sinf —1/(20'¢)
R |10 0 —1/¢?

0 sinf —cosd 0

0 cosf sinéd 1/(20'¢)

we get the characteristic system

(42) W;:+B{W, + BQWy =0,
where
W 5(=p/(e'e) +ucost + vsind)
w=|"|=r'U= 0—p/c?
w3 ucosf —vsinf
w 2 (p/(d'¢") + ucosf 4 vsinf)
is the vector of the characteristic variables and
u' —ccosf 0 —icsind 0
0 U// 0 0
B, =R 'AR=
' ' —c'sin 6 0 u'  sin @ )
0 0 %C/ sinf u' + ¢ cosb
v —c'sinf 0 i cosd 0
0 v 0 0
B, =R !A;R =
’ ? ¢ cosf 0 v ¢ cosd
0 0 —5ccosf v +sinf

Diagonalizing system (4.2) we end up with

(4.3) W;:+A W, + Agwy =8,
where
Sy £ (sin 00w; /0x — cos 0Ows /Oy)
S — So | 0
S S5 || I sind (0w /0x — dws/Ox) — ¢ cos O(Ow /Oy — Dwa/Oy)
Sy 1/ (—sin0Oows 0z + cos Ows /Oy)
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and

uw —ccosf 0 O 0
0 u 0 0
Ay —
! 0 0 o 0 ’
0 0 0 u+4ccosb
v/ —c'sinf 0 0 0
0 v 0 0
A =
2 0 0 o 0
0 0 0 v +c'sinf

Let us define the bicharacteristics x1, X2, X3, X4 corresponding to each equation of

system (4.3) as

d

% = (v = cosh,v' —'sinf)T,
d

% = (ulvv/)Tv

d

G

dxy ’ / / /s T
= = (u' + ¢ cosf,v 4+ ¢ sinh)" .

Note that as 6 varies from 0 to 2n the resulting geometry is a Mach cone shown

in Fig. 2 for the supersonic case ¢’> > u'? + v"2. Moreover, we use the initial data

x;(n,t + At) = x to solve the above ordinary differential equations backwards and

P=(x,t+At)

Figure 2. Bicharacteristic along the Mach cone through P and Q;(6), supersonic case.
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get the footpoints Q;(6) of the bicharacteristics. The final result reads

Q1= (x — (v = cosO)At,y — (v — ' sin ) At, t),

Q2=Q3 =P = (v —uAt,y — v At 1),

Qs = (x — (U + ' cosO)At,y — (v + ' sin ) At, t).
Now we integrate each equation of the characteristic system (4.3) along the cor-
responding bicharacteristic from the point P = (z,y,t + At) down to the point Q

where it hits the base of the Mach cone, see Fig. 2. Further, multiplying the resulting
system by the matrix R from the left we obtain the following integral equations:

—o'wr /¢ 4+ wa + o'wy/c

(4.4) Un — 1 /2“ w1 cos B + w3 sin 6 + w4 cos 6 49
’ P~ on 0 wy cos B — ws sin @ + w4 cos d
—0'dwy + o' dwy
S/ + S+ 0}
N 1 [*™ [ S)cosf+ Sysinfh+ S cosb a9
21 Jo S1sinf — Sk cosf + S sind ’
0S| + o)
where S = :+At Si(x;(t,0),t,0)di. We use the symmetry between the points Q1

and @3 and the fact that the functions w; as well as the points @Q; are 2r-periodic.
Then using the notation

S(x,t,0) := ¢[sin 0?u,(x, t,0) — sin @ cos O(uy (X, 1, 0) + v (x,t,0)) + cos 0?v,(x,t,0)]

and @ := @1 we can rewrite system (4.4) in the following form:

1 2n , /
" %/0 (Z% - %U(Q) cos 6 — %U(Q) sin 9) a6
o1

2n At
o /0 ; S(x—(u' —cn(@)r,t+ At — 7,0)dr d6,

1 1 At
/ /
(4.6) u(x,t + At) = —2u(P ) — _29’ /0 pI(P )dT

2n
+ ! / <7p(Q) cos 6 + u(Q) cos® 0 + v(Q) sin 6 cos 9) do
0

21 o'c

1 2n pAL
+ 5 / cos0S(x — (0 — n(0))r,t + At — 7,0) dr db,
TJo Jo
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1 1 At
/ /
(4.7) v(x,t+ At) = §U(P ) — % /0 py(P')dr

2n
+ 21_TE / (_p;g) sin 6 4+ u(Q) sin 6 cos  + v(Q) sin* 9) d¢

2n pAtL
+— / sinfS(x — (0" — ¢'n(8))7,t + At — 7,0) dr db,

1 2n
(4.8) p(x,t+ At) = . / (p(Q) — o'u(Q) cosf — o'¢'v(Q) sin ) db
TJo
1 2r pAt
—g’c’z— / S(x— (0 — ()7, t + At — 7,0)dr d6.
T 0
Now from the second and the third equation of system (4.1) we get

Pz = _Ql(ut + u/uw + ’Uluy)a
py = —0' (vp + u'vg +v'vy).

Hence the second term of equation (4.6) can be written as

1 At

At
e pe(P)dr = = / (ur + u'ug +v'uy) dr
20 0
At
= Vezyu- (L', 0T dr
0

(4.9)

Since the vector (1,u’,v")T represents the direction of the bicharacteristics joining
the two points P’ and P, see Fig. 2, equation (4.9) implies that

Loa u(P) —u(P’)
2 pe(Pdr = 5 .

Therefore equation (4.6) takes the form

s

2%
(4.10) u(x,t+ At) = 21 / (—QP(Q) cos 0 + 2u(Q) cos? § + 2v(Q) sin 6 cos 9) dé
Q
2n
/ 2cos0S(x — (0" — n(0))r,t + At — 7,0) dr d6.

Analogously we can show that

1A v(P) — v(P’)
_ P’ =7 v/
2@/ py( )dT 2

431



and

2n
(@.11) vt + At) = — / (72’7(@ sin @ + 2u(Q) sin 6 cos A + 20(Q) sin? 9) 9
0

21 o'c

1 2n pAt
+ — / 2sin0S(x — (0 — 'n(9))7,t + At — 7,0) dr db.
2r Jo Jo
Using [5, Lemma 2.1] and the fact that S cos@ and Ssin 6 can be neglected, because
they are second order terms in time evolution, i.e. O(At?), cf. [9], we can derive the
following approxzimate evolution operator to the linearized Euler equations (4.1):

/ 2r /
(4.12) o(x.t+ At) = o(P') - p(ci )} 21_n/o (pr§> —25u(Q) cos

- 2%1;(@) sin 9) 46 + O(AL2),

/! !

2n
(4.13) w(x,t+ At) = 2i / (72P(Q) cos 0 + 2u(Q) cos? 6 + 2v(Q) sin 0 cos 0) do
0

T ge
+ O(At?),
2n
(4.14) v(x,t + At) = % /0 (72’7;2) sin 6 + 2u(Q) sin 6 cos 8 + 20(Q) sin? 0) 0
+ O(AF?),
1 2%
(4.15) p(x,t+ At) = > /0 (p(Q) —20'du(Q) cos — 20'v(Q) sin 9) de
1 O(AR),

As we mentioned before this scheme is analogous to the EG4 scheme of the wave
equation system. We call it the EG4-FEuler scheme.

5. NUMERICAL EXAMPLES

Example 5.1. Rectangular waveguide

We consider a rectangular waveguide with rectangular cross section of sizes a and b.
The dielectric parameters are € and p. For transverse magnetic waves, i.e. TM modes,
H, =0 and F, satisfies the differential equation

1 0°E
“Eae "
where ¢ = 1/,/€/ is the speed of wave propagation. Note that the fields E and H
have in the Cartesian coordinates the form

(5.1)

E =FE*%+ EYy + E*2,
H=H"%+HYy+ H*Z.
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If the time convention e!“! is used then equation (5.1) will change to

2
w
(5.2) AE + 5E =0,

Further, if we assume E*(z,y, z) = Ef(x,y)e "* then (5.2) implies that

0? 9?2 9 w? .
[ﬁJra—?ﬂJr(’Y Jr—)}EO—O.

Using the boundary conditions

E;(0,y)=0, Ei(a,y)=0, Ei(z,0)=0, Ef(z,b)=0,

where 0 < < a and 0 < y < b, we obtain Ef from the above differential equation

and thus determine the electric field components E*, EY, E* and the magnetic field

components H” and HY. For example,

E.(x,y,z,t) = Ey sin(lr) sin(%y) cos(wt — Bz),
a

where v = i = i\/w2ug - (mn/a)2 - (mt/b)2 for more details see [1] or [2]. If we

take w = cn\/(m/a)2 + (n/b)Z, i.e. the cutoff frequency, then for the case a =b =1

and m = n = 1 the exact solution E,(z,y, z,t) has the form

E*(x,y,t) = sin(nz) sin(ny) cos(v/2net),

where we set Fp = 1. To use the EG4 scheme denote E,(z,y,t) by ¥(z,y,t) and

solve the wave equation

7/)tt = CZ (wzz + 'l/)yy)

together with the initial conditions

Y(w,y,0) = sin(nx) sin(ny), Y¢(r,y,0) =0,

and the boundary conditions

P(0,y,t) =0, t>0, 0<y<1,
Y(l,y,t) =0, t>0, 0<y<1,
P(x,0,t) =0, t>0, 0<a<],
W(z,1,8) =0, t>0, 0<z<1.
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Defining ¢, u, and v so that ¢ = iy, u = c),, v = ¢y we obtain the system

0 — c(uz +vy) =0,
U — cpg =0,
v —cpy, =0 on 0, 1[2 x [0, ool
p(z,y,0) =0,
u(z,y,0) = cncos(nz) sin(ny),

v(x,y,0) = crsin(nz) cos(ny) on [0,1]%
The exact solution is

© = —V/2nesin(nz) sin(ny) sin(v/2nct),
u = e cos(nz) sin(ny) cos(v/2net),

v = cnsin(nz) cos(ny) cos(V2net).

We take ¢ = 0 on the boundary of Q and extrapolate v and v there. We apply
the transformations t — t/tg, p — @to, u — uty and v — vty where ¢ty = V2me.
The following two tables show the L2-error and the experimental order of conver-
gence (EOC), which is defined in the following way using the solutions computed on
two meshes of sizes N1, Na:

[Un, (T) = Uy, |l
EOC =log ||UN2T Ugu/ ( )

Scheme | N | L2-error-far | L?-error-near | L2-error
EG4 40 0.000219 0.000872 0.000899
80 0.000091 0.000438 0.000447

100 0.000067 0.000362 0.000368

120 0.000054 0.000312 0.000317

140 0.000047 0.000276 0.000280

160 0.000039 0.000247 0.000250

Table 1. T'=0.2, CFL = 0.55, L2-error between the discrete and the exact solutions.

In Tab. 1 the L2-error-far represents the error in the region far from the boundary
while the L2-error-near stands for the error near the boundary.
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N | o) = ¢l | lu(T) —w"| | [UT) -U"[ | EOC
40 | 0.000219 0.000368 0.000564
80 |  0.000091 0.000178 0.000267 | 1.078855
160 | 0.000039 0.000084 0.000125 | 1.094912
320 | 0.000019 0.000042 0.000062 | 1.011588
640 |  0.000009 0.000021 0.000031 | 1.000000

Table 2. EG4 scheme, T'= 0.2, CFL = 0.55.

In Table 2 we measure the speed of convergence of the EG4 scheme. We see
that it is approximately equal to 1, which is correct since the approximate evolution
operator EG4 is of the first order in time and the shape functions are piecewise
constant in space. From the tables we see that the overall L2-error decreases as
the mesh is refined. This shows that the method converges. Note that the error is
dominated by an error produced due to the numerical boundary conditions, namely
the extrapolation for u and v. In [7] we were able to improve this situation by using
more sophisticated numerical boundary conditions. Observe again that the error in u
due to the numerical boundary condition is much higher than the error in . For ¢
we can use the Dirichlet condition directly.

Example 5.2. Divergence test
Let = [-1,1] x [-1,1]. Consider the Maxwell equations (3.1)—(3.3). Let the
initial data be

E*(x,y,0) = sin(%x) sin(%y),

H*(x,y,0) = HY(z,y,0) =0 in

and suppose that the boundary of €) is a perfect conductor. Then using the trans-
formations t — t/c, E* — ¢, HY — u/Zy and H* — —v/Zj, these equations read

8_@_811 ov Ou Oy 81}_8_@

ot "o oy @ o ot oy
To test that the magnetic field is divergence-free remember that by the definition
OFE?/0z = 0. Further,

oOH* OHY 1((’)u 81)).

or 0y Zo\dy oz

Then V- H = 0 can be written as du/dy — dv/0x = 0, i.e. the divergence-free
property is equivalent to the vanishing vorticity in the case of TM modes. In Tab. 3
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we present the vorticity preservation for the EG4 scheme. We compute the discrete
vorticity DV given by the formula

DV = palytiar g — pydsvar g for each o, 3" € Z,

where we have denoted by uo- g values at vertices of square mesh cells, §, is used as
defined before, and p,u = —[ (w + h) + u(w — —h)] In Tab. 3 we show reference
values for DV, g, namely, the average value (vor-aver), the minimum (vor-min) and
the maximum (vor-max). The values of vor-aver demonstrate that the EG4 scheme
preserves the divergence-free property in a good manner.

100 x 100 200 x 200 400 x 400

vor-aver 0.00092521478 |  0.00029260981 0.00010088980
vor-min | —0.01221328952 | —0.00948232290 | —0.01140008104
vor-max 0.01221328952 0.00948232290 | 0.01140008104

Table 3. Preservation of zero divergence, CFL = 0.55, 100 time steps.

Example 5.3. Linearized Euler equations problem

In this experiment we consider linearized Euler equations
(5.3) U; + A1 (U)U, + Ay(U)NU, =0, x=(z,9)" €]-1,1[x]-1,1],

where

:\
_
@\

~

) A2 =

oS = O

'~

o o <. o

1 0
0 0
1
v

SIS B < ()
o o o
- o =
o &, o o
o o o

v
1/5 1

S

Note that this system is a special case of system (4.1) with o’ = ¢ = 1. Here v’
and v’ are given constants representing the mean flow in the direction of z and y,
respectively. We consider system (5.3) together with initial data containing acoustic,
entropy and vorticity pulses as follows

o(z,y,0) = 2.5exp(—40((z — za)* + (y — ya)?))
+ 0.5 exp(—40((z — 1) + (y — 1)*)),
u(z,y,0) = 0.05 exp(—40((z — z3)* + (y — v5)*)),
v(@,y,0) = —0.05 exp(—40((x — ) + (y — ys)*)),
p(x,y,0) = 2.5exp(—40((x — 2a)? + (y — ya)?)).
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We suppose that the main flow is in the direction making a 45° angle with the z-axis
and that u' = v/ = 0.5sin(4n). Moreover, we assume that the initial location of the
acoustic pulse is at (z4,y.) = (—0.31,—0.31), whereas the entropy and vorticity is
at (zp,yp) = (0.39,0.39). We set the CFL number v to be 0.45 and take a mesh
consisting of 100 x 100 cells. In Fig. 3, top-left, we compare the exact solution, the
numerical solution using the first order FVEG4-Euler scheme and the Lax-Friedrichs
(tensor product) scheme, which is defined by

L L L g

(5.4) Ut =
where the operator Lj for the linear one dimensional system with constant coefficients
U, +A,U,=0

is given as

AT, At o .
p= b = Ay(r) —7%,), where 71, Ul = UL,
2 2h
The solutions are plotted along the line y = x at time 7" = 0.166. In the top-right
figure we show the same comparison between the second order FVEG4-Euler scheme,
the Lax-Wendroff (tensor product) scheme and the exact solution. Note that the

Lax-Wendroff (tensor product) scheme is defined by equation (5.7) with Lj, given as

At

s (Fan s 3 M

) A1, + y

where Ag,v(z) = $[v(z + h) — v(z — h)], 62v(z) = v(z + h) — 2v(z) + v(z — h).
This is the symmetrical product also known as Strang splitting, see Strang [10]. In
the bottom-left figure we give the comparison between the second order FVEG4-
Euler scheme, the Lax-Wendroff (tensor product) scheme and the exact solution at
time 7" = 0.332. In the bottom-right figure we compare the second order FVEG4-
Euler scheme and the Lax-Wendroff (tensor product) scheme at time 7' = 0.665. We
conclude that the acoustic part of the solution is moving faster than the entropy
part and that the result using the FVEG4 first order is more accurate than that of
the Lax-Friedrichs scheme. Moreover, both the FVEG4 second order and the Lax-
Wendroff (tensor product) schemes give a comparable approximation of the exact
solution. The difference between the schemes FVEG4 second order and the Lax-
Wendroff (tensor product) as the time developed (see Fig. 3 bottom-right) is quite
small for smooth solution.
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1=0.166 10166

— exact - exact
— FVEG4—Euler frst ord ~~ FVEG4-Euler second

order order
~.-.~. Lax-Fiiedrichs (tensor product) Lax-Wendroff (tensor product)

— FVEG4—Euler second order
-~ Lax-Wendroff (tensor product)

= 0 1 = [} 1

Figure 3. Density along the line y = z, v/ = o = 0.5sin(%1t)7 CFL = 0.45, mesh:
100 x 100. Top-left: T' = 0.166, comparison between the first order FVEG4-
Euler scheme, Lax-Friedrichs (tensor product) scheme and the exact solution, top-
right: 7" = 0.166, comparison between the second order FVEG4-Euler scheme,
the Lax-Wendroff (tensor product) scheme and the exact solution, bottom-left:
T = 0.332, bottom-right: T = 0.665, comparison between the second order
FVEG4-Euler and the Lax-Wendroff (tensor product) scheme.

Conclusions.

In this paper we have derived and analyzed two approximate evolution operators
(EG3, EG4) for the Maxwell equation of the electromagnetics. Both the operators
are of the first order in time and are based on a general theory for multidimensional
linear hyperbolic systems of the first order. As a result the numerical schemes take
into account all of the infinitely many directions of wave propagation along the so-
called bicharacteristic cone. Further, for the Maxwell equations the approximation
of the dispersion relation was studied. It is shown that this relation is approxi-
mated with the first order error, which is correct for the piecewise constant shape
functions. Moreover, it is shown that an important divergence-free property of the
solution to the Maxwell equations is satisfied exactly by the approximate EG opera-
tors, i.e. EG1, EG2, EG3, EG4. In the second part of this paper we have applied the
general technique of the EG-operators to the linearized Euler equations and derive
a new EG4 operator for the Euler equation system. Some numerical experiments for
the Maxwell equations and for the Euler equations are presented in the last section.
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These experiments demonstrate good higher order as well as multi-dimensional be-
haviour of the FVEG schemes for linear hyperbolic systems. Generalization of the
results presented in this paper to nonlinear problems can be found e.g. in [4], [6].
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