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PDE MODELS FOR CHEMOTACTIC MOVEMENTS: 

PARABOLIC, HYPERBOLIC AND KINETIC 

BENOIT PERTHAME, Paris 

Abstract. Modeling the movement of cells (bacteria, amoeba) is a long standing subject 
and partial differential equations have been used several times. The most classical and 
successful system was proposed by Patlak and Keller & Segel and is formed of parabolic 
or elliptic equations coupled through a drift term. This model exhibits a very deep mathe­
matical structure because smooth solutions exist for small initial norm (in the appropriate 
space) and blow-up for large norms. This reflects experiments on bacteria like Escherichia 
coli or amoeba like Dictyostelium disco'ideum exhibiting pointwise concentrations. 

For human endothelial cells, several experiments show the formation of networks that can 
be interpreted as the initiation of angiogenesis. To recover such patterns a hydro dynamical 
model seems better adapted. 

The two systems can be unified by a kinetic approach that was proposed for Escherichia 
coli, based on more precise experiments showing a movement by 'jump and tumble'. This 
nonlinear kinetic model is interesting by itself and the existence theory is not complete. It 
is also interesting from a scaling point of view; in a diffusion limit one recovers the Keller-
Segel model and in a hydro dynamical limit one recovers the model proposed for human 
endothelial cells. 

We also mention the mathematical interest of analyzing another degenerate parabolic 
system (exhibiting different properties) proposed to describe the angiogenesis phenomena 
i.e. the formation of capillary blood vessels. 

Keywords: chemotaxis, angiogenesis, degenerate parabolic equations, kinetic equations, 
global weak solutions, blow-up 

MSC 2000: 35B60, 35Q80, 92C17, 92C50 

1. INTRODUCTION 

This paper is concerned with the description of mathematical theory for some ex­

amples of chemotaxis processes. Chemotaxis is a biological phenomenon describing 

the change of motion when a population formed of individuals (such as amoebae, 

bacteria, endothelial cells etc) reacts in response (taxis) to an external chemical 

stimulus spread in the environment where they reside. As a consequence, the pop-
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ulation changes its movement toward (positive chemotaxis) a higher concentration 

of the chemical substance. A possible fascinating issue of a positive chemotactical 

movement is the aggregation of the organisms involved to form a more complex or­

ganism or body. Various biological issues and mathematical questions around cell 

motion can also be found in the Lecture Notes in Biomathematics edited by Alt and 

Hoffmann [2]. 

m- 'P*-

ъ % 
V, 

w- **v.„ 

% « 

Figure 1. Motion of amoeba Dictyostelium discoideum in reaction to a chemoattractant 
emitted from the dark point at the upper left corner. 

When a population density is involved in a chemotaxis process, a first level of 

description has been considered from a Partial Differential Equation viewpoint; the 

full population at the macroscopic level is described by a coupled system on its den­

sity and the chemoattractant concentration. The most famous being Patlak, Keller 

&: Segel model ([55], [39]) which is formed of parabolic or elliptic equations coupled 

through a drift term. This model is very successful for describing the aggregation 

of the population at a single point (chemotactic collapse in the terminology of [32]). 

For this reason it has given rise to an important literature and we refer to the sur­

vey [35] for complements. Here we will give a very simplified account on the status 

of the Patlak/Keller-Segel system. 

More recently, experiments with human endothelial cells on matrigel have been 

realized. Their movements lead to the formation of networks that are interpreted 

as the beginning of a vasculature ([59], [28]). This phenomenon is important since 

it is responsible for angiogenesis, a major factor for the growth of tumors [14], [44], 

These structures cannot be explained by the above parabolic models which gener-

ically lead to pointwise blow-up, but are recovered by numerical experiments on 

hyperbolic models. This also represents a recent tendency in the literature to use 

hyperbolic equations to describe intermediate regimes at the macroscopic level rather 

than parabolic equations, see for instance [20] and the references therein. 

Another class of models has been proposed which consider a more local (say indi­

vidual) or mesoscopic level. This approach involves kinetic (Boltzmann type) equa­

tions with nonlinear scattering kernels which are based upon a detailed knowledge 
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of the motion at the cell level. Escherichia coli bacterium for instance is known 

to move with a sequence of runs and tumbles, see [1], [54], [53], [62], [13] and the 

references therein. The advantage of the kinetic model is that, it not only provides 

a better detailed description of the movement, but also unifies the two macroscopic 

models by asymptotic derivations using either a diffusion or a hydrodynamic scale. 

For simplicity, we always present the models in the case of the full space Ud 

(although experiments are always on dishes), and we always consider the simplest 

models (although much more complexity in the reactions is needed for most of the 

experiments), and we always take the coefficients equal to one as much as this is 

possible by choosing the correct scales (in other words we only keep the lowest 

numbers of parameters). 

For chemotaxis we borrow our presentation from the paper [17]. 

2. T H E PATLAK/KELLER-SEGEL SYSTEM FOR CHEMOTAXIS 

2.1. Existence and blow-up 

The simpler model proposed for describing the chemotactic motion takes into ac­

count only the density n(t,x) of cells and the chemoattractant concentration c(t,x) 

assuming that the cells emit directly the chemoattractant which is immediately dif­

fused. Then we arrive to the following parabolic-elliptic system 

(i) 

— n = An - xV • [nVc], t > 0, x Є Rd, 
ot 

-Ac = n, t>Q, x єUd, 

^n(Q,x) =n0(x) ^ 0, x єUd 

where the chemotactic sensitivity function \ is constant with respect to the chemical 

density c. Notice that with the ad hoc decay conditions at infinity on n and c, the 

chemical concentration gradient can be represented exactly by 

(2) Vc(t,x)= [ VEd(x-y)n(t,y)dy, 
Jud 

where Ed is the fundamental solution of the Laplacian in Ud, a formula that can be 

used directly in the equation on n. The validity of (1) in the framework of chemotaxis 

is supported by some experiments on the Escherichia coli bacterium (see [11], [6] 

and the references therein), even if this model does not seem to reproduce some 

of the observed chemotactic movements ([11])- Moreover, the system (1) has other 

interesting physical interpretations. For example it arises in astrophysics and in 

statistical mechanics (see [7], [8], [9] and the references therein). System (1) was 

extensively studied by many authors and a huge quantity of mathematical results on 
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the existence of global in time solutions and on the blow-up of local in time solutions, 
have been produced. We refer to [35] for a quite complete bibliography. Let us just 
mention that the system (1) has a conserved energy (see for example [10], [27] and 
[34]) given by 

_d 
dť 

/ { n ( l n n - 1) - | | V c | 2 } dx = - / n | V ( l n n - Xc)\2 dx ^ 0. 

The different signs in the two terms in the left-hand side allow for a complex be­
haviour as it is expressed in the 

Theorem 2.1 (Existence for the chemotaxis system (1)). Assume d ^ 2 and 
consider some n0 G Ll(Ud) such that n0 ^ 0. There exists a constant K*(x,d) 
such that if ||no||z,d/2(Rd) ^ IC*, then the system (1) has a global (in time) weak 
solution (n,c) such that for all t > 0, n(t) is nonnegative and 

ln(t,x)dx= I n0(x)dx, \\n(t)\\Lv{ud) ^ \\n0\\Ll,{Utl), maxj l ; - - l j ^ p ^ - , 
j IK J IK 

and 

IMÍ)IILI'(R«-) ^C(t,K0,\\n0\\Lv{Utl)), -<p^oo. 

Theorem 2.2 (Blow-up for the chemotaxis system (1)). For d ^ 3, assume that 

r Y ( f \d/(d~2) 
(3) / - | : r | 2 n o ( a ; ) d a ; ^ C J / n0(x)dx) 

JR-* l \Jud J 

for some constant C* = C*(x, d) > 0, and for d — 2, assume that fud | |a; | 2no(x) da­
is finite and that fRd n0 ^ K*(x, d = 2) = Siz/x- Then, the chemotaxis system (1) 
has no global smooth solution with fast decay. 

R e m a r k 2.3. In dimensions d ^ 3, the assumption (3) is incompatible with 
the smallness assumption on ||no||Ld/2(Rd) °f Theorem 2.1 in view of the classical 
inequality 

I I n0(x)dx) ^C( l-\x\2n0(x)dx) | |n 0 | | 2
d /2 ( I R < i ) . 

It can be derived just dividing this integral in two integrals for \x\ -̂  R (and use 
Holder inequality) and |x| ^ R (and use \x\2 ^ H2) and optimizing the result 
in R. In three dimensions, it is an open question to replace the assumption (3) 
by "||no||/^^(IR./) large enough" (without second re-moment), as it is suggested in two 
dimensions and for radial solutions by the result of [32] (see also [60]). 
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R e m a r k 2.4. In dimension 2, it has been proved recently that the constant 
1f*(x,2) = 8TI/X in [21]. The method differs slightly from the one derived in [37] 
(and the one we present below) which gives K*(x, 2) = 4TI(1.86225)/X, after estimat­
ing the corresponding Gagliardo-Nirenberg-Sobolev constant Cgns = 1/K(1.86225) 
following [64]. Therefore the threshold for blow-up or existence of classical solutions 
is exactly 8K/X- The corresponding result in a bounded domain was proved in [27]. 

These results are proved, as stated here in [17]. They are classical except for the 
propagation of Lv norms under the only assumption ||no||_<V2(R«-) ^ Ko- We recall 
that the basic argument for existence is due to [37] who also proved that blow-up 
may occur in two space dimensions for large initial data. This result was extended to 
dimensions d ^ 3 in the case of radial symmetric solutions by Nagai [50] who shows 
that blow-up may arise whatever the initial mass is, depending on the x momentum 
of order d of no. Actually, the radial case is better understood and, in two space 
dimensions for large mass M (larger than the corresponding K0 in Theorem 2.1), 
the type of blow-up has been specified. In [32] the authors proved that chemotactic 
collapse i.e. pointwise concentration as a Dirac mass occurs, more precisely, we have 
the following 

Theorem 2.5 (Chemotactic collapse for the system (1)). For d = 2 and radial 
solutions to (1), assume that JR2 n0(x) dx > K0(x,d = 2) = Siz/x- Then there is a 
finite time T* such that 

n(t,x) j — 6(x = 0) + Rem(x), 
A. 

where the remainder Rem(:r) is an L1 function that can be explicitly computed. 

Even in the non-radial case, blow-up and chemotactic collapse in two space di­
mensions are very close: indeed from the argument in [37], blow-up can occur only if 
solutions lose equicontinuity in L1. In [60] and the references therein, the concentra­
tion measures that can appear in finite time are characterized. In three dimensions, 
the extreme complexity of the behavior appears in the numerous blow-up modalities 
described in [10]. 

Besides aggregation of cells, another important subject that motivated the deriva­
tion of the system (1), is the travelling waves solutions. Additional and very spe­
cific nonlinearities (sensitivity factor x = l / c for instance) can lead to travelling 
waves [61], [63]. Another biochemical explanation is proposed in [11] in order to ob­
tain swarm rings, namely the attractant (aspartate, c(t,x) with previous notation) 
is produced by the cells themselves when consuming succinate (f(t,x) below). The 
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proposed model is 

(4) 

—n — An + div(nVc) = 0, 
at 
d 

mc-Ac = nf, 

v ^ / - 0Af = -ffn. 

The pattern formations in such more elaborate systems can be much more involved 
than those in (1). The chemical reactions can create spiral waves that themselves 
induce waves on the cell density n (see [45], [49]). 

2.2. A priori estimates for small initial data 
We indicate here the main argument leading to global existence. It was given 

in [37] as well as a proof of blow-up for large data. We depart from the equation (1). 
We arrive directly, after multiplication by n p - 1 p , to 

(5) ^- [ np + 4 - - — - / \Vnp'2\2 = X[ Vnp • Vc = X [ ™p+1. 
d£ Jud P Jud Jud Jnd 

In order to estimate the L p + 1 norm of n, we use standard interpolation and the 
Gagliardo-Nirenberg-Sobolev inequality (see [23]) on the function u(x) = np /2 . 
Hence, in space dimension d > 2 we get for any p ^ \d—l (so that: \d ^ p-fl ^ j^) 

(6) / nP+1 ^ Cgn3(d,p)||VnP!2||L2 , J I M I ^ R , ) . 
JUd 

And this also holds true in dimension d = 2 for p > 0. 
Inserting this inequality in the right-hand side of (5), we find, for all p such that 

max{l; \d - l } ^ p < oo, 

(7) d7 L nP ^ (P " ^ l ^ 7 2 ^ 2 ^ ) [xCg„.(d,p)||n||L-,a(R„) - ^ ] . 

In dimension d = 2, (7) means that if the initial mass J no is sufficiently small, 
then the ||n(£)||/^(R2) norm (for the same p) decreases for all.times t ^ 0. More 
precisely, the threshold for these a priori bounds is 

/ 
Ju 

4 4K(1.86225) 

xCgns(d=2, p= 1) ~ x 

as announced in Remark 2.4. Notice also that the equality can be obtained using an 
estimate on the "entropy" nln + (n) in place of np (which amounts to using p = 1 in 
the above calculation). 
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In dimension d > 2 and for p = \d, the inequality (7) gives us that whenever we 
have initially 

(8) xCgns(d,p)\\n0\\Ld/2{Ud) - - ^ 0, 

the ||n(£)llz,d/2(Rd) norm decreases for all times t ^ 0. As a consequence, whenever 
(8) holds true, all the Hn^HL^R'') norms, with max{l; \d - 1} ^ p ̂  \d, decrease 
for all times t^Q. 

We refer to [17] for more details about the proof and especially for the propagation 
of Lp bounds with a smallness assumption independent of p and for the proof of 
existence based on a regularized system satisfying the same estimates. We also refer 
to [21] for a proof of the optimal critical mass in two dimensions. 

2.3. Blow-up 
In this subsection, we give a proof of Theorem 2.2. Here we use the standard 

quantity 

!(!)= [ \\x?n(t,x)dx, 
Jud z 

and the formula (2), since we deal with a smooth solution (n, c) of (1) with fast decay 
at infinity. Hence 

Vc(t, x) = -Xd [ ,X~V n(t, y) dy, Xd > 0. 
, /V \x~y\d 

Next, we denote by M = fRd n0(x) dx. Using mass conservation, M = fRd n(t, x) dx, 
and following [51], [50], [30], [9], we compute for d ̂  3 

—7(1.) = d n0(x) dx + x / n(t, x) x • Vc(c, x) dx 
dt JUd JUd 

= dM - Xdx / n(t, x)n(t, y) *' .V dx dy 
JR<'xR<' \x~y\d 

= dM -^x n(t, x)n(t, y) - — - j ^ dx dy 
2 JR'-xR«- \x~y\d z 

^ dM ~ o Pci-2 X / n(t, x)n(t, y) dx dy 
*K J\x-y\^R 

^M ' + 2 ^ X Jx_ >R
 n& X)n{t>y) dx dy = dM~ЉX 

2Rd 

€ 

Ш ~ 2lßïM2 +
 2^ X LXR"

 n{t'x)n^X ~У\2åxàУ 

dM - ^ f e м 2 + 2~ЏxM j ^ \x\Mt,x)áx 
XdX Ъf2 , 4 V = dM~_W^M Z + ~^xMI{t). 
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Choosing R = /xM1!^ 2> with /j, small enough we find 

d r C 
ď*J«<"ta-/^J(ťH-

When the second x momentum of no, I(0), is too small compared to Md^d~2\ then 
I(t) decreases for all times and 

j'W<Mlif-/W<0>-1 < 0 Vť^O. 

This leads to a contradiction after the time T* = I(0)M~l [l — Mdp(d_2) I(0)] ~ since 
I(t) cannot be negative for smooth solutions. 

For d = 2, the situation is simpler because we arrive directly at the identity 

£ / ( t ) = 2M-^-X f n(t, x)n(t, y) dx dy = 2M- ^ X M 2 , 
at - JudxUd -

with A_ = |TC, which leads directly to the same contradiction as before after the time 

T* = / ( 0 ) M - 1 [ ^ M - 2 ] " 1 . 

This leads to the blow-up condition M > SK/X-

2.4. Radially symmetric solutions 
In this section, we come back on the result of [31], [32], Theorem 2.5, that expresses 

the type of blow-up as a chemotactic collapse for radial solutions in two dimensions. 
We explain why, for radially symmetric solutions, the system can be simplified and 
we prove a blow-up result which is close to exhibit the shape of the chemotactic 
collapse solution. 

Radially symmetric solutions to the system (1) in d dimensions are reduced to the 
system on n(t,r), c(t,r), where we set r = \x\, 

(9) 

' Ž ( r d _ l n ) " ( r < І ~ V ) ' + X(rd-lnc')' = 0, t ž 0, r > 0, 
_ ( r đ - V y = r d - i П ) 

. n ' ( í , r = 0) = c(t,r = 0) = 0 , 

where ' stands for d/dr and initial data have to be specified. We introduce the 

quantity 

M(t,r)= [ ad-ln(t,<j)&G = -rd~lc'(t,r), 
Jo 
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and the equation (9) can be reduced to a single equation. Indeed it is equivalent to 

( M'{r) = rd~ln{r), 

m ii^>-^-(^)'-^'M=o, 
where we have deleted the argument {t, r) when not necessary. 

In two dimensions, steady states solutions can be further derived from this system 

and are given by (just differentiate the second equation of (10) to see it) 

rM' -2M + | M 2 = 0, M(0) = 0. 

One readily checks that there is a non-trivial solution only in the case of a special 

relation between \ a n < i the total mass, namely M(co) = M with, 

•oo 

^oo 

4 * M ~ = 1, 

м' 
Mx(r) = 

1 + Л r - 2 ' 

Notice that the above equality is equivalent to the threshold for blow-up in Theo­

rems 2.2 and 2.1 because M(oo) differs from the total mass of n by a factor 2K. 

This solution may serve to give a hint on the behavior of generic radially symmetric 

solutions and especially to understand why a singularity can arise only at the origin. 

Theorem 2.6. Assume that in the 2d radial case, we have 

4XM{oo) < 1, M{t = 0,r) ^ MAo(r), 

for some X° > 0 (notice that M°° > M(oo)). Then the solution to (10) satisfies 

M{t,r) -> 0 as t -» oo locally uniformly, 

and thus n{t) in (9) vanishes in L1(IR2) locally. 

Theorem 2.7. In the 2d radial case, when we have 

4XM(oo)>l, M(t = Q)> X

M{™}_2, 

for some A0 > 0, then the solution to (9) blows up in finite time. 

This theorem expresses that, in the blow-up result proved in Theorem 2.2, the 

limitation on the second moment is in fact useless in the radially symmetric case. 

The proof we propose here uses a comparison argument with sub or supersolutions 

in the spirit of [37]. 
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P r o o f of Theorem 2.6. Being given x, M(oo) and M°° > M(oo), we may 
always choose a x > X which satisfies 4xM°° = 1. Then we consider the function 

N(t,r) = inf(M(oo),j¥A(,)(r)), X(t) = X° + 2(M°° - M(oo))(x - *)*, 

and we claim that it is a supersolution to (10) (with d = 2). Indeed, we have 

P = -NTT^Jtx{t) or0' 
N' = 2/V A r

t , or 0. 
1 + \r~* 

Therefore, we first compute the radius R(t) such that for r > R(t) the infimum of iV 
is attained by M(oo). It is given by 

ut)Rm-2_M°°-M(<x>) 
X{t)R{t) ~ M(oo) ' 

and for r -̂  R(t), we have 

d.Ň--r(!L\_xN'Ň = N r 

- < ' ) 

- 2 

dt \ r J r 1 + Ar - 2 

- r - 2 

>N 

ď w . ч . T 7 0 O / v ЛГ -2 

— r 
= N 

1 + Лr- 2 

- 2 

1 + Лr- 2 

= 0. 

- _ A ( 0 + 2 * O * - X ) 1 + A r _ a 

-AA(<) + 2 M - ( , - , ) T Í « 1 I 

-^A(t) + 2(M°°-M(oo))(x-x) 

But the infimum of two solutions is a supersolution and thus N is indeed a superso­
lution to (10). 

By the comparison principle, we deduce that the solution (10) satisfies M(t,r) ^ 
N(t,r). We conclude the proof just noticing that R(t) -> oo and for a given inter­
val r G (0, R) we therefore have for t large enough M(t,r) ^ M°°/(l + X(t)R2) -> 0. 

• 
P r o o f of Theorem 2.7. We follow the same lines as before and first choose an 

MxM°° = 1. 

M(oo) — 

M°° < M(oo) and a y < x which satisfy 4xM°° = 1. We consider the function 

^ ŕ ' r ) = sup(г+4^'мм t)W), 

and we argue in two steps; i) X(t) = X°e~at for t < ti large enough, ii) X(t) = 

A(£i) — t + 1 \ for t\ < t < ti = t\ + \(t_) the first time where X(t) vanishes, and also 

we decrease slightly the value of M°° during this step. 
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We will prove that IV is a subsolution as the supremum of two subsolutions and 
this concludes the proof because we deduce that M(t) ^ N(t) and thus M(^2,0) > 0 
which is impossible for smooth solutions. 

To prove that IV is a subsolution, we first notice that M(oo)/(l + A°r~2) is a 
subsolution to (10) because it is an increasing function and a solution for \ < \-
Secondly, we consider t < t\ and we have to prove that M\^(r) is a subsolution 
only in an interval r ^ (t)R where it is attained by the sup i.e. 

M(oo) M u 

1 + A°i?(í)-2 í + X(t)R(t)-2' 

Notice that R(t) ^ RQ with 1 , ^ p ^ l - - = M°°. Then, we compute l+A"Я(t) 

choosing 

, - 2 fr-rí-ï-ÏҐN-N^ 

ŠN 

-IлW + й Г - t e - x ) - ^ 

<!v 

1 + Ar-2 

r~2 

1 + Ar"2 

5 - 2 
-^лw + й Г - t t - x ) - ^ 

--A(i) + 2M°°(x-x)AÄo-2 

0, 

dť A(í) = -2M°°(X - x)Дo~2A(ť), a = 2M°°(X - x)IV 

In a third step, we choose t\ large enough so that A(^i) is as small as necessary and 
choose, 

\(t) = \(t\) -t + t u M°°(t) = M°°(l - 2(t - *i)), 

for t\ < t < 1-2 with 1^2 the time where A(^) vanishes which can be chosen as close as 
we wish to t\ by choosing t\ large. This can be achieved by keeping the corresponding 
x(t) ^ X- Then we have 

Í-N-r(-) -^N'N^N 
ot \ r ) r 

n - 2 

•I+7-4,*) + 5,r<,)/ir,<,> <o, 

as long as t < t 2 is close enough to t\ which is exactly what we want. We have 
obtained again a subsolution which concludes the proof of Theorem 2.7. • 
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2.5. Non-radial blow-up 

Very little is known about the blow-up modalities for non radially symmetric blow­

up. A first question is the condition for blow-up itself; indeed it is not clear if the 

condition of a finite second x-moment is needed. It is striking that this condition is 

not necessary in the radial case (see Theorem 2.5). Computations were performed 

on rectangular domains by Marrocco [47] which show that the blow-up does not 

occur at the barycenter of the rectangle (see Fig. 2). It seems that a singularity 

<CHEMOTAXІS> 
OЄNSIÎE 4» BЛCTERIES (LOG) Sl » p -. 105 T ( * ) - 105 
ł W -1.2в26 

K.. Э 7 « 4 

~ - ~ ^ î 

~>-'''''*4Ííri_______________________í 

* -^-Cü ________________________Яв_______ 
^HИ|^ł^^^í£Ä'^Ф* -* 

щ .^ÊШ^Щ^^^^ШшЩÌÊS^ш^Шщ 
*' ^шiнмяumк^iв^^'-

У 

ù^ ''•• • 

Ь«tłІ_Є .т« _ 

<CHEíiOTAXІS> 
DEЬJSITE - . 8ACTERIES CLOG) S í . p . 1225 T C*)» 2400 
Пн- ~lв 

* . . 10. 453 

f<Ш 

• •• j ^ ~ ~ - ~ 

^ ^ • * 

______________ 

fШШß^^^ 

^ ^ Щ _ _ H _ _ _ H H _ S S 
•*•' '^^ЩBиядИД|ИИB 

^ ^ ^ ^ Щ щ Ш p - ^ \УZ 

IX ' , ^ ^ 

W.cll. ;V <T- lв 

Figure 2. Chemotactic collapse for Keller-Segel model (1) set in a rectangle. This is log 
scale. (Courtesy of A. Marrocco) 

(corner) in the concentration is responsible for the singularity formation rather than 

a mere concentration of n at large values of c. It is also shown that the limitation 

of the chemoattractant production in the equation on c in (1) leads to a smooth 

solution that converges in long time to a Dirac mass at the center. Other numerical 
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experiments in three dimensions can be found in [6] which share the same conclusions 
as in [47], namely the pointwise blow-up follows a first high concentration regime on 
higher dimensions structures. 

3 . INITIATION OF ANGIOGENESIS 

Very recently, several experiments with human endothelial cells on matrigel were 
performed. Their movements lead to the formation of networks that are interpreted 
by biologists as the beginning of a vasculature (see Fig. 3 and similar experimental 

HBMEC SUR 
MATRIGEL 
T=0,2H,4H,6H,20H 

Figure 3. Experiment on the formation of network. (Courtesy of M. Mirshahi) 

results in [59], [28]). This phenomenon is important since it is responsible for angio-
genesis, a major factor for the growth of tumors [14], [44] (see also Section 5). These 
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structures cannot be explained by the Patlak/Keller-Segel parabolic model (or the 
variants) which generically lead to pointwise blow-up. As shown in [59], [28], [24] 
they can be recovered by numerical experiments on the following hyperbolic model 
proposed in [59], [28] 

(П) 

дn ,. , ч 
— + div(rш) = 0, 
д(nu) л. , ч _,_, ч ___ 
— Һ div(тш 0 u) + vv(n) = nvc — т0nu, 
дc . . . 

— Лc + Tic — n(t,x). dt 
This model has proven to be successful to describe qualitatively network formations 
similar to what is observed experimentally. Notice that it does not differ so much from 
the Patlak/Keller-Segel model and the main difference is the so-called persistance 
term 

d(nu) 
— h div nu <£> u. 

dt 
If this term was neglected, then, following the derivation of Darcy equations from 
the compressible gas dynamics system, the momentum equation would reduce to the 
explicit form of the velocity field 

r0nu — nVc — V_t(n). 

And inserting this in the continuity equation for n, we find nothing but a version of 
the Patlak/Keller-Segel model (1) with variable coefficients. 

System (11) can be considered as classical hydrodynamic with an isentropic (also 
called barotropic) pressure law (the term tf(n)) in the momentum equation. The 
force term Vc is also present in gravitational models (arising in astrophysics) and 
the main difference against (1) is mainly the equation on the concentration c which is 
no longer mere diffusion. Numerical simulations performed in [59], [28], [24] confirm 
the network formation for high enough initial cell densities. Of course this model 
does not take into account the deformation of cells which can be observed in Fig. 3 
and which seems important in the pattern observed after some time. Notice also 
that for bovin endothelial cells (which are much larger), another explanation has 
been provided based on the elasticity of the support by [46] and similar networking 
can also be found in coupling the continuity equation on n to an elasticity model for 
the velocity. 

It seems interesting to understand the main difference between the parabolic sys­
tem (1) and the hyperbolic system (11) from a microscopic point of view. This can 
sustain biological observations on the interactions of cells at the individual level while 
the above macroscopic pictures only deal with the population level. 
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4. KINETIC MODEL OF CHEMOTAXIS AND ASYMPTOTIC THEORY 

As proposed in [24], a method to unify the parabolic Patlak/Keller-Segel model (1) 
and the hyperbolic model (11), is to consider the phenomena from a kinetic per­
spective. It turns out that a kinetic model was proposed based on observations 
on Escherichia coli, in [1], [54]. We first present the kinetic model in the first sub­
section, with the existence theory and, in second and third subsections, we explain 
the derivation of the above macroscopic models. We refer to [30], [56] for a general 
mathematical theory of kinetic equations. 

Figure 4. Bacterium Escherichia coli is equipped with flagella. When rotated counterclock­
wise, the flagella act as a propellor resulting in a straight "run". When rotated 
clockwise they fly apart, resulting in a "tumble" which reorients the cell but 
causes nosignificant change in location. 

4.1. Nonlinear scattering equation 
Several experiments show that bacteria like Escherichia coli move along straight 

lines, suddenly stop to choose the new direction and then continue moving in the 
new direction as the receptors of the cell saturate. This phenomenon, called run and 
tumble, can be modeled by a stochastic process called the velocity-jump process [1], 
[54], [53], [62]. At the level of the population this is equivalent to writing a kinetic (or 
linear Boltzmarm) type equation. In fact the model is similar to that of scattering 
for neutrons and is posed for t ^ 0, x £ (Rd, £ e V C Ud (again we choose this for 
the sake of simplicity and one can choose for instance V a ball in LRd), 

(12) 

' §-tf(t, x, 0 + £ • Vx/ + J [K(c; £, 0/(«, x, 0 

-K{c;t'tZ)f(t,x,t')]de = 0, 

k /(* = 0,x,0 = /«,(:-, 0 >0, /o € &(& x V). 

The gradient term expresses the transport of organisms with their own velocity £ 
and the function K{c\ £, £') ^ 0 is called the turning rate or scattering kernel and 
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may also depend on (t,x) through a nonlocal dependency upon c. It gives the rate 
K(c:> £'» £) °f organisms turning from velocity £' to £, and thus the rate K(c; £, £') of 
organisms with velocity £ that are subtracted from the balance on f(t, x, £). Several 
possible forms for this kernel can be found in [33]; here, and again for the sake of 
simplicity, we restrict ourselves to the case 

K(c; £, O = k. (c(t, x - eO) + *+ (c(t, x + e?)), 
(13) 

—Ac = n(t,x) := / / ( < , x,t)åÇ. 

The k_ term expresses a delay £ in reaction time, while fc+ represents an (unphysical) 
knowledge of preferred directions (in the sense of higher chemoattractant concentra­
tion). Notice however that these models do not suppose a comparison between two 
values of the concentration c(t,x), but only a biased turning rate according to the 
knowledge a single value c(t, x ± e£). We will assume that 

(14) k : ± € o 1 ( R + ; R + ) , Jfe±(0) > 0, 0 ^ fc± < Q < oo. 

Also notice that, because of the diffusion equation on c, we arrive at a nonlinear mean 
field equation since the interaction is long range (see Subsection 4.3 for comments 
on this issue). This model shares many similarities with the gravitational Vlasov-
Poisson equation (motion of self-attracting particles). 

Figure 5. Run and tumble movement for Escherichia coli. 

In terms of mathematical theory, this model is very interesting because of the lack 
of a priori estimates. The kernel being nonsymmetric in £ and £', we have only at 
hand the two properties 

(15) 

(16) 
JU 

f(t,x,£) > 0 Vt ^ 0, (minimum principle), 

f(t, x, £) dx d£ = / fo(x, 0 dx d£, (mass conservation). 
'xV JR''xV 
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To go further in the linear case and derive Lv estimates on / for p > 1 is not 

so easy. Recently the entropy structure behind such general models which lacks a 

"detailed balance principle" was understood by [48] (see also [33]). This involves 

specific cancellations that hold true for several linear equations arising in biology 

The existence theory for the nonlinear system (12)-(13) was settled in [13] (thus 

extending a result in [33] in the linear case) and yields the 

Theorem 4 .1. In dimension d = 3, assume that V is bounded, that (14) holds 

and that / 0 G L°°(Ud x V), then there is a unique solution to the system (12)-(13), 

/ G C([0,oo); Lx(Rd x V)), moreover we have 

0 < / ( t , - r , f K C ( * ) , 

l|Vc||Ll.(R.i) < C ( 0 , ^ — Y < P ^ o o , 

I|C||LI'(R'') < C(t), d<p^oo, 

for some increasing constant C(t). 

This result provides global strong solutions and therefore shows a fundamental 

difference against the macroscopic model Patlak/Keller-Segel equation since we have 

seen that the latter exhibits a blow-up. Several extensions of Theorem 4.1 have been 

obtained (see [36]) and the parabolic equation on c can be treated as well as a specific 

dependency upon Vc in k. 

4.2. Diffusion limit 

The classical field of application of the diffusion limits is to derive macroscopic 

equations like the heat equation from a scattering model. The regime of interest is 

when the scattering operator dominates transport and this leads to small velocities. 

Then a rescaling is introduced. Here it is natural to use the small time scale e arising 

in (13). The diffusion scaling consists in considering 

f ^/ e(«,*,«:) + | . V * / e 

(17) + 4 [ [Kє(cє;ţ,Ofe(t,X,0 - KгiCeA^Ofe^X,?)}^' =0, 
£ Jv 

fe(t = 0,x,Ç) = fo(x,ţ)>0. 

The notation Ke has only been used to put in evidence the dependency upon e in 
the definition of K in (13). 

The problem of studying the limit as e vanishes is extremely classical and leads to 
a diffusion equation, see [4] for instance in the linear case. In case of the nonlinear 
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model (12)-(13), it has been proved ([13)] that, as e -» 0, 

fe(t,x,£) ->n(*,z), 

c£(t,x) -> c(t,x), Vc£(t,x) -> Vc(£,a;), 

and that the Keller-Segel model holds in the limit 
r\ 

—n(t, x) + div(xnVc) = div(DVn), t^ 0, x E (Rd, 
at 

—Ac = n, 

with transport coeficients given by 

(in the case of k+ = a+ip(c), k- = a-tp(c)). 
This result expresses an interesting effect. The diffusion D(c) only arises from 

the symmetric part of the turning kernel K (at zeroth order), while the drift (and 
thus the sensitivity x(c)) arises from the antisymmetric part at the first order in e. 
In other words the memory effect is fundamental to obtain the observed collective 
movement of cells. Notice also that drift terms in diffusion equations have also been 
considered in Degond et al [19], [52]. 

4 .3. Hydrodynamic limit 
The mere scattering model (12)-(13) does not allow to derive a correct hydrody-

namical limit. Indeed local interactions (in the spirit of Boltzmann's binary collision 
operator) are needed for such a derivation. Such local interactions are not shown 
in the literature but several indications that they might hold are presently tested 
based on biochemical investigations. This pushed [24] to postulate a variant of the 
scattering equation where additionally to the chemattraction some local operator is 
introduced, thus arriving at a BGK type model. Those models have the advantage of 
avoiding the physical description of the interactions since they only require to know 
the equilibrium state 

n F(^~U) 
dd/2(n) V^71/2(7^)/,, 

where we use V = Rd because Galilean invariance is fundamental in this approach. In 
order to fulfill basic conservation laws (number of cells and momentum) one assumes 
that 

/^,„d,=i, -* LAM>))d(=n-
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We also need macroscopic notations 

ne= f£(t,x,Od£, n£u£= £fe(t,x, f)df, 
Jud Jw1 

the quantity ue(t, x) is therefore the average (bulk) velocity of the cells at time t and 
point x. 

With these notations, the model proposed in [24] reads 

(18) ^ / e ( * , : r , 0 + e - V x / e + / K^v'^-Vcfiv'W 
ot Ju<i 

The scattering term has been modified to take into account only the antisymmetric 
part of K in (12) because the main collision operator (zeroth order part of K) has 
been replaced by the mere relaxation to an equilibrium F. The motivation behind 
this is that scattering models only describe interactions with an external medium 
(and thus is a linear operator). Here we wish to model local self-interactions of cells 
and this requires a nonlinear operator. Finally, we have used a hyperbolic scale for 
the rescaling of (12) rather than a diffusion scale as was done in Section 4.2. 

In the so-called hydrodynamic limit, i.e., e —> 0 in (18), we then obtain the fol­
lowing model for the cell movements 

{
dn ,. / v 

— + div(nu) = 0, 
^U) + div(raz ® u + nd(n)p) = nz? (d+1) /2(n)x(n,ix,c)Vc, 
ot 

still coupled with the concentration equation —Ac = n (or whatever has been sup­
posed for the production of c). The matrix \ is given by 

X(n, u,S)= f (v- v') (8) Ki(u + i/1/2!;, u + tf1/V, S)F(v') dv' dv. 
JVxV 

This hyperbolic system has the same nature as that proposed in Section 3 for the 
initiation of angiogenesis. It is therefore compatible with the idea that blood vessels 
formation is related to local interactions of cells, at odds with the Keller-Segel model 
that describes long range interactions only. We refer to [24] for more details and 
variant models. 
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5. ANGIOGENESIS 

We consider here another kind of chemotaxis model (although we refer to it as the 
angiogenesis system) that has been much less studied than the system (1), except in 
one space dimension. It is again a parabolic equation for the evolution of the density 
(of cells, or of new capillary vessels) n coupled with a degenerate equation on the 
chemoattractant c and is written as the system 

p\ 

' — n = An - V • [nx(c)"~c], t > 0, x e Ud, 

(20) —c = -cmn, t > 0 , x£ Ud, 
ot 

l n(Q,x) = n0(x) ^ 0, c(0,x) = c0(x) ^ 0, x € 

where m is a positive parameter (m ^ 1 in our results). In this case, the diffusion 
coefficient of the density n is still constant while the sensitivity function x(c) ^s 

a given positive function on IR_|_, generally chosen as a decreasing function since 
sensitivity is lower for higher concentrations of the chemical because of saturation 
effects. In particular, constant x> x(c) = c~a> 0 < a < 1, and x(c) — ~~+~Z w-th 
a,/3 > 0, are allowed in the results presented below. The equation on c is just an 
ordinary differential equation, expressing the consumption of the chemical. Indeed, 
it is now clear that the asymptotic behavior of n depends strongly on the coupling 
effects of the dynamics of c and the chemotactic sensitivity x(c) a n d that is the 
reason why systems of the type (20) have been analyzed in [42], [53], [57], [58], [65]. 
Moreover, the omission of the diffusion of the chemical can be justified whenever the 
corresponding diffusion coefficient is small compared to the motility of the species of 
density n. 

One more reason to consider the system (20) is that it arises also in modeling 
the initiation of angiogenesis, a kind of chemotaxis process that occurs for example 
in the tumor growth ([14], [15], [16], [25], [44]). More specifically, angiogenesis is 
the formation of new capillary vessels from a pre-existing vascular network. The 
density n is the density of the new endothelial cells which form the lining of the 
different type of blood vessels. In the case of tumor growth, the chemical inducing 
the chemotactic movement of the endothelial cells toward the tumor is spread out by 
the tumor itself, in order to make up its own capillary network and to supply itself 
with the nourishment necessary for its development. 

5.1. Energy s t ruc ture 

When considering the system (20) the situation differs from the Patlak/Keller-
Segel system for chemotaxis (1), mainly because it comes with an energy structure 
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such that 

(21) ^-£(t) ^ - [ n[\V\n(n)\2 + ̂ -^V^c^dx < 0, 
dt Ju<i 

where 

£(t):= [ [i|V$(c)|2+nln(n)jd:z 
Jud L2 J 

and $ and x satisfy 

(22) *'(-) = ^ M : = 5 e i n f { f + " » } > 0 . 

For initial data with finite energy and m ^ 1, (21) allows to prove the existence 
of weak solutions to (20) and the following result was proved in [16]. 

Theorem 5.1 (Weak solutions for the angiogenesis system (20)). With the 
assumptions (22), m ^ landn 0 G L1nL°°((Rc£), c0 G L°°((Rd), n0ln(l + |a;|) G L 1 ^ ) 
and £° < oo, there exists a weak solution to (20), such that n G C((R+;L1((Rd)), 
ce L°°((R+ x Ud) and 

n(t,x)^0, / n(t,x)dx= n0(x)dx, 0 ^ c(1.,rr) ^ ||CO||L^(R^), 

Jud Jud 

[ |V$(c)|2 ^C(l + t), f n(t,x)\\n(l + \x\)\dx^C(l + t). 
Jud Jud 

The main issue in proving this result comes from the definition of the nonlinear 
drift term nx(c)Vc. Thanks to the integrability provided by the energy dissipation 
in (21), we have 

f°°f n c ^ l V ^ c ) ! 2 <oo. 
Jo Jud 

The drift term can also be written as 

nx(c)Vc = nx/cx(c)c(m-1)/2V$(c). 

Thus it is well defined in L1, because 

cX(c) G L°°(IR+ x Ud), v^c(rn~1)/2V^(c) G L2(U+ x (Rd) 

and, by mass conservation, y/n G L°°((R+; L2(Ud)). The proof of the theorem there­
fore relies on finding an approximation scheme that preserves these a priori bounds. 
We refer to [16], [17] for this and for additional results. 
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5.2. Lp integrability for small data 
The energy exhibited in the previous subsection also provides equiintegra-

bility for n, therefore solutions cannot exhibit concentrations, in opposition to 
Patlak/Keller-Segel model (1). But the question of propagation of smoothness of 
the solutions is still largely open and seems more difficult than for (1) owing to the 
lack of regularizing effect on c 

Here we mention the following results in this direction that were obtained in [17]. 

Theorem 5.2 (Strong solutions for the angiogenesis system (20)). Assume d^ 2, 
m ^ 1 and x iS a positive, say, continuous function on R+ (more generally x can 
exhibit some singularities). Consider some no G Lx(Rd) and Co G L°°(Rd) such 
that no ^ 0 and Co ^ 0. There exists a constant Ko(x,d, HCOIIL^R'2)) sucn that if 
llno||Ldl2(RJ) ^ -̂ -o> then the system (20) has a global (in time) weak solution (n,c) 
such that n G L°°(R+,Ll D Ld/2(Rd)), c G L°°((R+ x Rd) and for any fixed max{l; 
\d- 1} -^p* < oo, 

IK*)IIL»'(R«-) ^ C(^o,P*,|KIIL.i'(R<'))> V m a x | l ; - - l | ^p^p*. 

The derivation of an L°° bound for n(t) is an open question, as is the relaxation 
of the smallness condition in dimension d ^ 3. However in two space dimensions we 
have the following result (still obtained in [17]). 

Theorem 5.3 (Global Lp bound for the angiogenesis system (20) in two dimen­
sions). Assume d = 2,ra ^ 1, x JS a positive, say, continuous function on (R+ (more 
generally x can be such that K\ in the proof is finite) and p > 0 in (21). Consider 
some nonnegative initial data (no, en) with finite energy i.e. £(0) < oo, such that 
ln(l + |x|)n0 G L1(Rd) and en G L°°(Rd). Then, there is a weak solution (n,c) of 
system (20) such that for any fixed 1 ^ p* < oo, 

IK*)IIL*'(R<<) ^ c(t,p\ |KIIL*>(R<O), V I ^ p ^ p*. 

We refer to [17] for the proof of these results, but we would like to mention the 
main tool to obtain Lp bounds. They rely on the equation for the ratio n/ip(c), 
where cp is defined by 

<p'{c)=<p(c)x(c) O O , <p(0) = l. 

One can directly derive from (20) the equation in a "symmetric form" 
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Actually, the change of variable n —> n/<p is the natural change of variable that puts 

the equation on n in divergence form and it is used by many authors, especially to 

prove the existence of classical solutions (see [25] for instance). Moreover, in terms of 

reinforced random walk, the function <D is the transition probability rate of n ([53], 

[44]), and in terms of numerics such changes of variables are also fundamental to 

capture singularities ([47]). 

From this form one can deduce the inequality 

(24) A / (4-YW) = -4--=-- / <fф(-^) 
v ; d t j R , Л v ( c ) / У W p JR..KJ\ \<p(c)J 

+ (p-l)/R^2(Ox(c)cҶ^); 

p/2|2 

П ЧP+ 1 

for all 1 ^ p ^ oo. It allows us to conclude the proof of the result using the 

Gagliardo-Nirenberg-Sobolev inequality (see [23]) as in the chemotaxis case ([37]). 
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PDE MODELS FOR CHEMOTACTIC MOVEMENTS:

PARABOLIC, HYPERBOLIC AND KINETIC
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Abstract. Modeling the movement of cells (bacteria, amoeba) is a long standing subject
and partial differential equations have been used several times. The most classical and
successful system was proposed by Patlak and Keller & Segel and is formed of parabolic
or elliptic equations coupled through a drift term. This model exhibits a very deep mathe-
matical structure because smooth solutions exist for small initial norm (in the appropriate
space) and blow-up for large norms. This reflects experiments on bacteria like Escherichia
coli or amoeba like Dictyostelium discöıdeum exhibiting pointwise concentrations.
For human endothelial cells, several experiments show the formation of networks that can

be interpreted as the initiation of angiogenesis. To recover such patterns a hydrodynamical
model seems better adapted.
The two systems can be unified by a kinetic approach that was proposed for Escherichia

coli, based on more precise experiments showing a movement by ‘jump and tumble’. This
nonlinear kinetic model is interesting by itself and the existence theory is not complete. It
is also interesting from a scaling point of view; in a diffusion limit one recovers the Keller-
Segel model and in a hydrodynamical limit one recovers the model proposed for human
endothelial cells.
We also mention the mathematical interest of analyzing another degenerate parabolic

system (exhibiting different properties) proposed to describe the angiogenesis phenomena
i.e. the formation of capillary blood vessels.

Keywords: chemotaxis, angiogenesis, degenerate parabolic equations, kinetic equations,
global weak solutions, blow-up

MSC 2000 : 35B60, 35Q80, 92C17, 92C50

1. Introduction

This paper is concerned with the description of mathematical theory for some ex-
amples of chemotaxis processes. Chemotaxis is a biological phenomenon describing
the change of motion when a population formed of individuals (such as amoebae,
bacteria, endothelial cells etc.) reacts in response (taxis) to an external chemical
stimulus spread in the environment where they reside. As a consequence, the pop-
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ulation changes its movement toward (positive chemotaxis) a higher concentration
of the chemical substance. A possible fascinating issue of a positive chemotactical
movement is the aggregation of the organisms involved to form a more complex or-
ganism or body. Various biological issues and mathematical questions around cell
motion can also be found in the Lecture Notes in Biomathematics edited by Alt and
Hoffmann [2].

21

3 4

Figure 1. Motion of amoeba Dictyostelium discöıdeum in reaction to a chemoattractant
emitted from the dark point at the upper left corner.

When a population density is involved in a chemotaxis process, a first level of
description has been considered from a Partial Differential Equation viewpoint; the
full population at the macroscopic level is described by a coupled system on its den-
sity and the chemoattractant concentration. The most famous being Patlak, Keller
& Segel model ([55], [39]) which is formed of parabolic or elliptic equations coupled
through a drift term. This model is very successful for describing the aggregation
of the population at a single point (chemotactic collapse in the terminology of [32]).
For this reason it has given rise to an important literature and we refer to the sur-
vey [35] for complements. Here we will give a very simplified account on the status
of the Patlak/Keller-Segel system.
More recently, experiments with human endothelial cells on matrigel have been

realized. Their movements lead to the formation of networks that are interpreted
as the beginning of a vasculature ([59], [28]). This phenomenon is important since
it is responsible for angiogenesis, a major factor for the growth of tumors [14], [44].
These structures cannot be explained by the above parabolic models which gener-
ically lead to pointwise blow-up, but are recovered by numerical experiments on
hyperbolic models. This also represents a recent tendency in the literature to use
hyperbolic equations to describe intermediate regimes at the macroscopic level rather
than parabolic equations, see for instance [20] and the references therein.
Another class of models has been proposed which consider a more local (say indi-

vidual) or mesoscopic level. This approach involves kinetic (Boltzmann type) equa-
tions with nonlinear scattering kernels which are based upon a detailed knowledge
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of the motion at the cell level. Escherichia coli bacterium for instance is known
to move with a sequence of runs and tumbles, see [1], [54], [53], [62], [13] and the
references therein. The advantage of the kinetic model is that, it not only provides
a better detailed description of the movement, but also unifies the two macroscopic
models by asymptotic derivations using either a diffusion or a hydrodynamic scale.
For simplicity, we always present the models in the case of the full space � d

(although experiments are always on dishes), and we always consider the simplest
models (although much more complexity in the reactions is needed for most of the
experiments), and we always take the coefficients equal to one as much as this is
possible by choosing the correct scales (in other words we only keep the lowest
numbers of parameters).
For chemotaxis we borrow our presentation from the paper [17].

2. The Patlak/Keller-Segel system for chemotaxis

2.1. Existence and blow-up
The simpler model proposed for describing the chemotactic motion takes into ac-

count only the density n(t, x) of cells and the chemoattractant concentration c(t, x)
assuming that the cells emit directly the chemoattractant which is immediately dif-
fused. Then we arrive to the following parabolic-elliptic system

(1)





∂

∂t
n = ∆n− χ∇ · [n∇c], t > 0, x ∈ � d ,

−∆c = n, t > 0, x ∈ � d ,

n(0, x) = n0(x) > 0, x ∈ � d

where the chemotactic sensitivity function χ is constant with respect to the chemical
density c. Notice that with the ad hoc decay conditions at infinity on n and c, the
chemical concentration gradient can be represented exactly by

(2) ∇c(t, x) =
∫
�

d

∇Ed(x− y)n(t, y) dy,

where Ed is the fundamental solution of the Laplacian in � d , a formula that can be
used directly in the equation on n. The validity of (1) in the framework of chemotaxis
is supported by some experiments on the Escherichia coli bacterium (see [11], [6]
and the references therein), even if this model does not seem to reproduce some
of the observed chemotactic movements ([11]). Moreover, the system (1) has other
interesting physical interpretations. For example it arises in astrophysics and in
statistical mechanics (see [7], [8], [9] and the references therein). System (1) was
extensively studied by many authors and a huge quantity of mathematical results on
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the existence of global in time solutions and on the blow-up of local in time solutions,
have been produced. We refer to [35] for a quite complete bibliography. Let us just
mention that the system (1) has a conserved energy (see for example [10], [27] and
[34]) given by

d
dt

∫ {
n(lnn− 1)− χ

2
|∇c|2

}
dx = −

∫
n|∇(lnn− χc)|2 dx 6 0.

The different signs in the two terms in the left-hand side allow for a complex be-
haviour as it is expressed in the

Theorem 2.1 (Existence for the chemotaxis system (1)). Assume d > 2 and
consider some n0 ∈ L1( � d ) such that n0 > 0. There exists a constant K∗(χ, d)
such that if ‖n0‖Ld/2(

�
d) 6 K∗, then the system (1) has a global (in time) weak

solution (n, c) such that for all t > 0, n(t) is nonnegative and
∫
�

d

n(t, x) dx =
∫
�

d

n0(x) dx, ‖n(t)‖Lp(
�

d) 6 ‖n0‖Lp(
�

d) , max
{
1;
d

2
− 1

}
6 p 6 d

2
,

and

‖n(t)‖Lp(
�

d) 6 C(t,K0, ‖n0‖Lp(
�

d)),
d

2
< p 6 ∞.

Theorem 2.2 (Blow-up for the chemotaxis system (1)). For d > 3, assume that

(3)
∫
�

d

1
2
|x|2n0(x) dx 6 C∗

(∫
�

d

n0(x) dx
)d/(d−2)

for some constant C∗ = C∗(χ, d) > 0, and for d = 2, assume that
∫ �

d
1
2 |x|2n0(x) dx

is finite and that
∫ �

d n0 > K∗(χ, d = 2) = 8 � /χ. Then, the chemotaxis system (1)
has no global smooth solution with fast decay.
�����������

2.3. In dimensions d > 3, the assumption (3) is incompatible with
the smallness assumption on ‖n0‖Ld/2(

�
d) of Theorem 2.1 in view of the classical

inequality

(∫
�

d

n0(x) dx
)d

6 C

(∫
�

d

1
2
|x|2n0(x) dx

)d−2

‖n0‖2Ld/2(
�

d) .

It can be derived just dividing this integral in two integrals for |x| 6 R (and use
Hölder inequality) and |x| > R (and use |x|2 > R2) and optimizing the result
in R. In three dimensions, it is an open question to replace the assumption (3)
by “‖n0‖Ld/2(

�
d) large enough” (without second x-moment), as it is suggested in two

dimensions and for radial solutions by the result of [32] (see also [60]).
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2.4. In dimension 2, it has been proved recently that the constant

K∗(χ, 2) = 8 � /χ in [21]. The method differs slightly from the one derived in [37]
(and the one we present below) which gives K∗(χ, 2) = 4 � (1.86225)/χ, after estimat-
ing the corresponding Gagliardo-Nirenberg-Sobolev constant Cgns = 1/ � (1.86225)
following [64]. Therefore the threshold for blow-up or existence of classical solutions
is exactly 8 � /χ. The corresponding result in a bounded domain was proved in [27].

These results are proved, as stated here in [17]. They are classical except for the
propagation of Lp norms under the only assumption ‖n0‖Ld/2(

�
d) 6 K0. We recall

that the basic argument for existence is due to [37] who also proved that blow-up
may occur in two space dimensions for large initial data. This result was extended to
dimensions d > 3 in the case of radial symmetric solutions by Nagai [50] who shows
that blow-up may arise whatever the initial mass is, depending on the x momentum
of order d of n0. Actually, the radial case is better understood and, in two space
dimensions for large mass M (larger than the corresponding K0 in Theorem 2.1),
the type of blow-up has been specified. In [32] the authors proved that chemotactic
collapse i.e. pointwise concentration as a Dirac mass occurs, more precisely, we have
the following

Theorem 2.5 (Chemotactic collapse for the system (1)). For d = 2 and radial
solutions to (1), assume that

∫ � 2 n0(x) dx > K0(χ, d = 2) = 8 � /χ. Then there is a
finite time T ∗ such that

n(t, x) −−−→
t→T∗

8 �
χ
δ(x = 0) + Rem(x),

where the remainder Rem(x) is an L1 function that can be explicitly computed.

Even in the non-radial case, blow-up and chemotactic collapse in two space di-
mensions are very close: indeed from the argument in [37], blow-up can occur only if
solutions lose equicontinuity in L1. In [60] and the references therein, the concentra-
tion measures that can appear in finite time are characterized. In three dimensions,
the extreme complexity of the behavior appears in the numerous blow-up modalities
described in [10].

Besides aggregation of cells, another important subject that motivated the deriva-
tion of the system (1), is the travelling waves solutions. Additional and very spe-
cific nonlinearities (sensitivity factor χ = 1/c for instance) can lead to travelling
waves [61], [63]. Another biochemical explanation is proposed in [11] in order to ob-
tain swarm rings, namely the attractant (aspartate, c(t, x) with previous notation)
is produced by the cells themselves when consuming succinate (f(t, x) below). The
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proposed model is

(4)





∂

∂t
n−∆n+ div(n∇c) = 0,

∂

∂t
c−∆c = nf,

∂

∂t
f − β∆f = −γfn.

The pattern formations in such more elaborate systems can be much more involved
than those in (1). The chemical reactions can create spiral waves that themselves
induce waves on the cell density n (see [45], [49]).

2.2. A priori estimates for small initial data
We indicate here the main argument leading to global existence. It was given

in [37] as well as a proof of blow-up for large data. We depart from the equation (1).
We arrive directly, after multiplication by np−1p, to

(5)
d
dt

∫
�

d

np + 4
p− 1
p

∫
�

d

|∇np/2|2 = χ

∫
�

d

∇np · ∇c = χ

∫
�

d

np+1.

In order to estimate the Lp+1 norm of n, we use standard interpolation and the
Gagliardo-Nirenberg-Sobolev inequality (see [23]) on the function u(x) = np/2.
Hence, in space dimension d > 2 we get for any p > 1

2d−1 (so that: 1
2d 6 p+1 6 dp

d−2 )

(6)
∫
�

d

np+1 6 Cgns(d, p)‖∇np/2‖2L2(
�

d)‖n‖Ld/2(
�

d) .

And this also holds true in dimension d = 2 for p > 0.
Inserting this inequality in the right-hand side of (5), we find, for all p such that

max
{
1; 1

2d− 1
}

6 p <∞,

(7)
d
dt

∫
�

d

np 6 (p− 1)‖∇np/2‖2L2(
�

d)

[
χCgns(d, p)‖n‖Ld/2(

�
d) −

4
p

]
.

In dimension d = 2, (7) means that if the initial mass
∫
n0 is sufficiently small,

then the ‖n(t)‖Lp(
� 2) norm (for the same p) decreases for all times t > 0. More

precisely, the threshold for these a priori bounds is

∫
� 2
n0 <

4
χCgns(d = 2, p = 1)

=
4 � (1.86225)

χ
,

as announced in Remark 2.4. Notice also that the equality can be obtained using an
estimate on the “entropy” n ln+(n) in place of np (which amounts to using p = 1 in
the above calculation).
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In dimension d > 2 and for p = 1
2d, the inequality (7) gives us that whenever we

have initially

(8) χCgns(d, p)‖n0‖Ld/2(
�

d) −
8
d

6 0,

the ‖n(t)‖Ld/2(
�

d) norm decreases for all times t > 0. As a consequence, whenever
(8) holds true, all the ‖n(t)‖Lp(

�
d) norms, with max

{
1; 1

2d − 1
}

6 p 6 1
2d, decrease

for all times t > 0.
We refer to [17] for more details about the proof and especially for the propagation

of Lp bounds with a smallness assumption independent of p and for the proof of
existence based on a regularized system satisfying the same estimates. We also refer
to [21] for a proof of the optimal critical mass in two dimensions.

2.3. Blow-up
In this subsection, we give a proof of Theorem 2.2. Here we use the standard

quantity

I(t) =
∫
�

d

1
2
|x|2n(t, x) dx,

and the formula (2), since we deal with a smooth solution (n, c) of (1) with fast decay
at infinity. Hence

∇c(t, x) = −λd

∫
�

d

x− y

|x− y|d n(t, y) dy, λd > 0.

Next, we denote byM =
∫ �

d n0(x) dx. Using mass conservation,M =
∫ �

d n(t, x) dx,
and following [51], [50], [30], [9], we compute for d > 3

d
dt
I(t) = d

∫
�

d

n0(x) dx+ χ

∫
�

d

n(t, x)x · ∇c(t, x) dx

= dM − λdχ

∫
�

d× � d

n(t, x)n(t, y)
x · (x− y)
|x− y|d dx dy

= dM − λd

2
χ

∫
�

d× � d

n(t, x)n(t, y)
1

|x − y|d−2
dx dy

6 dM − λd

2Rd−2
χ

∫

|x−y|6R

n(t, x)n(t, y) dx dy

= dM − λdχ

2Rd−2
M2 +

λd

2Rd−2
χ

∫

|x−y|>R

n(t, x)n(t, y) dx dy

6 dM − λdχ

2Rd−2
M2 +

λd

2Rd
χ

∫
�

d× � d

n(t, x)n(t, y)|x − y|2 dx dy

6 dM − λdχ

2Rd−2
M2 +

2λd

Rd
χM

∫
�

d

|x|2n(t, x) dx

= dM − λdχ

2Rd−2
M2 +

4λd

Rd
χM I(t).
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Choosing R = µM1/(d−2) with µ small enough we find

d
dt
I(t) 6 M

[ C

Md/(d−2)
I(t)− 1

]
.

When the second x momentum of n0, I(0), is too small compared to Md/(d−2), then
I(t) decreases for all times and

d
dt
I(t) 6 M

[ C

Md/(d−2)
I(0)− 1

]
< 0 ∀ t > 0.

This leads to a contradiction after the time T ∗ = I(0)M−1
[
1− C

Md/(d−2) I(0)
]−1
since

I(t) cannot be negative for smooth solutions.
For d = 2, the situation is simpler because we arrive directly at the identity

d
dt
I(t) = 2M − λd

2
χ

∫
�

d× � d

n(t, x)n(t, y) dx dy = 2M − λd

2
χM2,

with λd = 1
2 � , which leads directly to the same contradiction as before after the time

T ∗ = I(0)M−1
[ �
4
χM − 2

]−1

.

This leads to the blow-up condition M > 8 � /χ.

2.4. Radially symmetric solutions
In this section, we come back on the result of [31], [32], Theorem 2.5, that expresses

the type of blow-up as a chemotactic collapse for radial solutions in two dimensions.
We explain why, for radially symmetric solutions, the system can be simplified and
we prove a blow-up result which is close to exhibit the shape of the chemotactic
collapse solution.
Radially symmetric solutions to the system (1) in d dimensions are reduced to the

system on n(t, r), c(t, r), where we set r = |x|,

(9)





∂

∂t
(rd−1n)− (rd−1n′)′ + χ(rd−1nc′)′ = 0, t > 0, r > 0,

−(rd−1c′)′ = rd−1n,

n′(t, r = 0) = c(t, r = 0) = 0,

where ′ stands for ∂/∂r and initial data have to be specified. We introduce the
quantity

M(t, r) =
∫ r

0

σd−1n(t, σ) dσ = −rd−1c′(t, r),
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and the equation (9) can be reduced to a single equation. Indeed it is equivalent to

(10)

{
M ′(r) = rd−1n(r),
∂

∂t
M(t, r)− rd−1

( M ′

rd−1

)′
− χ

rd−1
M ′M = 0,

where we have deleted the argument (t, r) when not necessary.
In two dimensions, steady states solutions can be further derived from this system

and are given by (just differentiate the second equation of (10) to see it)

rM
′ − 2M +

χ

2
M

2 = 0, M(0) = 0.

One readily checks that there is a non-trivial solution only in the case of a special
relation between χ and the total mass, namely M(∞) = M

∞
with,

4χM∞ = 1,

Mλ(r) =
M
∞

1 + λr−2
.

Notice that the above equality is equivalent to the threshold for blow-up in Theo-
rems 2.2 and 2.1 because M(∞) differs from the total mass of n by a factor 2 � .
This solution may serve to give a hint on the behavior of generic radially symmetric

solutions and especially to understand why a singularity can arise only at the origin.

Theorem 2.6. Assume that in the 2d radial case, we have

4χM(∞) < 1, M(t = 0, r) 6 Mλ0(r),

for some λ0 > 0 (notice that M∞
> M(∞)). Then the solution to (10) satisfies

M(t, r) → 0 as t→∞ locally uniformly,

and thus n(t) in (9) vanishes in L1( � 2 ) locally.

Theorem 2.7. In the 2d radial case, when we have

4χM(∞) > 1, M(t = 0) > M(∞)
1 + λ0r−2

,

for some λ0 > 0, then the solution to (9) blows up in finite time.

This theorem expresses that, in the blow-up result proved in Theorem 2.2, the
limitation on the second moment is in fact useless in the radially symmetric case.
The proof we propose here uses a comparison argument with sub or supersolutions
in the spirit of [37].
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of Theorem 2.6. Being given χ, M(∞) and M∞

> M(∞), we may
always choose a χ > χ which satisfies 4χM∞ = 1. Then we consider the function

N(t, r) = inf(M(∞),Mλ(t)(r)), λ(t) = λ0 + 2(M∞ −M(∞))(χ− χ)t,

and we claim that it is a supersolution to (10) (with d = 2). Indeed, we have

∂

∂t
N = −N r−2

1 + λr−2

d
dt
λ(t) or 0,

N
′ = 2N

λr−3

1 + λr−2
or 0.

Therefore, we first compute the radius R(t) such that for r > R(t) the infimum of N
is attained by M(∞). It is given by

λ(t)R(t)−2 =
M
∞ −M(∞)
M(∞)

,

and for r 6 R(t), we have

∂

∂t
N − r

(
N
′

r

)′
− χ

r
N
′
N = N

r−2

1 + λr−2

[
− d

dt
λ(t) + 2M∞(χ− χ)

λr−2

1 + λr−2

]

> N
r−2

1 + λr−2

[
− d

dt
λ(t) + 2M∞(χ− χ)

λR(t)−2

1 + λR(t)−2

]

= N
r−2

1 + λr−2

[
− d

dt
λ(t) + 2(M∞ −M(∞))(χ− χ)

]

= 0.

But the infimum of two solutions is a supersolution and thus N is indeed a superso-
lution to (10).
By the comparison principle, we deduce that the solution (10) satisfies M(t, r) 6

N(t, r). We conclude the proof just noticing that R(t) → ∞ and for a given inter-
val r ∈ (0, R) we therefore have for t large enough M(t, r) 6 M

∞
/(1 +λ(t)R2) → 0.

�
���� ! #"

of Theorem 2.7. We follow the same lines as before and first choose an
M
∞
< M(∞) and a χ < χ which satisfy 4χM∞ = 1. We consider the function

N(t, r) = sup
( M(∞)

1 + λ0r−2
,Mλ(t)(r)

)
,

and we argue in two steps; i) λ(t) = λ0e−αt for t < t1 large enough, ii) λ(t) =
λ(t1)− t+ t1 for t1 < t < t2 = t1 + λ(t1) the first time where λ(t) vanishes, and also
we decrease slightly the value of M

∞
during this step.
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We will prove that N is a subsolution as the supremum of two subsolutions and
this concludes the proof because we deduce that M(t) > N(t) and thus M(t2, 0) > 0
which is impossible for smooth solutions.

To prove that N is a subsolution, we first notice that M(∞)/(1 + λ0r−2) is a
subsolution to (10) because it is an increasing function and a solution for χ < χ.
Secondly, we consider t < t1 and we have to prove that Mλ(t)(r) is a subsolution
only in an interval r 6 (t)R where it is attained by the sup i.e.

M(∞)
1 + λ0R(t)−2

=
M
∞

1 + λ(t)R(t)−2
.

Notice that R(t) 6 R0 with
M(∞)

1+λ0R(t)−2 = M
∞
. Then, we compute

∂

∂t
N − r

(
N
′

r

)′
− χ

r
N
′
N = N

r−2

1 + λr−2

[
− d

dt
λ(t) + 2M∞(χ− χ)

λr−2

1 + λr−2

]

6 N
r−2

1 + λr−2

[
− d

dt
λ(t) + 2M∞(χ− χ)

λR−2
0

1 + λR−2
0

]

6 N
r−2

1 + λr−2

[
− d

dt
λ(t) + 2M∞(χ− χ)λR−2

0

]

= 0,

choosing

d
dt
λ(t) = −2M∞(χ− χ)R−2

0 λ(t), α = 2M∞(χ− χ)R−2
0 .

In a third step, we choose t1 large enough so that λ(t1) is as small as necessary and
choose,

λ(t) = λ(t1)− t+ t1, M
∞(t) = M

∞(1− 2(t− t1)),

for t1 < t < t2 with t2 the time where λ(t2) vanishes which can be chosen as close as
we wish to t1 by choosing t1 large. This can be achieved by keeping the corresponding
χ(t) 6 χ. Then we have

∂

∂t
N − r

(
N
′

r

)′
− χ

r
N
′
N 6 N

[
− r−2

1 + λr−2

d
dt
λ(t) +

d
dt
M
∞(t)/M∞(t)

]
6 0,

as long as t < t2 is close enough to t1 which is exactly what we want. We have
obtained again a subsolution which concludes the proof of Theorem 2.7. �
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2.5. Non-radial blow-up
Very little is known about the blow-up modalities for non radially symmetric blow-

up. A first question is the condition for blow-up itself; indeed it is not clear if the
condition of a finite second x-moment is needed. It is striking that this condition is
not necessary in the radial case (see Theorem 2.5). Computations were performed
on rectangular domains by Marrocco [47] which show that the blow-up does not
occur at the barycenter of the rectangle (see Fig. 2). It seems that a singularity

Figure 2. Chemotactic collapse for Keller-Segel model (1) set in a rectangle. This is log
scale. (Courtesy of A. Marrocco)

(corner) in the concentration is responsible for the singularity formation rather than
a mere concentration of n at large values of c. It is also shown that the limitation
of the chemoattractant production in the equation on c in (1) leads to a smooth
solution that converges in long time to a Dirac mass at the center. Other numerical
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experiments in three dimensions can be found in [6] which share the same conclusions
as in [47], namely the pointwise blow-up follows a first high concentration regime on
higher dimensions structures.

3. Initiation of angiogenesis

Very recently, several experiments with human endothelial cells on matrigel were
performed. Their movements lead to the formation of networks that are interpreted
by biologists as the beginning of a vasculature (see Fig. 3 and similar experimental

Figure 3. Experiment on the formation of network. (Courtesy of M. Mirshahi)

results in [59], [28]). This phenomenon is important since it is responsible for angio-
genesis, a major factor for the growth of tumors [14], [44] (see also Section 5). These
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structures cannot be explained by the Patlak/Keller-Segel parabolic model (or the
variants) which generically lead to pointwise blow-up. As shown in [59], [28], [24]
they can be recovered by numerical experiments on the following hyperbolic model
proposed in [59], [28]

(11)





∂n

∂t
+ div(nu) = 0,

∂(nu)
∂t

+ div(nu⊗ u) +∇ϑ(n) = n∇c− τ0nu,

∂c

∂t
−∆c+ τ1c = n(t, x).

This model has proven to be successful to describe qualitatively network formations
similar to what is observed experimentally. Notice that it does not differ so much from
the Patlak/Keller-Segel model and the main difference is the so-called persistance
term

∂(nu)
∂t

+ div nu⊗ u.

If this term was neglected, then, following the derivation of Darcy equations from
the compressible gas dynamics system, the momentum equation would reduce to the
explicit form of the velocity field

τ0nu = n∇c−∇ϑ(n).

And inserting this in the continuity equation for n, we find nothing but a version of
the Patlak/Keller-Segel model (1) with variable coefficients.
System (11) can be considered as classical hydrodynamic with an isentropic (also

called barotropic) pressure law (the term ϑ(n)) in the momentum equation. The
force term ∇c is also present in gravitational models (arising in astrophysics) and
the main difference against (1) is mainly the equation on the concentration c which is
no longer mere diffusion. Numerical simulations performed in [59], [28], [24] confirm
the network formation for high enough initial cell densities. Of course this model
does not take into account the deformation of cells which can be observed in Fig. 3
and which seems important in the pattern observed after some time. Notice also
that for bovin endothelial cells (which are much larger), another explanation has
been provided based on the elasticity of the support by [46] and similar networking
can also be found in coupling the continuity equation on n to an elasticity model for
the velocity.
It seems interesting to understand the main difference between the parabolic sys-

tem (1) and the hyperbolic system (11) from a microscopic point of view. This can
sustain biological observations on the interactions of cells at the individual level while
the above macroscopic pictures only deal with the population level.
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4. Kinetic model of chemotaxis and asymptotic theory

As proposed in [24], a method to unify the parabolic Patlak/Keller-Segel model (1)
and the hyperbolic model (11), is to consider the phenomena from a kinetic per-
spective. It turns out that a kinetic model was proposed based on observations
on Escherichia coli, in [1], [54]. We first present the kinetic model in the first sub-
section, with the existence theory and, in second and third subsections, we explain
the derivation of the above macroscopic models. We refer to [30], [56] for a general
mathematical theory of kinetic equations.

Figure 4. Bacterium Escherichia coli is equipped with flagella. When rotated counterclock-
wise, the flagella act as a propellor resulting in a straight “run”. When rotated
clockwise they fly apart, resulting in a “tumble” which reorients the cell but
causes nosignificant change in location.

4.1. Nonlinear scattering equation
Several experiments show that bacteria like Escherichia coli move along straight

lines, suddenly stop to choose the new direction and then continue moving in the
new direction as the receptors of the cell saturate. This phenomenon, called run and
tumble, can be modeled by a stochastic process called the velocity-jump process [1],
[54], [53], [62]. At the level of the population this is equivalent to writing a kinetic (or
linear Boltzmann) type equation. In fact the model is similar to that of scattering
for neutrons and is posed for t > 0, x ∈ � d , ξ ∈ V ⊂ � d (again we choose this for
the sake of simplicity and one can choose for instance V a ball in � d ),

(12)





∂

∂t
f(t, x, ξ) + ξ · ∇xf +

∫

V

[K(c; ξ, ξ′)f(t, x, ξ)

−K(c; ξ′, ξ)f(t, x, ξ′)] dξ′ = 0,

f(t = 0, x, ξ) = f0(x, ξ) > 0, f0 ∈ L1( � d × V ).

The gradient term expresses the transport of organisms with their own velocity ξ
and the function K(c; ξ, ξ′) > 0 is called the turning rate or scattering kernel and
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may also depend on (t, x) through a nonlocal dependency upon c. It gives the rate
K(c; ξ′, ξ) of organisms turning from velocity ξ′ to ξ, and thus the rate K(c; ξ, ξ′) of
organisms with velocity ξ that are subtracted from the balance on f(t, x, ξ). Several
possible forms for this kernel can be found in [33]; here, and again for the sake of
simplicity, we restrict ourselves to the case

(13)




K(c; ξ, ξ′) = k−(c(t, x − εξ)) + k+(c(t, x+ εξ′)),

−∆c = n(t, x) :=
∫

V

f(t, x, ξ) dξ.

The k− term expresses a delay ε in reaction time, while k+ represents an (unphysical)
knowledge of preferred directions (in the sense of higher chemoattractant concentra-
tion). Notice however that these models do not suppose a comparison between two
values of the concentration c(t, x), but only a biased turning rate according to the
knowledge a single value c(t, x± εξ). We will assume that

(14) k± ∈ C1( � + ; � + ), k±(0) > 0, 0 6 k′± 6 Q <∞.

Also notice that, because of the diffusion equation on c, we arrive at a nonlinearmean
field equation since the interaction is long range (see Subsection 4.3 for comments
on this issue). This model shares many similarities with the gravitational Vlasov-
Poisson equation (motion of self-attracting particles).

v′

x− εv′

v

Figure 5. Run and tumble movement for Escherichia coli.

In terms of mathematical theory, this model is very interesting because of the lack
of a priori estimates. The kernel being nonsymmetric in ξ and ξ ′, we have only at
hand the two properties

f(t, x, ξ) > 0 ∀ t > 0, (minimum principle),(15) ∫
�

d×V

f(t, x, ξ) dx dξ =
∫
�

d×V

f0(x, ξ) dx dξ, (mass conservation).(16)
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To go further in the linear case and derive Lp estimates on f for p > 1 is not
so easy. Recently the entropy structure behind such general models which lacks a
“detailed balance principle” was understood by [48] (see also [33]). This involves
specific cancellations that hold true for several linear equations arising in biology.

The existence theory for the nonlinear system (12)–(13) was settled in [13] (thus
extending a result in [33] in the linear case) and yields the

Theorem 4.1. In dimension d = 3, assume that V is bounded, that (14) holds
and that f0 ∈ L∞( � d × V ), then there is a unique solution to the system (12)–(13),
f ∈ C([0,∞); L1( � d × V )), moreover we have

0 6 f(t, x, ξ) 6 C(t),

‖∇c‖Lp(
�

d) 6 C(t),
d

d− 1
< p 6 ∞,

‖c‖Lp(
�

d) 6 C(t), d < p 6 ∞,

for some increasing constant C(t).

This result provides global strong solutions and therefore shows a fundamental
difference against the macroscopic model Patlak/Keller-Segel equation since we have
seen that the latter exhibits a blow-up. Several extensions of Theorem 4.1 have been
obtained (see [36]) and the parabolic equation on c can be treated as well as a specific
dependency upon ∇c in k.

4.2. Diffusion limit
The classical field of application of the diffusion limits is to derive macroscopic

equations like the heat equation from a scattering model. The regime of interest is
when the scattering operator dominates transport and this leads to small velocities.
Then a rescaling is introduced. Here it is natural to use the small time scale ε arising
in (13). The diffusion scaling consists in considering

(17)





∂

∂t
fε(t, x, ξ) +

ξ

ε
· ∇xfε

+
1
ε2

∫

V

[Kε(cε; ξ, ξ′)fε(t, x, ξ) −Kε(cε; ξ′, ξ)fε(t, x, ξ′)] dξ′ = 0,

fε(t = 0, x, ξ) = f0(x, ξ) > 0.

The notation Kε has only been used to put in evidence the dependency upon ε in
the definition of K in (13).
The problem of studying the limit as ε vanishes is extremely classical and leads to

a diffusion equation, see [4] for instance in the linear case. In case of the nonlinear
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model (12)–(13), it has been proved ([13)] that, as ε→ 0,

fε(t, x, ξ) → n(t, x),

cε(t, x) → c(t, x), ∇cε(t, x) → ∇c(t, x),

and that the Keller-Segel model holds in the limit




∂

∂t
n(t, x) + div(χn∇c) = div(D∇n), t > 0, x ∈ � d ,

−∆c = n,

with transport coeficients given by

D(t, x) =
1

3|V |(α+ + α−)ψ(c)

∫

V

|ξ|2 dξ, χ(c) =
ψ′(c)
3ψ(c)

∫

V

|ξ|2 dξ

(in the case of k+ = α+ψ(c), k− = α−ψ(c)).
This result expresses an interesting effect. The diffusion D(c) only arises from

the symmetric part of the turning kernel K (at zeroth order), while the drift (and
thus the sensitivity χ(c)) arises from the antisymmetric part at the first order in ε.
In other words the memory effect is fundamental to obtain the observed collective
movement of cells. Notice also that drift terms in diffusion equations have also been
considered in Degond et al [19], [52].

4.3. Hydrodynamic limit
The mere scattering model (12)–(13) does not allow to derive a correct hydrody-

namical limit. Indeed local interactions (in the spirit of Boltzmann’s binary collision
operator) are needed for such a derivation. Such local interactions are not shown
in the literature but several indications that they might hold are presently tested
based on biochemical investigations. This pushed [24] to postulate a variant of the
scattering equation where additionally to the chemattraction some local operator is
introduced, thus arriving at a BGK type model. Those models have the advantage of
avoiding the physical description of the interactions since they only require to know
the equilibrium state

n

ϑd/2(n)
F

( ξ − u

ϑ1/2(n)

)
,

where we use V = � d because Galilean invariance is fundamental in this approach. In
order to fulfill basic conservation laws (number of cells and momentum) one assumes
that

∫
�

d

F (η) dη = 1, i.e.
∫
�

d

F

(
ξ − u

ϑ1/2(n)

)
dξ = n,

∫
�

d

ηF (η) dη = 0, i.e.
∫
�

d

ξF
( ξ − u

ϑ1/2(n)

)
dξ = nu.
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We also need macroscopic notations

nε =
∫
�

d

fε(t, x, ξ) dξ, nεuε =
∫
�

d

ξfε(t, x, ξ) dξ,

the quantity uε(t, x) is therefore the average (bulk) velocity of the cells at time t and
point x.

With these notations, the model proposed in [24] reads

∂

∂t
fε(t, x, ξ) + ξ · ∇xfε +

∫
�

d

K1(v, v′, c) · ∇cf(v′) dv′(18)

−
∫
�

d

K1(v′, v, c) · ∇c dv′f(v) +
1
ε

[
fε −

n

ϑd/2(n)
F

( ξ − u

ϑ1/2(n)

)]
= 0.

The scattering term has been modified to take into account only the antisymmetric
part of K in (12) because the main collision operator (zeroth order part of K) has
been replaced by the mere relaxation to an equilibrium F . The motivation behind
this is that scattering models only describe interactions with an external medium
(and thus is a linear operator). Here we wish to model local self-interactions of cells
and this requires a nonlinear operator. Finally, we have used a hyperbolic scale for
the rescaling of (12) rather than a diffusion scale as was done in Section 4.2.
In the so-called hydrodynamic limit, i.e., ε → 0 in (18), we then obtain the fol-

lowing model for the cell movements

(19)





∂n

∂t
+ div(nu) = 0,

∂(nu)
∂t

+ div(nu⊗ u+ nϑ(n)p) = nϑ(d+1)/2(n)χ(n, u, c)∇c,

still coupled with the concentration equation −∆c = n (or whatever has been sup-
posed for the production of c). The matrix χ is given by

χ(n, u, S) =
∫

V×V

(v − v′)⊗K1(u+ ϑ1/2v, u+ ϑ1/2v′, S)F (v′) dv′ dv.

This hyperbolic system has the same nature as that proposed in Section 3 for the
initiation of angiogenesis. It is therefore compatible with the idea that blood vessels
formation is related to local interactions of cells, at odds with the Keller-Segel model
that describes long range interactions only. We refer to [24] for more details and
variant models.
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5. Angiogenesis

We consider here another kind of chemotaxis model (although we refer to it as the
angiogenesis system) that has been much less studied than the system (1), except in
one space dimension. It is again a parabolic equation for the evolution of the density
(of cells, or of new capillary vessels) n coupled with a degenerate equation on the
chemoattractant c and is written as the system

(20)





∂

∂t
n = ∆n−∇ · [nχ(c)∇c], t > 0, x ∈ � d ,

∂

∂t
c = −cmn, t > 0, x ∈ � d ,

n(0, x) = n0(x) > 0, c(0, x) = c0(x) > 0, x ∈ � d ,

where m is a positive parameter (m > 1 in our results). In this case, the diffusion
coefficient of the density n is still constant while the sensitivity function χ(c) is
a given positive function on � + , generally chosen as a decreasing function since
sensitivity is lower for higher concentrations of the chemical because of saturation
effects. In particular, constant χ, χ(c) = c−α, 0 < α < 1, and χ(c) = β

α+βc with
α, β > 0, are allowed in the results presented below. The equation on c is just an
ordinary differential equation, expressing the consumption of the chemical. Indeed,
it is now clear that the asymptotic behavior of n depends strongly on the coupling
effects of the dynamics of c and the chemotactic sensitivity χ(c) and that is the
reason why systems of the type (20) have been analyzed in [42], [53], [57], [58], [65].
Moreover, the omission of the diffusion of the chemical can be justified whenever the
corresponding diffusion coefficient is small compared to the motility of the species of
density n.

One more reason to consider the system (20) is that it arises also in modeling
the initiation of angiogenesis, a kind of chemotaxis process that occurs for example
in the tumor growth ([14], [15], [16], [25], [44]). More specifically, angiogenesis is
the formation of new capillary vessels from a pre-existing vascular network. The
density n is the density of the new endothelial cells which form the lining of the
different type of blood vessels. In the case of tumor growth, the chemical inducing
the chemotactic movement of the endothelial cells toward the tumor is spread out by
the tumor itself, in order to make up its own capillary network and to supply itself
with the nourishment necessary for its development.

5.1. Energy structure

When considering the system (20) the situation differs from the Patlak/Keller-
Segel system for chemotaxis (1), mainly because it comes with an energy structure

558



such that

d
dt
E(t) 6 −

∫
�

d

n[|∇ ln(n)|2 + µcm−1|∇Φ(c)|2] dx 6 0,(21)

where

E(t) :=
∫
�

d

[1
2
|∇Φ(c)|2 + n ln(n)

]
dx

and Φ and χ satisfy

(22) Φ′(c) =
√

χ

cm
, µ :=

1
2

inf
c>0

{ cχ′
χ

+m
}
> 0.

For initial data with finite energy and m > 1, (21) allows to prove the existence
of weak solutions to (20) and the following result was proved in [16].

Theorem 5.1 (Weak solutions for the angiogenesis system (20)). With the
assumptions (22),m > 1 and n0 ∈ L1∩L∞( � d ), c0 ∈ L∞( � d ), n0 ln(1+|x|) ∈ L1( � d )
and E0 < ∞, there exists a weak solution to (20), such that n ∈ C( � + ;L1( � d)),
c ∈ L∞( � + × � d ) and

n(t, x) > 0,
∫
�

d

n(t, x) dx =
∫
�

d

n0(x) dx, 0 6 c(t, x) 6 ‖c0‖L∞(
�

d) ,

∫
�

d

|∇Φ(c)|2 6 C(1 + t),
∫
�

d

n(t, x)|ln(1 + |x|)| dx 6 C(1 + t).

The main issue in proving this result comes from the definition of the nonlinear
drift term nχ(c)∇c. Thanks to the integrability provided by the energy dissipation
in (21), we have ∫ ∞

0

∫
�

d

ncm−1|∇Φ(c)|2 <∞.

The drift term can also be written as

nχ(c)∇c = n
√
cχ(c)c(m−1)/2∇Φ(c).

Thus it is well defined in L1, because

cχ(c) ∈ L∞( � + × � d ),
√
nc(m−1)/2∇Φ(c) ∈ L2( � + × � d)

and, by mass conservation,
√
n ∈ L∞( � + ;L2( � d )). The proof of the theorem there-

fore relies on finding an approximation scheme that preserves these a priori bounds.
We refer to [16], [17] for this and for additional results.
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5.2. Lp integrability for small data
The energy exhibited in the previous subsection also provides equiintegra-

bility for n, therefore solutions cannot exhibit concentrations, in opposition to
Patlak/Keller-Segel model (1). But the question of propagation of smoothness of
the solutions is still largely open and seems more difficult than for (1) owing to the
lack of regularizing effect on c.
Here we mention the following results in this direction that were obtained in [17].

Theorem 5.2 (Strong solutions for the angiogenesis system (20)). Assume d > 2,
m > 1 and χ is a positive, say, continuous function on � + (more generally χ can
exhibit some singularities). Consider some n0 ∈ L1( � d) and c0 ∈ L∞( � d ) such
that n0 > 0 and c0 > 0. There exists a constant K0(χ, d, ‖c0‖L∞(

�
d)) such that if

‖n0‖Ld/2(
�

d) 6 K0, then the system (20) has a global (in time) weak solution (n, c)
such that n ∈ L∞( � + , L1 ∩ Ld/2( � d )), c ∈ L∞( � + × � d ) and for any fixed max

{
1;

1
2d− 1

}
6 p∗ <∞,

‖n(t)‖Lp(
�

d) 6 C(t,K0, p
∗, ‖n0‖Lp(

�
d)), ∀ max

{
1;
d

2
− 1

}
6 p 6 p∗.

The derivation of an L∞ bound for n(t) is an open question, as is the relaxation
of the smallness condition in dimension d > 3. However in two space dimensions we
have the following result (still obtained in [17]).

Theorem 5.3 (Global Lp bound for the angiogenesis system (20) in two dimen-
sions). Assume d = 2, m > 1, χ is a positive, say, continuous function on � + (more
generally χ can be such that K1 in the proof is finite) and µ > 0 in (21). Consider
some nonnegative initial data (n0, c0) with finite energy i.e. E(0) < ∞, such that
ln(1 + |x|)n0 ∈ L1( � d ) and c0 ∈ L∞( � d ). Then, there is a weak solution (n, c) of
system (20) such that for any fixed 1 6 p∗ <∞,

‖n(t)‖Lp(
�

d) 6 C(t, p∗, ‖n0‖Lp(
�

d)), ∀ 1 6 p 6 p∗.

We refer to [17] for the proof of these results, but we would like to mention the
main tool to obtain Lp bounds. They rely on the equation for the ratio n/ϕ(c),
where ϕ is defined by

ϕ′(c) = ϕ(c)χ(c) c > 0, ϕ(0) = 1.

One can directly derive from (20) the equation in a “symmetric form”

(23)
∂

∂t

( n

ϕ(c)

)
=

1
ϕ(c)

∇ ·
[
ϕ(c)∇

( n

ϕ(c)

)]
+

( n

ϕ(c)

)2

ϕ(c)χ(c)cm.
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Actually, the change of variable n→ n/ϕ is the natural change of variable that puts
the equation on n in divergence form and it is used by many authors, especially to
prove the existence of classical solutions (see [25] for instance). Moreover, in terms of
reinforced random walk, the function ϕ is the transition probability rate of n ([53],
[44]), and in terms of numerics such changes of variables are also fundamental to
capture singularities ([47]).
From this form one can deduce the inequality

d
dt

∫
�

d

( n

ϕ(c)

)p

ϕ(c) = − 4
p− 1
p

∫
�

d

ϕ(c)
∣∣∣∇

( n

ϕ(c)

)p/2∣∣∣
2

(24)

+ (p− 1)
∫
�

d

ϕ2(c)χ(c)cm
( n

ϕ(c)

)p+1

for all 1 6 p 6 ∞. It allows us to conclude the proof of the result using the
Gagliardo-Nirenberg-Sobolev inequality (see [23]) as in the chemotaxis case ([37]).
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