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Abstract. This work is concerned with the study of an initial boundary value problem for
a non-conserved phase field system arising from the Penrose-Fife approach to the kinetics
of phase transitions. The system couples a nonlinear parabolic equation for the absolute
temperature with a nonlinear hyperbolic equation for the phase variable χ, which is charac-
terized by the presence of an inertial term multiplied by a small positive coefficient µ. This
feature is the main consequence of supposing that the response of χ to the generalized force
(which is the functional derivative of a free energy potential and arises as a consequence of
the tendency of the free energy to decay towards a minimum) is subject to delay. We first
obtain well-posedness for the resulting initial-boundary value problem in which the heat
flux law contains a special function of the absolute temperature ϑ, i.e. α(ϑ) ∼ ϑ − 1/ϑ.
Then we prove convergence of any family of weak solutions of the parabolic-hyperbolic
model to a weak solution of the standard Penrose-Fife model as µ ↘ 0. However, the
main novelty of this paper consists in proving some regularity results on solutions of the
parabolic-hyperbolic system (including also estimates of Moser type) that could be useful
for the study of the longterm dynamics.
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1. Introduction

In this paper we consider a modification of the thermodynamically consistent
model for the description of the kinetics of phase transitions proposed by O. Penrose

and P. Fife in [9], [21], and [22]. Hence, let us introduce the state variables describing
the phase transitions: the absolute temperature ϑ : Q := Ω × (0, T ) → � and the
order parameter χ : Q → � , where T is the reference time and Ω ⊂ � N (N 6 3) is a
bounded connected domain with smooth boundary Γ. Then we consider an energy
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balance equation of the form

(1.1) (ϑ + λ(χ))t −∆α(ϑ) = m in Q,

where the subscript t stands for the time derivative,m is a heat source term, ϑ+λ(χ)
accounts for the internal energy of the system with λ(·) representing the latent heat
density of the phase transition; observe that here it may have a quadratic growth so

that second order phase transitions can be taken into account (cf. [3, Section 4] for
more details on this subject). Moreover, α in (1.1) has the form

(1.2) α(r) = k1r − k2r
−1 ∀ r > 0

with k1 and k2 positive constants, and (1.1) is coupled with the hyperbolic equation
governing the evolution of the phase variable χ, which may be written as

(1.3) µχtt + χt −∆χ + g(χ) + λ′(χ)ϑ−1 = 0 in Q,

where the subscript tt stands for the second time derivative, g represents a third-
degree polynomial function with a positive leading coefficient. An example of g can

be the derivative of the double-well potential, i.e. g(r) = r3 − r − λ′(r)ϑ−1
c , with

r ∈ � and ϑc the critical temperature of the system.

Note that the well-posedness for the same kind of problem with α(r) ∼ −1/r

in (1.1) has been examined in [6]. In our approach, due to the presence of the
term k1ϑ in the function α (cf. (1.2)), we are able to get more information on the

ϑ-variable than the ones obtained by Colli, Grasselli and Ito in [6]. However, we
emphasize that this paper brings a further contribution consisting in the deduction of

some regularity results entailing, in particular, an L∞(Q) bound on the temperature
field ϑ.

Moreover, laws like (1.2), which ensure coercivity in ϑ, could be helpful in order to
show dissipativity properties for the solution to an initial-boundary value problem for

the system (1.1)–(1.3). Hence, these considerations lead us to address the question
of the existence of an absorbing set (and then of a global attractor) for the semigroup

associated with the problem considered in a suitable phase space. This will be the
aim of a forthcoming paper (cf. [24]).

As regards the corresponding linearized problem (obtained by linearizing ϑ−1

around the critical value ϑc and referred to as the Caginalp model (cf. [4]), it has

been considered (also from the long time behaviour’s point of view) in [14], [15],
[16], [17]. However, we observe that laws like α(r) ∼ −1/r, which turn out to be

satisfactory for low and intermediate temperatures, do not look acceptable for the
higher ones, when α(r) ∼ r (this choice of α corresponds to the standard Fourier
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law) better decribes the evolution of the system. Hence, these considerations lead us

to introduce a law like (1.2) in the energy balance (1.1).

Regarding the phase equation (1.3), let us summarize here the main novelty of this
approach, that is, the presence of the inertial term µχtt in (1.3). In fact, the original

law describing the evolution of χ in the framework of the Penrose-Fife models was

(1.4) χt −∆χ + g(χ) + λ′(χ)ϑ−1 = 0 in Q.

We may note that (1.4), which can be considered as a limiting case of (1.3), says

that the response of χ to the generalized force δF/δχ is istantaneous, i.e.

χt = − 1
ϑ

δF
δχ

,

where δF/δχ denotes the functional derivative of F (the free energy functional) with
respect to χ and F has the form

F(ϑ, χ) =
∫

Ω

{
ϑ− ϑ ln ϑ +

ϑ

2
|∇χ|2 + ϑĝ(χ) + λ(χ)

}
dx,

where ĝ is a primitive of g. The derivation of the energy balance (1.1) can be found
in [3, Chap. 4, pp. 168–169]. The typical conditions coupled with (1.1) and (1.4) are

the Cauchy ones for ϑ and χ,

ϑ(0) = ϑ0 in Ω,(1.5)

χ(0) = χ0 in Ω(1.6)

along with the boundary conditions

(α(ϑ)n + γα(ϑ) = h on Σ := Γ× (0, T ),(1.7)

χn = 0 on Σ.(1.8)

Here the subscript n stands for the outward normal derivative to Γ, γ is the positive
heat-transmission coefficient, h : Σ → � has the form γα(ϑΓ), ϑΓ being the outside
temperature on the boundary. In this way we find a boundary value problem cou-

pling (1.1) and (1.4)–(1.8) which has been widely studied in literature (cf., e.g., [7],
[8], [18], and [19]).

Equation (1.3) comes from the recent supposition that in some situations (as,
e.g., in the melt of He4 crystals) the response of χ to the generalized force δF/δχ is
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subject to a delay expressed by a suitable time dependent relaxation kernel k (cf. [11],

[17], [25] and references therein), i.e.

χt = −
∫ t

−∞
k(t− s)

δF
δχ

ds.

If we choose k as a decreasing exponential of the form k(t) = 1
µe−t/µ (t > 0) for some

positive coefficient µ sufficiently small, we find exactly (1.3). Note that, as µ ↘ 0,
k(t) → δ0(t) where δ0 is the Dirac mass at 0, so that (1.3) reduces to the standard
phase equation (1.4).

After these considerations, in this paper we denote by (Pµ) the problem of finding a

pair (ϑ, χ) solving equations (1.1) and (1.3) coupled with boundary conditions (1.7)–
(1.8) and Cauchy conditions (1.5)–(1.6) along with the additional initial condition

(1.9) χt(0) = χ1 in Ω,

which is needed due to the hyperbolic character of (1.9).

An outline of our work follows. The first result is related to the existence of a

weak solution to (Pµ) in case of quadratic latent heat function λ (which models
second order phase transitions) and strictly positive µ. The proof is contained in

Section 3. Then, in Section 4, we prove convergence as µ ↘ 0 of any family of
solutions (ϑµ, χµ) of (Pµ) to a weak solution of the corresponding initial boundary

value problem which couples (1.1) and (1.4)–(1.8). Section 5 is devoted to showing
regularity results (also with estimates of Moser type) on solutions of (Pµ) (µ > 0)
under further assumptions on the data. Our further results are two continuous
dependence theorems. The former, which entails uniqueness for N = 1, is proved in
Section 6. The latter, whose proof is contained in Section 7, guarantees that, in case
of λ linear, (Pµ) has a unique solution in every spatial dimension (N = 2, 3).

2. Main results

Consider the initial-boundary value problem (1.1), (1.3), (1.5)–(1.9). We make

the following general assumptions on the known functions appearing in (1.1), (1.3)
and (1.7):

λ ∈ C2( � ),(2.1)

λ′′ ∈ L∞( � ),(2.2)

α(r) = kr − k/r ∀ r ∈ (0, +∞),(2.3)
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g ∈ C1( � ),(2.4)

∃ τ1, τ2 > 0: |g(r)| 6 τ1|r|3 + τ2 ∀ r ∈ � ,(2.5)

lim
r→±∞

g(r) = ±∞,(2.6)

with k a given positive constant. Note that, thanks to (2.4)–(2.5), g could be the

derivative of a multiple-well potential.
�����������

2.1. First, let us note that under these assumptions on g, it is easy to

see that there exists a primitive ĝ of g such that

(2.7) 0 6 ĝ(r) 6 τ3|r|4 + τ4 ∀ r ∈ � ,

for some positive constants τ3, τ4. Then, we remark that the form of α (1.2) can be
reduced to the simplified one (cf. (2.3)), that is to the case in which k1 = k2 = k.

Indeed, introducing Θ := βϑ for β =
√

k1/k2, we may rewrite α(ϑ) = α̃(Θ) =
k(Θ−Θ−1) and λ̃(s) = βλ(s) with k =

√
k1k2. Hence, with an abuse of notation let

us take this α̃ and λ̃ as our α and λ, respectively, in the rest of the paper. Notice
that with this simple change of variables we are able to deal also with a more general

form of α (cf. (1.2)) and not only with the one introduced in (2.3), used here and in
the sequel only for simplicity of notation.

Moreover, let us suppose the following regularity of the data of our system:

m ∈ L2(Q),(2.8)

h ∈ L2(Σ),(2.9)

ϑ0 ∈ L2(Ω), ϑ0 > 0 a.e. in Ω,(2.10)

ln ϑ0 ∈ L1(Ω),(2.11)

χ0 ∈ H1(Ω),(2.12)

χ1 ∈ L2(Ω).(2.13)

The next step is to give a variational formulation of the problem (1.1), (1.3), (1.5)–

(1.9). To this end, we use the notation (·, ·) both for the scalar product inH := L2(Ω)
and in (L2(Ω))N , also denoted by H , and | · | for the corresponding norm. For the
sake of convenience, V := H1(Ω) will be endowed with the inner product ((·, ·)),
defined by

(2.14) ((v1, v2)) :=
∫

Ω

∇v1∇v2 + γ

∫

Γ

v1v2 ∀ v1, v2 ∈ V,

where γ is the positive heat-transmission coefficient appearing in the boundary con-

dition (1.7). Define W := H2(Ω) and let us denote by 〈·, ·〉 also the duality pair-
ing between V ′ and V . We identify H with a subspace of V ′, as usual, so that
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〈u, v〉 = (u, v) for all u ∈ H and for all v ∈ V . Moreover, we may denote the scalar

product in L2(Γ) by (·, ·)Γ.
Next, we define the Riesz isomorphism J : V → V ′, and the scalar product in V ′,

respectively, by

〈Jv1, v2〉 := ((v1, v2)) ∀ v1, v2 ∈ V,(2.15)

((w1, w2))∗ :=
〈
w1, J

−1w2

〉
∀w1, w2 ∈ V ′.(2.16)

Let us observe that the norm in V related to the inner product defined above (which
will be denoted by ‖ · ‖) is equivalent to the usual norm in V . Similar considerations

hold also for V ′ and we use the notation ‖ ·‖∗ for the norm in V ′ related to the inner
product (2.16).
Finally, let f ∈ L2(0, T ; V ′) be defined by

(2.17) 〈f(t), v〉 :=
∫

Ω

m(t)v + γ

∫

Γ

h(t)v ∀ v ∈ V and for a.e. t ∈ (0, T ).

Then we are ready to state the rigorous formulation of the problem (1.1), (1.3),

(1.5)–(1.9) (for a strictly positive coefficient µ).
���� "!$#%���

(Pµ). Find a pair (ϑ, χ) such that

ϑ ∈ H1(0, T ; V ′) ∩ L∞(0, T ; H) ∩ L2(0, T ; V ), ϑ > 0 a.e. in Q,(2.18)

ϑ−1 ∈ L2(0, T ; V ),(2.19)

χ ∈ C1([0, T ]; H) ∩ C0([0, T ]; V ) ∩H2(0, T ; V ′),(2.20)

(ϑ + λ(χ))t + kJ(ϑ− ϑ−1) = f in V ′, a.e. in (0, T ),(2.21)

〈µχtt + χt, v〉+ (∇χ,∇v) + (g(χ) + λ′(χ)ϑ−1, v) = 0 ∀ v ∈ V,(2.22)

a.e. in (0, T ),

ϑ(·, 0) = ϑ0, χ(·, 0) = χ0, χt(·, 0) = χ1 a.e. in Ω.(2.23)

�����������
2.2. Note that the first initial condition in (2.23) holds almost every-

where in Ω due to the weak continuity of t 7→ ϑ(t) from [0, T ] to H . Moreover, by

comparison with (2.22), it follows that χtt ∈ L2(0, T ; H) + C0([0, T ]; V ′) (cf. also [6,
Remark 2.2] for further details on this point).

Our first result is

Theorem 2.3. Suppose that (2.1)–(2.13) hold. Then, for any 0 < µ < 1,
problem (Pµ) has at least one solution (ϑµ, χµ).

The next theorem is a regularity result for solutions of (Pµ).
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Theorem 2.4. Suppose that the same hypotheses as in Theorem 2.3 hold. Under
the further regularity assumptions on the data

χ0 ∈ W, (χ0)n = 0 on Γ,(2.24)

χ1 ∈ V,(2.25)

λ′ ∈ L∞( � ),(2.26)

and if we suppose that there exists a positive constant C1 such that the inequality

(2.27) |g′(r)| 6 C1(1 + |r|2)

holds for all r ∈ � , then the χµ component of every solution (ϑµ, χµ) of (Pµ) has

additional regularity

(2.28) χµ ∈ W 1,∞(0, T ; V ) ∩ L∞(0, T ; W ) ↪→ C0(Q) ∩ C0([0, T ]; V ).

Moreover, if we suppose (in addition to (2.1)–(2.13) and (2.24)–(2.27)) that

(2.29) ϑ0, 1/ϑ0 ∈ L∞(Ω), m ∈ L2(0, T ; L6(Ω)), h ∈ L∞(Σ),

then every solution (ϑµ, χµ) of (Pµ) has additional regularity

(2.30) ϑµ ∈ L∞(Q), − 1
ϑµ

∈ L∞(Q).

Finally, assume that the hypotheses (2.1)–(2.13), (2.24)–(2.27), (2.29) and the as-

sumptions

f ∈ W 1,1(0, T ; V ′),(2.31)

α(ϑ0) ∈ V(2.32)

are satisfied. Then every solution (ϑµ, χµ) of (Pµ) has further regularity

(2.33) χµ
tt ∈ L∞(0, T ; H), ϑµ ∈ H1(0, T ; H), kϑµ − k

ϑµ
∈ L∞(0, T ; V ).

�����������
2.5. Let us observe that condition (2.31) holds true if m ∈ W 1,1(0, T ;

H) and h ∈ L2(0, T ; H1/2(Γ)) ∩W 1,1(0, T ; H−1/2(Γ)). Finally, note that in the case
N = 1 it is possible (with a slight modification of the fourth regularity estimate
obtained in Section 5) to prove that regularity (2.33) also holds if (2.29) is not
satisfied.
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Consider now the formal limit problem (corresponding to the case µ = 0 in (Pµ)).
���� "!$#%���

(P0). Find a pair (ϑ, χ) satisfying

ϑ ∈ H1(0, T ; V ′) ∩ L∞(0, T ; H) ∩ L2(0, T ; V ), ϑ > 0 a.e. in Q,(2.34)

ϑ−1 ∈ L2(0, T ; V ),(2.35)

χ ∈ H1(0, T ; H) ∩ L2(0, T ; W ) ↪→ C0([0, T ]; V ),(2.36)

(ϑ + λ(χ))t + kJ(ϑ− ϑ−1) = f in V ′, a.e. in (0, T ),(2.37)

χt −∆χ + g(χ) + λ′(χ)ϑ−1 = 0 a.e. in Q,(2.38)

χn = 0 a.e. on Σ,(2.39)

ϑ(·, 0) = ϑ0, χ(·, 0) = χ0 a.e. in Ω.(2.40)

Then we can prove the following

Theorem 2.6. Suppose that (2.1)–(2.13) are satisfied. Moreover, let µ ∈ (0, µ0],
µ0 > 0 being fixed. Then there exists a positive constant R (independent of µ) such

that for any solution (ϑµ, χµ) to (Pµ) we have

‖ϑµ‖H1(0,T ;V ′)∩L∞(0,T ;H)∩L2(0,T ;V ) + ‖(ϑµ)−1‖L2(0,T ;V )(2.41)

+
√

µ‖χµ
t ‖L∞(0,T ;H) + ‖χµ

t ‖L2(0,T ;H) + ‖χµ‖L∞(0,T ;V ) 6 R.

Moreover, it follows that the unique solution (ϑ, χ) to (P0) is the (weak) limit of the
sequence {(ϑµ, χµ)}, where (ϑµ, χµ) is an arbitrary solution to (Pµ), i.e., we have
that the convergences

ϑµ → ϑ weakly star in L∞(0, T ; H),(2.42)

ϑµ → ϑ weakly in H1(0, T ; V ′) ∩ L2(0, T ; V ),(2.43)

ϑµ → ϑ strongly in C0([0, T ]; V ′) ∩ L2(0, T ; H),(2.44)

1/ϑµ → 1/ϑ weakly in L2(0, T ; V ),(2.45)

µχµ
t → 0 strongly in C0([0, T ]; H),(2.46)

χµk → χ weakly in H1(0, T ; H) and weakly star in L∞(0, T ; V ),(2.47)

χµ → χ strongly in C0(0, T ; L4(Ω))(2.48)

hold as µ ↘ 0.
�����������

2.7. Theorem 2.6 yields the existence of a solution to (P0). Uniqueness

follows from [23, Theorem 3.3] (cf. Remark 2.10 below for a comparison with other
existing results).

422



The next theorem gives a conditional continuous dependence result for solutions

of (Pµ) with µ > 0 in the case of N = 2, 3, and a non conditional result in the case
of N = 1 or if N = 2, 3 but only with more regular data (cf. (2.24)–(2.27), (2.29),
and Theorem 2.4).

Theorem 2.8. Assume that hypotheses (2.1)–(2.6), (2.26) (if N = 2, 3), and
(2.27) hold. Moreover, take two sets of data {ϑ0i, χ0i, χ1i, mi, hi}, i = 1, 2, under
the assumptions (2.8)–(2.13) and denote by (ϑi, χi) the corresponding solution to
problem (Pµ). Assume an additional condition

(2.49) ui := −ϑ−1
i ∈ L2(0, T ; L∞(Ω)), i = 1, 2,

and let the inequality

max{‖χ1‖L∞(0,T ;V ), ‖χ2‖L∞(0,T ;V ), ‖ϑ1‖L∞(0,T ;H), ‖ϑ2‖L∞(0,T ;H),(2.50)

‖u1‖L2(0,T ;L∞(Ω)), ‖u2‖L2(0,T ;L∞(Ω)), ‖(χ1)t‖L2(0,T ;H), ‖(χ2)t‖L2(0,T ;H)} 6 M1

hold for a positive constantM1. Then there exists a positive constant D1 = D1(M1)
also depending on T , Ω, γ, µ, λ, and C1 (cf. hypothesis (2.27)) such that

‖ϑ1 − ϑ2‖2
L2(0,T ;H) + ‖ϑ1 − ϑ2‖2

L∞(0,T ;V ′) + ‖(χ1 − χ2)t‖2
L∞(0,T ;H)(2.51)

+‖1 ∗ [k(u1 − u2) + k(ϑ1 − ϑ2)]‖2
L∞(0,T ;V ) + ‖χ1 − χ2‖2

L∞(0,T ;V )

6 D1(‖ϑ01 − ϑ02‖2
∗ + ‖χ01 − χ02‖2 + |χ11 − χ12|2 + ‖f1 − f2‖2

L2(0,T ;V ′)),

where fi is the datum corresponding to mi, hi, i = 1, 2, according to formula (2.17).
In particular, if N = 1, then problem (Pµ) has a unique solution.

Making stronger hypotheses on λ (basically we ask λ to be an affine function), we

have the following result, which entails uniqueness of solution for problem (Pµ) also
in the case of N = 2, 3.

Theorem 2.9. Let the hypotheses (2.1)–(2.6), (2.27), and

(2.52) λ(r) = r ∀ r ∈ �

hold. Moreover, take two sets of data {ϑ0i, χ0i, χ1i, mi, hi}, i = 1, 2, under the
assumptions (2.8)–(2.13), denote by (ϑi, χi) the corresponding solution to prob-
lem (Pµ), and choose a positive constant M2 such that

(2.53) max{‖χ1‖L∞(0,T ;V ), ‖χ2‖L∞(0,T ;V )} 6 M2.

423



Then, setting ui = −ϑ−1
i , the following continuous dependence result holds:

‖ϑ1 − ϑ2‖2
L2(0,T ;H)∩L∞(0,T ;V ′) + ‖1 ∗ [k(u1 − u2) + k(ϑ1 − ϑ2)]‖2

L∞(0,T ;V )(2.54)

+ ‖(χ1 − χ2)t‖2
L∞(0,T ;V ′)+ ‖1 ∗ (χ1 − χ2)‖2

L∞(0,T ;V )+ ‖χ1 − χ2‖2
L∞(0,T ;H)

6 D2(‖ϑ01 − ϑ02‖2
∗ + |χ01 − χ02‖2 + ‖χ11 − χ12‖2

∗ + ‖f1 − f2‖2
L2(0,T ;V ′))

for a positive constant D2 = D2(M2) also depending on T , Ω, γ, µ, λ, and C1, where

fi is the datum corresponding to mi and hi, (i = 1, 2) according to formula (2.17).
�����������

2.10. We have to observe that the existence result for a weak formu-

lation of (P0) was given in [7] for a more general expression of the heat flux law
and the uniqueness result was obtained in [8] under a quite similar assumption on

the heat flux law but only in the case of strong regularity assumptions on the data.
Moreover, in [23], this result has been improved, the uniqueness and continuous de-

pendence result has been shown under the same hypotheses on the data as in the
existence theorem.

Let us recall at this point some useful inequalities that we will often use in the

sequel without recalling them. Let us start by recalling that, by the continuity of the
trace operator (in this setting) from V to L2(Γ), there exists a positive constant CΓ

(depending only on Ω and γ) such that

(2.55) ‖v‖2
L2(Γ) 6 CΓ‖v‖2 ∀ v ∈ V.

Let us also note that, as Ω is a smooth bounded domain in � N (N 6 3), there exists
a positive constant CS depending only on Ω and γ such that

(2.56) ‖v‖Lp(Ω) 6 CS‖v‖ ∀ v ∈ V, 1 6 p 6 6.

We widely use also the elementary inequality

(2.57) r − ln(r) > 1
3
(r + |ln(r)|) ∀ r ∈ (0, +∞),

and Young’s inequality in the forms

(2.58) ab 6 ηa2 +
1
4η

b2, ab 6 ηaq +
q − 1

q

( 1
ηq

)1/(q−1)

bq/(q−1)

with a, b, η ∈ (0, +∞) and q ∈ (1, +∞). Moreover, let us recall a particular case
of the Gagliardo-Nirenberg inequality (cf., e.g., [10]), holding true in our Ω ⊂ � N

(N 6 3), i.e.,

(2.59) ‖∇u‖L6(Ω) 6 Ca|∆u|+ Cb|u|,

which holds for some positive constants Ca and Cb.
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3. Proof of Theorem 2.3

This proof is split into several steps. First, we regularize problem (Pµ) and con-

struct and solve a suitable sequence of approximating problems (Pn
µ ), n ∈ & , then we

establish some estimates for the solutions (ϑn, χn) of this sequence of problems (the
subscript µ is omitted for simplicity of notation) that will allow us to pass to the

limit as n goes to +∞, getting finally a solution to our problem (Pµ). In this section
we will use the same symbol C for positive constants that may be different from each

other and may depend on the data of the problem, but which are independent of n
and µ. First of all, recalling that α(ϑ) = k(ϑ− ϑ−1), we introduce functions

(3.1) %(s) := α−1(s), α̂(s) :=
∫ s

1

α(r) dr =
k

2
s2 − k ln s− k

2
∀ s > 0,

and an auxiliary variable w := α(ϑ). Observe that % is well-defined, because α is

an increasing function. Next, we truncate % from above and from below and add
the outcome to νI , where ν > 0 is a small parameter and I stands for the identity

operator. Thus, we obtain a bi-Lipschitz continuous function. As in [7, Section 3],
we consider the sequence of functions and graphs

(3.2) %n(z) :=





%(−n) if z ∈ (−∞,−n],

%(z) if z ∈ (−n, n), and αn := %−1
n ,

%(n) if z ∈ [n, +∞).

Observe that αn acts on a bounded closed interval contained in (0, +∞). Now, we
choose a sequence of real numbers {νn} such that

(3.3) 0 < νn+1 6 νn 6 1 ∀n ∈ & , and νn ↘ 0 as n ↗ +∞.

Our approximation consists in taking υn := νnw + %n(w) instead of ϑ in (2.21). We
must suitably arrange the first initial condition in (2.23). To this aim we introduce
the same regularization as that used in [7, Lemma 3.1]; in fact the proof of that

lemma is the same in our case. Let us recall this result for the reader’s convenience.
Let us introduce auxiliary functions

(3.4) ζ1,n(r) := 1− (%n(r))−1, ζ2,n(r) := %n(r) − 1 ∀ r ∈ � .

Note that ζ1,n and ζ2,n are bounded, Lipschitz continuous, and increasing functions.

Moreover, we may note that ζi,n(0) = 0 and

(3.5) ζ̂i,n :=
∫ r

0

ζi,n(s) ds > 0 ∀ r ∈ � , i = 1, 2.
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Lemma 3.1. Let (2.10)–(2.11) and (3.1) hold, and let w0 := α(ϑ0), n ∈ & ,

νn := (1 + n + %(n) + %(−n)−1)−2, ϑ0n := %n(w0), w0n := α(ϑ0n).

Then there exists a positive constant C, depending only on |ϑ0|, ‖ln ϑ0‖L1(Ω), k and

on |Ω|, such that

(3.6) |ϑ0n|+ ‖ln(ϑ0n)‖L1(Ω) + νn|w0n|2 + νn

2∑

i=1

‖ζ̂1,n(w0n)‖L∞(Ω) 6 C ∀n ∈ & .

Moreover, (3.3) is satisfied, ϑ0n = %n(w0n) a.e. in Ω, and

νnw0n + ϑ0n → ϑ0 strongly in H as n ↗∞.

Now, let us approximate λ and g (cf., e.g., [6, Section 3]). We set

(3.7) λn(r) :=





λ(−n) + λ′(−n)(r + n) if r < −n,

λ(r) if − n 6 r 6 n, n ∈ & ,

λ(n) + λ′(n)(r − n) if r > n.

Note that

(3.8) λn ∈ C1,1( � ), λ′n, λ′′n ∈ L∞( � ), and λn → λ a.e. in � .

Moreover, we have (cf. (2.1)–(2.2))

|λ′n(r)| 6 Cλ(1 + |r|) ∀ r ∈ � ,(3.9)

|λn(r)| 6 Cλ(1 + |r|2) ∀ r ∈ � and ∀n ∈ & ,(3.10)

where Cλ (possibly different from line to line) are positive constants depending only
on λ. Finally, let us approximate g and its primitive ĝ by gn and ĝn (cf. [6, Section 3]):

gn ∈ C0,1( � ),(3.11)

gn → g uniformly on the compact subsets of � ,(3.12)

gn =
'
(gn)′,(3.13)

0 6 ĝn(r) 6 ĝ(r), |gn(r)| 6 |g(r)| ∀ r ∈ � .(3.14)

We are ready now to formulate the approximate problem for any n ∈ & .
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���� "!$#%���
(Pn

µ ). Find ϑn ∈ L∞(0, T ; H) ∩ L2(0, T ; V ), χn ∈ W 2,∞(0, T ; V ′) ∩
C1([0, T ]; H) ∩ C0([0, T ]; V ), and the auxiliary unknowns wn ∈ L2(0, T ; V ), υn ∈
H1(0, T ; V ′) fulfilling

ϑn = %n(wn), ϑn > 0 a.e. in Q, υn = νnwn + ϑn a.e. in Q,(3.15)

ϑ−1
n ∈ L2(0, T ; V ),(3.16)

(υn + λn(χn))t + J(wn) = f in V ′ a.e. in (0, T ),(3.17)

〈µ(χn)tt, v〉+ ((χn)t, v) + (∇χn,∇v) + (gn(χn) + λ′n(χn)ϑ−1
n , v) = 0(3.18)

∀ v ∈ V, a.e. in (0, T ),

υn(·, 0) = ϑ0n + νnw0n, χn(·, 0) = χ0, (χn)t(·, 0) = χ1 a.e. in Ω.(3.19)

Existence and uniqueness for (Pn
µ ). We can proceed like in [6, Section 3],

i.e. we can apply a fixed-point theorem to the contractive mapping S (that we will
define in a moment) into the Banach space

(3.20) HT = L2(0, T ; H)× C0([0, T ]; H).

Fix (wn, χn) ∈ HT and then consider the Cauchy problem

〈µ(χn)tt + (χn)t, v〉+ (∇χn,∇v) + (χn, v) = (G(wn, χn), v)(3.21)

∀ v ∈ V, a.e. in (0, T ),

χn(0) = χ0, (χn)t(0) = χ1 a.e. in Ω,(3.22)

G(wn, χn) = χn − gn(χn)− λ′n(χn)(%n(wn))−1 ∈ L∞(0, T ; H).(3.23)

As is well known, there is a unique solution χn ∈ W 2,∞(0, T ; V ′) ∩ C1([0, T ]; H) ∩
C0([0, T ]; V ) to (3.21)–(3.22) (cf., for example, [27, Lemma 4.1, p. 76]). Therefore,
we may apply for instance [7, Lemma 3.4], which gives us a unique solution wn ∈
C0([0, T ]; H) ∩ L2(0, T ; V ) to

〈(υn)t, v〉+ ((wn, v)) = −〈(λn(χn))t − f, v〉 ∀ v ∈ V, a.e. in (0, T ),(3.24)

υn = νnwn + %n(wn),(3.25)

υn(·, 0) = υ0n a.e. in Ω.(3.26)

Hence, let us introduce a mapping S from HT into itself such that

(3.27) S(wn, χn) := (wn, χn).

We find that S is a contraction ofHT into itself; in fact, if we consider (wj
n, χj

n) ∈ HT ,
j = 1, 2 and the corresponding (wj

n, χj
n), just using the same techniques as that
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employed in [6, pp. 11–12], we can find a positive constant Λn blowing up as n goes

to +∞ such that the estimate

‖w1
n − w2

n‖2
L2(0,t;H) + ‖χ1

n − χ2
n‖2

C0([0,t];H)(3.28)

6 Λn

∫ t

0

(‖w1
n − w2

n‖2
L2(0,s;H) + ‖χ1

n − χ2
n‖2

C0(0,s;H))

holds for any t ∈ [0, T ]. The reader may refer directly to [6, pp. 11–12] for explicit
calculations leading to (3.28). Thus, from (3.28), we deduce that for any fixed n ∈ &
we can find an integer m = m(n) such that Sm is a contraction in HT . Therefore,

thanks to the contraction principle, S has a unique fixed point in HT , i.e. (Pn
µ ) has

a unique solution.

We derive now some a priori estimates (independent of n ∈ & and µ > 0) for
the solution of problem (Pn

µ ). Hence, let C be a positive constant which may vary

from line to line and may depend on all the data of the problem except of n and
µ. Let us point out that the following estimates for equation (3.17) are formal.

Indeed, we know that υn ∈ H1(0, T ; V ′), but we would need to know that wn and ϑn

separately belong to H1(0, T ; V ′) (so that wn(·, 0) = w0n and ϑn(·, 0) = ϑ0n would

hold a.e. in Ω), which would require further approximation of f and w0. However,
let us proceed here in a formal way and refer to [7, p. 321] and references therein for

more details on this subject.

First a priori estimate. Testing equation (3.17) by ζ1,n(wn) and integrating it
over (0, t) with 0 6 t 6 T , we obtain the equality

∫ t

0

[〈(υn)t, ζ1,n(wn)〉+ 〈J(wn), ζ1,n(wn)〉](3.29)

=
∫ t

0

〈f, ζ1,n(wn)〉 −
∫ t

0

∫

Ω

λ′n(χn)(χn)tζ1,n(wn).

Moreover, using wn = α(ϑn) where |wn| 6 n, we get

〈(υn)t, η1,n(wn)〉 =
d
dt

∫

Ω

(νnζ̂1,n(wn) + ϑn − ln(ϑn)),(3.30)

〈J(wn), ζ1,n(wn)〉 = ((wn − α(ϑn), ζ1,n(wn))) + ((α(ϑn), ζ1,n(wn))),(3.31) ∫

Ω

∇(wn − α(ϑn))∇ζ1,n(wn) = 0,

∫

Γ

(wn − α(ϑn))ζ1,n(wn) > 0,(3.32)

which hold a.e. in (0, T ), and

−
∫ t

0

∫

Ω

∇α(ϑn)∇
( 1

ϑn

)
> C

∫ t

0

∫

Ω

∣∣∣∇
( 1

ϑn

)∣∣∣
2

,(3.33)

∫ t

0

∫

Γ

γα(ϑn)(1− 1/ϑn)) > kγ

∫ t

0

∫

Γ

( 1
ϑn

)2

− C − kγ

∫ t

0

∫

Γ

1
ϑn

.(3.34)
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Since f ∈ L2(0, T ; V ′), ζ1,n(wn) = 1 − 1/ϑn (see (3.4) and (3.15)) and ζ̂1,n is non-

negative by (3.5), we can obtain from (3.29), by applying (3.30)–(3.34), (2.57), (3.6),
(2.14) and Young’s inequality, that

‖ζ̂1,n(wn(t))‖L1(Ω) +
1
3
‖ϑn(t)‖L1(Ω) +

1
3
‖lnϑn(t)‖L1(Ω) + C‖ϑ−1

n ‖2
L2(0,t;V )(3.35)

6 C +
∫ t

0

∫

Ω

λ′n(χn)(χn)t

( 1
ϑn

− 1
)
.

Then we set v = (χn)t in (3.18), integrate over (0, t) and add to both sides (where
the subscript s stands for the derivative w.r.t. the time variable s ∈ (0, t))

(3.36) |χn(t)|2 = |χ0|2 + 2
∫ t

0

((χn)t(s), χn(s)),

in order to find the full V -norm of χn(t) on the left-hand side in (3.18). Hence,
applying Young’s inequality, we get

µ

2
|(χn)t(t)|2 +

1
2
‖(χn)t‖2

L2(0,t;H) +
1
2
‖χn(t)‖2 +

∫

Ω

ĝn(χn(t))(3.37)

6 C

(
µ|χ1|2 + ‖χ0‖+

∫

Ω

ĝn(χ0) + ‖χn‖2
L2(0,t;H)

)

−
∫ t

0

∫

Ω

λ′n(χn(s))(χn(s))tϑ
−1
n (s).

Finally, summing up (3.35) and (3.37), using (3.14), (2.12), (2.13), (3.9) and applying
Young’s inequality, we arrive at

µ|(χn)t(t)|2 + ‖(χn)t‖2
L2(0,t;H) + ‖χn(t)‖2 + ‖ϑn(t)‖L1(Ω)(3.38)

+ ‖ln ϑn(t)‖L1(Ω) + ‖ϑ−1
n ‖2

L2(0,t;V )

6 C

(
1 +

∫ t

0

|χn(s)|2
)

.

Employing a standard version of Gronwall’s lemma and recalling (2.4), we obtain

our first a priori estimate, yielding for all t ∈ [0, T ] that

µ|(χn)t(t)|2 + ‖(χn)t‖2
L2(0,t;H) + ‖χn(t)‖2 + ‖ϑn(t)‖L1(Ω)(3.39)

+ |g(χn(t))|2 + ‖ln ϑn(t)‖L1(Ω) + ‖ϑ−1
n ‖2

L2(0,t;V ) 6 C.

Second a priori estimate. Test now (3.17) by wn, integrate it over (0, t) and
recall (2.15) along with the definition of ‖ · ‖ to show that

(3.40)
∫ t

0

[〈(υn)t, wn〉+ ‖wn‖2] =
∫ t

0

〈f, wn〉 −
∫ t

0

∫

Ω

λ′n(χn)(χn)twn.
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Since we will also consider equation (3.40) with λ′n(χn)(χn)t replaced by some other

functions, we will keep λ′n(χn)(χn)t in what follows as long as possible. Now use the
following identity to treat the left-hand side in (3.40):

(3.41) 〈(υn)t, wn〉 =
d
dt

∫

Ω

(1
2
νnw2

n + α̂(ϑn)
)
,

which holds with α and not αn thanks to the fact that, by definition (3.1)–(3.2),∫ r

1
αn(τ) dτ = α̂(r) for all r ∈ [%(−n), %(n)]. Invoking Hölder’s and Young’s inequal-

ities, we observe that

−
∫ t

0

∫

Ω

λ′n(χn)(χn)twn 6 C

∫ t

0

‖λ′n(χn)(χn)t‖L6/5(Ω)‖wn‖(3.42)

6 η‖wn‖2
L2(0,t;V ) + C/η‖λ′n(χn)(χn)t‖L2(0,t;L6/5(Ω))

holds for every positive η. Since f ∈ L2(0, T ; V ′), from (3.40), using (3.41), (3.42),
(3.1), (3.6), (3.39) and choosing properly η, we obtain

1
2
νn|wn(t)|2 +

k

2
|ϑn(t)|2 +

1
2
‖wn‖2

L2(0,t;V )(3.43)

6 C(1 + ‖λ′n(χn)(χn)t‖L2(0,t;L6/5(Ω))).

By virtue of (3.39) and (3.9) we deduce by using the generalized Hölder’s inequality

that

‖λ′n(χn)(χn)t‖2
L2(0,t;L6/5(Ω)) 6 C‖λ′n(χn)(χn)t‖2

L2(0,t;L3/2(Ω))(3.44)

6 C

∫ t

0

‖(|χn|+ 1)(χn)t‖2
L3/2(Ω)

6 C

∫ t

0

‖ |χn|+ 1‖2
L6(Ω)‖(χn)t‖2

6 (‖χn‖2
L∞(0,t;V ) + 1)‖(χn)t‖2

L2(0,t;H) 6 C.

Hence, by (3.43), we finally obtain the second a priori bound

(3.45) νn‖wn‖L∞(0,T ;H) + ‖ϑn‖L∞(0,T ;L2(Ω)) + ‖wn‖L2(0,T ;V ) 6 C.

Moreover, again using the same techniques together with (3.42) and (3.44), it is
possible to show that

(3.46) ‖λ′n(χn)/ϑn‖L2(0,T ;L3(Ω)) 6 C.
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Third a priori estimate. Just comparing the terms in (3.17)–(3.18), remember-
ing (3.19), (3.44), (2.15), (3.39), (3.45), (3.19), (3.46), the fact that f ∈ L2(0, T ; V ′)
and the assumption on the approximating initial data (cf. Lemma 3.1), we obtain

(3.47) ‖υn‖2
H1(0,T ;V ′) + µ2‖(χn)tt‖2

L2(0,T ;V ′) 6 C.

Fourth a priori estimate. In order to establish this estimate, first we multi-
ply (3.17) by ζ2,n(wn), integrate it over (0, t), and use the analogues of (3.31)–(3.32)
written for ζ2,n(wn) = ϑn − 1 in order to get the inequality

〈(υn)t, ζ2,n(wn)〉+
∫ t

0

∫

Ω

∇α(ϑn)∇ϑn +
∫ t

0

∫

Γ

γα(ϑn)ζ2,n(wn)(3.48)

6 −
∫ t

0

∫

Ω

λ′n(χn)(χn)t(ϑn − 1) +
∫ t

0

〈f, ϑn − 1〉 .

Then, we rewrite the left-hand side of (3.48) using the definitions of α (3.1) and

of wn in (3.15) together with the obvious inequality r2 − 2r > 2−1(r2 − 4), which
holds for any r ∈ � , as follows:

〈(υn)t, ζ2,n(wn)〉 =
d
dt

∫

Ω

(
νnζ̂2,n(wn) +

1
2
ϑ2

n − ϑn

)
,(3.49)

∫ t

0

∫

Ω

∇α(ϑn)∇ϑn > C

∫ t

0

∫

Ω

|∇ϑn|2,(3.50)

∫ t

0

∫

Γ

γα(ϑn)ζ2,n(wn) > C

∫ t

0

∫

Γ

ϑ2
n − C.(3.51)

After combining (3.48) with (3.49)–(3.51), (3.39), (3.6) and (2.14), we arrive at the
same estimate as in (3.42) just with wn replaced by ϑn for sufficiently small η. Using

also the fact that f ∈ L2(0, T ; V ′) and Young’s inequality, we end up with

νn‖ζ̂2,n(wn)(t)‖L1(Ω) + |ϑn(t)|2 + ‖ϑn‖2
L2(0,t;V )(3.52)

6 C(1 + ‖λ′n(χn)(χn)t‖L2(0,t;L6/5(Ω))).

Finally, because of (3.44), we get the bound

(3.53) ‖ϑn‖2
L∞(0,T ;H)∩L2(0,T ;V ) 6 C.

Passage to the limit as n ↗∞. Now, we will deduce from the previous a priori
estimates some convergences for the solution of problem (Pn

µ ). These convergences
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will be valid for suitable subsequences. From (3.39), (3.45), (3.47) and (3.53) we

deduce that there exist a pair (ϑ, χ) and a function w such that

ϑn → ϑ weakly star in L∞(0, T ; H) and weakly in L2(0, T ; V ),(3.54)

wn → w weakly in L2(0, T ; V ),(3.55)

χn → χ weakly star in W 1,∞(0, T ; H) ∩ L∞(0, T ; V ),(3.56)

(χn)tt → χtt weakly in L2(0, T ; V ′)(3.57)

as n goes to +∞. Moreover, from (3.3), (3.15), (3.45) and (3.54)–(3.55) we deduce
that

υn → ϑ weakly in H1(0, T ; V ′) ∩ L2(0, T ; V ),(3.58)

ϑn − υn → 0 strongly in L2(0, T ; V ).

Then, applying the Aubin compactness lemma (cf. [20, Theorem 5.1, p. 58]) and the

generalized Ascoli theorem (cf. [26, Corollary 4, p. 85]), we obtain also the strong
convergences

υn → ϑ strongly in L2(0, T ; H) ∩ C0([0, T ]; V ′) and a.e. in Q,(3.59)

χn → χ strongly in C0([0, T ]; L4(Ω)) and a.e. in Q,(3.60)

ϑn → ϑ strongly in L2(0, T ; H) and a.e. in Q(3.61)

as n goes to +∞. Now, we may pass to the limit in problem (Pn
µ ) as n goes to +∞.

In fact, observe that

%n(v) → %(v) strongly in L2(0, T ; H)

as n goes to +∞ and for any v ∈ L2(0, T ; H) such that %(v) ∈ L2(0, T ; H). Hence,
recalling (3.2), (3.15), (3.55) and (3.61), taking into account the monotonicity of %n

and the maximal monotonicity of the graph % and using [2, Prop. 2.5, p. 27], we find

that

(3.62) ϑ > 0 and w = α(ϑ) = k(ϑ− ϑ−1) a.e. in Q.

Taking into account (3.39), (3.61) and (3.62), we may also deduce that

(3.63)
1
ϑn

→ 1
ϑ
weakly in L2(0, T ; V ) and a.e. in Q.
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On the other hand, on account of (2.1)–(2.2), (3.7)–(3.8) and (3.60), we have

(3.64) λ′n(χn) → λ′(χ) strongly in C0([0, T ]; L4(Ω))

as n goes to +∞; therefore, combining (3.64) with (3.56), we get

λ′n(χn)(χn)t → λ′(χ)χt weakly in L2(0, T ; L4/3(Ω))(3.65)

and weakly star in L∞(0, T ; L4/3(Ω))

as n goes to +∞. Since gn converges uniformly to g on compact subsets of �
(cf. (3.12)) and (3.60) holds, we have that

(3.66) gn(χn) → g(χ) a.e. in Q

as n goes to +∞. Using (2.5) and (3.14), we get the estimate

∫ t

0

|gn(χn)|2 6
∫ t

0

|g(χn)|2 6
∫ t

0

(τ1|χn|3 + τ2)2 6 C(‖χn‖6
L∞(0,T ;V ) + 1).

Thus {gn(χn)} is bounded in L2(0, T ; H) and so, thanks to (3.66), we get (cf. [20,
Lemma 1.3, p. 12])

(3.67) gn(χn) → g(χ) weakly in L2(0, T ; H) as n ↗∞.

Finally, (3.63) and (3.64) yield

(3.68)
λ′n(χn)

ϑn
→ λ′(χ)

ϑ
weakly in L2(0, T ; H) as n ↗∞.

Using the convergences of the sequences of the initial data (cf. Lemma 3.1), (3.55)–
(3.58), (3.65), (3.67) and (3.68), we may pass to the limit in (3.17)–(3.19) as n goes

to +∞. Invoking also (3.62), we obtain a solution (ϑ, χ) to (2.21)–(2.23). Combin-
ing (3.54), (3.56)–(3.58), (3.63), (3.66) and (3.67), we conclude that (2.18), (2.19)

and χtt ∈ L2(0, T ; V ′) hold and that (2.22) can be rewritten as a hyperbolic equation
with right-hand side in L2(0, T ; H). The regularity χ ∈ C1([0, T ]; H)∩ C0([0, T ]; V )
follows from a standard argument for hyperbolic equations (cf., e.g., [27]). This
concludes the proof of Theorem 2.3.
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4. Proof of Theorem 2.6

Concerning the notation, during this section we will use the same as we did in the

existence estimates of Section 3. We know that the solution (ϑµ, χµ) of problem (Pµ)
we have obtained from our approximation scheme certainly satisfies the a priori
bound (2.41) due to (3.39), (3.45), (3.47) and (3.53) since all constants denoted by C

in Section 3 are independent of µ. We now prove that any solution of Problem (Pµ)
necessarily satisfies it.

First estimate. Like in [6, Section 4], we may observe that

g(χµ) ∈ C0([0, T ]; H),(4.1)

λ′(χµ)(ϑµ)−1 ∈ L2(0, T ; H),(4.2)

Mµ := λ′(χµ)χµ
t ∈ L2(0, T ; L4/3(Ω)).(4.3)

By truncation, we can take a sequence {Mn} ⊂ L2(0, T ; H) such that

‖Mn‖L2(0,T ;L4/3(Ω)) 6 ‖Mµ‖L2(0,T ;L4/3(Ω))(4.4)

and

Mn → Mµ weakly in L2(0, T ; L4/3(Ω)) and a.e. in Q,

and consider the Cauchy problem (cf. (3.17) and (3.19))

〈(%n(wn) + νnwn)t, v〉+ ((wn, v)) = (m−Mn, v) + (h, v)Γ(4.5)

∀ v ∈ V, a.e. in (0, T ),

wn(0) = w0,n a.e. in Ω(4.6)

with νn defined as in Lemma 3.1. Clearly, there exists a unique wn ∈ C0([0, T ]; H)∩
L2(0, T ; V ) solving (4.5)–(4.6). Defining now ϑn and υn according to (3.15), we have
ϑn ∈ L∞(0, T ; H)∩ L2(0, T ; V ) and υn ∈ H1(0, T ; V ′). Moreover, because of (2.17),
the formulas (3.29), (3.35), (3.40), (3.43), (3.48) and (3.52) still hold withMn instead
of λ′n(χn)(χn)t. Therefore, summing up the modified versions of (3.35), (3.43) and

(3.52), we end up with

‖ζ̂1,n(wn)(t)‖L1(Ω) +
1
3
‖ϑn(t)‖L1(Ω) +

1
3
‖lnϑn‖L1(Ω) + C‖ϑ−1

n ‖2
L2(0,t;V )(4.7)

+
νn

2
|wn(t)|2 +

k + 1
2

|ϑn(t)|2 +
1
2
‖wn‖2

L2(0,t;V )

+ νn‖ζ̂2,n(wn)(t)‖L1(Ω) + C‖ϑn‖2
L2(0,t;V )

6 C(1 + ‖Mn‖L2(0,t;L6/5(Ω))) +
∫ t

0

∫

Ω

Mn(ϑ−1
n − 1).
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Considering now (3.42) with λ′n(χn)(χn)t replaced by Mn and wn replaced by 1/ϑn

for sufficiently small η and recalling also (4.4), we see that

√
νn‖wn‖L∞(0,T ;H) + ‖wn‖L2(0,T ;V ) + ‖(ϑn)−1‖L2(0,T ;V )(4.8)

+‖ϑn‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ln ϑn‖L∞(0,T ;L1(Ω)) 6 Cµ,

where Cµ denotes a positive constant which depends on ‖Mµ‖L∞(0,T ;L4/3(Ω)) but is
independent of n. Moreover, by comparison, we also have the bound

(4.9) ‖νnwn + ϑn‖H1(0,T ;V ′) 6 Cµ.

Passage to the limit as n ↗ ∞. Arguing as in the “passage to the limit”
subsection of Section 3, we obtain the convergences (as n goes to +∞)

ϑn → ϑµ weakly star in L∞(0, T ; H) and weakly in L2(0, T ; V ),(4.10)

ϑn → ϑµ strongly in C0([0, T ]; V ′) ∩ L2(0, T ; H),(4.11)

ϑ−1
n → (ϑµ)−1 weakly in L2(0, T ; V ),(4.12)

wn → α(ϑµ) weakly in L2(0, T ; V ),(4.13)

νnwn → 0 strongly in C0([0, T ]; H),(4.14)

where ϑµ is the unique positive solution to the problem

〈ϑµ, v〉+ ((α(ϑµ), v)) = (m−Mµ, v) + (h, v)Γ ∀ v ∈ V, a.e. in (0, T ),(4.15)

ϑµ(·, 0) = ϑ0 a.e. in Ω.(4.16)

We observe now that by (4.14) and by the boundedness of {ϑn} in L∞(0, T ; H), we
may deduce the following convergence that will be useful in the sequel:

(4.17) ϑn(t) → ϑµ(t) weakly in H and strongly in V ′ as n ↗∞.

Second estimate. Recalling (3.35) with Mn instead of λ′n(χn)(χn)t, using
Young’s inequality, (3.30)–(3.32) and (3.33)–(3.34), we obtain the inequality

(4.18)
1
3
‖ϑn(t)‖L1(Ω) +

1
3
‖lnϑn(t)‖L1(Ω) + C

∫ t

0

‖ϑ−1
n ‖2 6 C +

∫ t

0

∫

Ω

Mn(ϑ−1
n − 1).

Now, using (4.4), (4.12), (4.17) and the weak lower semicontinuity of the norm, we
get from (4.18) the inequality

(4.19)
1
3
‖ϑµ(t)‖L1(Ω) +

1
3
‖ln ϑµ(t)‖L1(Ω) 6 C +

∫ t

0

∫

Ω

Mµ

( 1
ϑµ

− 1
)
.
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Regarding the second variable χµ we know that χµ satisfies equation (2.22), hence

we can formally (the argument may be made rigorous (cf., e.g., [5, Appendix]) take
v = χµ

t in (2.22) and integrate over (0, t) getting the energy inequality

µ

2
|χµ

t (t)|2 +
1
2
|∇χµ(t)|2 +

∫

Ω

ĝ(χµ(t)) +
∫ t

0

|(χµ)t(s)|2(4.20)

6 µ

2
|χ1|2 +

1
2
|∇χ0|2 +

∫

Ω

ĝ(χ0)−
∫ t

0

(Mµ(s), (ϑµ)−1(s)).

Now, arguing as in Section 3, i.e. adding together (4.18), (4.20) and (3.35) with χn

replaced by χµ, using (2.12), (2.13) and (3.9) with λ′n replaced by λ′, and applying
afterwards Young’s inequality, we show that

µ|(χµ)t(t)|2 + ‖(χµ)t‖2
L2(0,t;H) + ‖χµ(t)‖2 + ‖ϑµ(t)‖L1(Ω)(4.21)

+‖lnϑµ(t)‖L1(Ω) +
∥∥∥ 1

ϑµ

∥∥∥
2

L2(0,t;V )
6 C

(
1 +

∫ t

0

|χµ|2
)

.

Using Gronwall’s lemma, we get a uniform bound for the left-hand side of (4.21).
Recalling now the definition ofMµ and the first estimates in (3.44) with λ′n replaced

by λ and χn replaced by χµ, it turns out that we have derived also a uniform
bound for ‖Mµ‖L2(0,T ;L4/3(Ω)) independently of µ. Hence, we can replace Cµ with C

in (4.8)–(4.9). Finally, by comparison with (2.21), we have that

(4.22) ‖ϑµ
t ‖L2(0,T ;V ′) 6 R,

and so, from (4.21)–(4.22), we deduce the desired estimate (2.41).

Passage to the limit as µ ↘ 0. Recalling (4.3), combining (4.21) and (4.22)
with (4.8) and (4.9) (with C instead of Cµ), we find (2.41); thus, we may find
a subsequence {µk} that converges to 0 and a pair (ϑ, χ) such that the following
convergences hold (for k ↗∞):

ϑµk → ϑ weakly star in L∞(0, T ; H),(4.23)

ϑµk → ϑ weakly in H1(0, T ; V ′) ∩ L2(0, T ; V ),(2.24)

ϑµk → ϑ strongly in C0([0, T ]; V ′) ∩ L2(0, T ; H),(4.25)
1

ϑµk
→ 1

ϑ
weakly in L2(0, T ; V ),(4.26)
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α(ϑµk ) → α(ϑ) weakly in L2(0, T ; V ),(4.27)

µkχµk
t → 0 strongly in C0([0, T ]; H),(4.28)

χµk → χ weakly star in L∞(0, T ; V ),(4.29)

χµk → χ weakly in H1(0, T ; H),(4.30)

χµk → χ strongly in C0(0, T ; L6−ε(Ω)) ∀ ε > 0.(4.31)

We may first integrate (2.22) written for (ϑµk , χµk ) in time over (0, t), then we may
write also (2.21) for the pair (ϑµk , χµk ) and, finally, thanks to (4.23)–(4.31), we may
pass to the limit as k goes to +∞, arguing as in Section 3 for the nonlinearities and
deducing that the limit pair (ϑ, χ) satisfies a.e. in (0, T )

〈(ϑ + λ(χ))t, v〉+ ((α(ϑ), v)) = (m, v) + (h, v)Γ ∀ v ∈ V,(4.32)

(χ, v) + (1 ∗ ∇χ,∇v) + (1 ∗ (g(χ) + λ′(χ)ϑ−1, v) = (χ0, v) ∀ v ∈ V,(4.33)

ϑ(·, 0) = ϑ0 a.e. in Ω.(4.34)

On the other hand, owing to (2.1)–(2.5), (2.12), (4.26), (4.29)–(4.31), we deduce

from (4.33) that

(χt, v) + (∇χ,∇v) + (g(χ) + λ′(χ)ϑ−1, v) = 0 ∀ v ∈ V, a.e. in (0, T ),(4.35)

χ(·, 0) = χ0 a.e. in Ω.(4.36)

Finally, we may recover the regularity of χ (2.36) by comparison with (4.35). This

proves that the pair (ϑ, χ) solves problem (P0) and the uniqueness of solutions to (P0)
proves that the whole family {(ϑµ, χµ)} converges to (ϑ, χ) as µ goes to 0, in the
sense of (4.23)–(4.31). This concludes the proof of Theorem 2.6.

5. Proof of Theorem 2.4

Throughout this section, we will formally perform the regularity estimates for

problem (Pµ). We will omit the indices µ for simplicity of notation and use here the
already known estimates for the solution of problem (Pµ). Moreover, only within this

section, the positive constants appearing in the estimates (denoted by C) are allowed
to depend on all the data of the problem (including µ) since we are interested here

(cf. Theorem 2.4) in proving a regularity result concerning solutions to problem (Pµ)
for µ > 0.

First regularity estimate. We introduce now further regularity assumptions on
the data (2.24)–(2.27) in order to prove (2.28). Under these hypotheses, we want to
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take v = −∆χt as a test function in equation (2.22). In order to do that we have

to know that it is an admissible test function. Hence, we may proceed writing the
equation (2.22) as

(5.1) µχtt + χt −∆χ = s in V ′ and a.e. in (0, T ) with χn = 0 on Σ,

where, thanks to (2.19), (2.20) and (2.26), the function s belongs to L2(0, T ; V ).
Moreover, we can proceed by regularizing s with some sn ∈ H2(0, T ; V ), the data χ0

and χ1 with some χi,n ∈ H3(Ω) ∩ Wn (i = 0, 1) with Wn := {w ∈ W : wn = 0
on Γ}. Then, using [12, Teorema 4.4, p. 661], we obtain that the solution of (5.1) is
in C2(0, T ; V ) ∩ C3(0, T ; H), and so −∆χt ∈ C0([0, T ]; H) as desired. Whence, we
can proceed now formally testing (2.22) with −∆χt, integrating some terms by parts

in space (using the boundary condition (1.8) and the initial conditions in (2.23)),
and integrating it again, but in time, over (0, t) for t ∈ (0, T ), getting

µ

2
‖∇χt(t)|2 + ‖∇χt‖2

L2(0,t;H) +
1
2
|∆χ(t)|2(5.2)

6 µ

2
|∇χ1|2 +

1
2
|∆χ0|2 +

∫ t

0

∫

Ω

g(χ)∆χt +
∫ t

0

∫

Ω

λ′(χ)ϑ−1∆χt.

In order to estimate the last two integrals, we have to use (2.18)–(2.20). To deal
with the term containing g, we apply Young’s inequality and (2.59):

∣∣∣∣
∫ t

0

∫

Ω

g′(χ)∇χ∇χt

∣∣∣∣ 6 C

∫ t

0

∫

Ω

(1 + χ2)|∇χ| |∇χt|(5.3)

6 C +
1
4
‖∇χt‖2

L2(0,t;H) + C

∫ t

0

‖χ‖2
L6(Ω)‖∇χ‖L6(Ω)|∇χt|

6 C +
1
4
‖∇χt‖2

L2(0,t;H) + C

∫ t

0

(|∆χ|+ |χ|)|∇χt|

6 C +
1
2
‖∇χt‖2

L2(0,t;H) + C‖∆χ‖2
L2(0,t;H).

Regarding the term containing λ, we have to use (2.26) as follows:

∫ t

0

∫

Ω

λ′(χ)ϑ−1∆χt = −
∫ t

0

∫

Ω

ϑ−1λ′′(χ)∇χ∇χt −
∫ t

0

∫

Ω

λ′(χ)∇ϑ−1∇χt(5.4)

6 C

∫ t

0

‖ϑ−1‖L6(Ω)‖∇χ‖L6(Ω)|∇χt|+ C

∫ t

0

|∇ϑ−1| |∇χt|

6 C +
1
4
‖∇χt‖2

L2(0,t;H) + ‖∆χ‖2
L2(0,t;H).
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Combining (5.2) with (5.3) and (5.4) allows us to apply a standard version of Gron-

wall’s lemma to show that

(5.5) µ‖∇χt‖2
L∞(0,T ;H) + ‖∇χt‖2

L2(0,T ;H) + ‖∆χ‖2
L∞(0,T ;H) 6 C

and, consequently,

(5.6) ‖χ‖L∞(Q) 6 C.

Second regularity estimate. We take now into account further regularity as-
sumptions given in (2.29). Let K be a positive constant such that the bound

(5.7) 1 +
2
k

+ ‖m‖L2(0,T ;L6(Ω)) + ‖h‖L∞(Σ) + |Γ| 6 K + K|Γ|

holds. Now, in order to prove an estimate for ϑ in L∞(Q), we use Moser’s technique
(cf., e.g., [1] and [19]). First of all, let us set ` := m−λ′(χ)χt. Observe that, thanks

to (5.6), (2.20) and (5.7), we have that ` is bounded in L2(0, T ; L6(Ω)). Moreover,
let p ∈ (1, +∞), multiply (2.21) by ϑp and integrate over Ω, obtaining

1
p + 1

d
dt

∫

Ω

ϑp+1 + k

∫

Ω

∇ϑ∇ϑp +
4pk

(p− 1)2

∫

Ω

|∇ϑ
p−1
2 |2 + γk

∫

Γ

ϑp+1(5.8)

6 γk

∫

Γ

ϑp−1 + γ

∫

Γ

hϑp +
∫

Ω

`ϑp.

Simply using (5.7) and the generalized Young inequality (2.58) first with the expo-
nents p/(p− 1) and p and then with the exponents (p + 1)/p and p + 1, we deduce
that

(5.9) γ

(
k

∫

Γ

ϑp−1 +
∫

Γ

hϑp

)
6 γK

(∫

Γ

ϑp + 1
)

6 γkp

2(p + 1)

∫

Γ

ϑp+1 + γK2p+3.

Hence, we deduce from (5.8) multiplied by p + 1 (neglecting the nonnegative term
k

∫
Ω∇ϑ∇ϑp) the inequality

d
dt

∫

Ω

ϑp+1 +
4pk(p + 1)
(p− 1)2

∫

Ω

|∇ϑ
p−1
2 |2 + γ

k

2
p

∫

Γ

ϑp+1(5.10)

6 γ(p + 1)K2p+3 + (p + 1)
∫

Ω

`ϑp.

Moreover, using the generalized Young inequality, we can observe that
∫
Γ ϑp+1 >∫

Γ
ϑp−1 − |Γ| and so the last two integrals on the left-hand side of (5.10) can be

bounded from below as follows:

4pk(p + 1)
(p− 1)2

∫

Ω

|∇ϑ
p−1
2 |2 + γ

k

2
p

∫

Γ

ϑp+1 > C‖ϑ p−1
2 ‖2 − γ

k

2
|Γ|.
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Hence, owing to Hölder’s and Young’s inequalities, we obtain from (5.10) (us-

ing (2.29)) that

(5.11)
d
dt

∫

Ω

ϑp+1 + C

(∫

Ω

(ϑ
p−1
2 )6

)2/6

6 CK2p+3(p + 1) + (p + 1)
∫

Ω

|`|ϑp.

Next, we infer from Hölder’s and Young’s inequalities that

(p + 1)
∫

Ω

|`|ϑp 6 (p + 1)‖`‖L6(Ω)‖ϑ
p−1
2 ‖L6(Ω)‖ϑ

p+1
2 ‖L3/2(Ω)(5.12)

6 C

2

(∫

Ω

ϑ3(p−1)

)1/3

+ C(p + 1)2‖`‖2
L6(Ω)

(∫

Ω

ϑ3(p+1)/4

)4/3

.(5.13)

We now consider sequences (pn) and (σn) of real numbers defined by

p0 = 2, pn+1 =
4
3
pn, σn = 2pn, n ∈ & .

Then we have that σn+1 = 4/3σn. Now, letting n ∈ & and taking p = pn+1 − 1
in (5.11), it follows from (5.13)

sup
t∈(0,T )

∫

Ω

ϑpn+1(t) 6 Cσ2
n+1 max

{
Kσn+1 , sup

t∈(0,T )

(∫

Ω

ϑpn(t)
)4/3}

.

Hence, using Lemma 8.1 in the Appendix with (γn) = sup
t∈(0,T )

‖ϑ(t)‖pn

Lpn(Ω), (δn) =

(σn), a = 4/3, c = 0, b = 2 and C1 = K, we get that there exists a positive

constant C̃ independent of n such that

(5.14) sup
t∈(0,T )

‖ϑ(t)‖1/2
Lpn(Ω) 6 C̃, ∀n ∈ & .

Taking n ↗∞, we immediately obtain that ϑ is bounded in L∞(Q).

Third regularity estimate. We may employ the same Moser’s technique in or-
der to establish the L∞(Q) bound for 1/ϑmultiplying (2.21) by −ϑ−p and integrating
over Ω.

Fourth regularity estimate. During this estimate we will use strongly the
previous ones. In fact, to obtain this estimate, we need the regularity assump-

tions (2.24)–(2.27), (2.29) and (2.31)–(2.32) on the data. Then, let us multiply (2.21)
by (ϑt/ϑ2 +ϑt) and add the resulting equation to the time derivative of (2.22) tested
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with zt, where we have set z := χt. Doing that, we obtain the following equality,

which holds for all t ∈ [0, T ]:
∫

Ω

(
ϑ2

t +
ϑ2

t

ϑ2

)
(t) +

k

2
d
dt
‖(ϑ− ϑ−1)(t)‖2 +

µ

2
d
dt
|zt(t)|2 + |zt(t)|2(5.15)

+
1
2

d
dt
|∇z(t)|2 =

〈
f(t),

(
ϑt +

ϑt

ϑ2

)
(t)

〉
−

∫

Ω

λ′(χ(t))z(t)
( ϑt

ϑ2
+ ϑt

)
(t)

−
∫

Ω

g′(χ(t))z(t)zt(t)−
∫

Ω

λ′′(χ(t))
ϑ(t)

z(t)zt(t) +
∫

Ω

λ′(χ(t))
ϑt

ϑ2
(t)zt(t).

Now, we integrate it over (0, t) with t ∈ [0, T ] and then estimate the terms on the
right-hand side. First, we may integrate by parts (in time) the term containing f

and use hypotheses (2.31)–(2.32) as follows:
∫ t

0

〈
f, ϑt +

ϑt

ϑ2

〉
(5.16)

= −
∫ t

0

〈
ft, ϑ− ϑ−1

〉
+

〈
f(t), (ϑ− ϑ−1)(t)

〉
−

〈
f(0), (ϑ− ϑ−1)(0)

〉

6
∫ t

0

‖ft‖∗‖ϑ− ϑ−1‖+
k

4
‖(ϑ− ϑ−1)(t)‖2

+ C‖f‖2
C0([0,T ];V ′) + ‖(ϑ− ϑ−1)(0)‖2.

In the sequel, we set

J1(t) :=
∫ t

0

∫

Ω

λ′(χ(t))z(t)
( ϑt

ϑ2
+ ϑt

)
(t),

J2(t) := −
∫ t

0

∫

Ω

λ′′(χ(t))
ϑ(t)

z(t)zt(t),

J3(t) :=
∫

Ω

λ′(χ(t))
ϑt

ϑ2
(t)zt(t).

Let us use Hölder’s inequality and the first regularity estimate for z (cf. (5.5)) with

the continuous embedding of V in L4(Ω), and (2.26), in order to get the following
estimate for J1(t):

|J1(t)| 6 C

(∫ t

0

‖z‖L4(Ω)

∣∣∣ϑt

ϑ

∣∣∣ ‖ϑ−1‖L4(Ω) +
∫ t

0

|z| |ϑt|
)

(5.17)

6 1
2

(∫ t

0

∣∣∣ϑt

ϑ

∣∣∣
2

+
∫ t

0

|ϑt|2
)

+ C

∫ t

0

‖ϑ−1‖2.

Then we use (2.2) and the third regularity estimate in order to obtain

(5.18) |J1(t)| 6
1
2

∫ t

0

|zt|2 + C

∫ t

0

|z|2.
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Now, in order to estimate the term containing g in (5.15), we have to use Hölder’s

inequality, (2.19), (2.36) and the estimate (2.41), in fact (since χ ∈ L∞(Q) due
to (5.6)) arriving at

(5.19)
∫ t

0

∫

Ω

g′(χ)zzt 6 C1

∫ t

0

∫

Ω

(1 + χ2)|zzt| 6
1
2

∫ t

0

|zt|2 + C

∫ t

0

|z|2.

Finally, from (2.26), Hölder’s inequality the third regularity estimate on ϑ−1 it follows

that

(5.20) |J3(t)| 6 C

∫ t

0

∣∣∣ϑt

ϑ

∣∣∣ ‖ϑ−1‖L∞(Ω)|zt| 6 δ

∫ t

0

∣∣∣ϑt

ϑ

∣∣∣
2

+ Cδ

∫ t

0

‖ϑ−1‖2
L∞(Ω)|zt|2

for all δ > 0 and for a positive constant Cδ . Now (5.15), thanks to (5.16)–(5.20) and
provided δ is sufficiently small, becomes

∫ t

0

∫

Ω

(
ϑ2

t +
ϑ2

t

ϑ2

)
+ ‖(ϑ− ϑ−1)(t)‖2 + µ|zt(t)|2 + ‖zt‖2

L2(0,t;H) + ‖z(t)‖2(5.21)

6 C

(
1 +

∫ t

0

‖z‖2 +
∫ t

0

‖zt|2 +
∫ t

0

‖ϑ− ϑ−1‖2

)
,

where we have added up to both sides of (5.15) (integrated in time) the term

1
2
|z(t)|2 =

1
2
|z(0)|2 +

∫ t

0

(zs(s), z(s))

in order to obtain the full V -norm of z on the left-hand side. Moreover, applying a

standard version of Gronwall’s lemma to (5.21), we have the regularities (2.33) (for
solutions of (Pµ) with a strictly positive coefficient µ).

This concludes both the proof of Theorem 2.4 and this section.

6. Proof of Theorem 2.8

Suppose, throughout this section, that (ϑi, χi) for i = 1, 2 solves problem (Pµ) with
the data ϑ0i, χ0i, χ1i, fi instead of ϑ0, χ0, χ1, f , respectively, and be ui := −ϑ−1

i .

Set, for this section,

χ = χ1 − χ2, ϑ = ϑ1 − ϑ2, u = u1 − u2, f = f1 − f2,(6.1)

χ0 = χ01 − χ02, χ1 = χ11 − χ12, ϑ0 = ϑ01 − ϑ02.
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Then we have

〈(ϑ + λ(χ1)− λ(χ2))t, v〉+ k((ϑ + u, v)) = (f, v) ∀ v ∈ V, a.e. in (0, T ),(6.2)

〈µχtt, v〉+ (χt, v) + (∇χ,∇v) + (g(χ1)− g(χ2)− λ′(χ1)u1(6.3)

+ λ′(χ2)u2, v) = 0 ∀ v ∈ V, a.e. in (0, T ),

ϑ(·, 0) = ϑ0, χ(·, 0) = χ0, χt(·, 0) = χ1 a.e. in Ω.(6.4)

Let us integrate (6.2) in time over (0, t), take v = k(ϑ + u), and integrate in time
once more. Then we have the equality

k‖ϑ‖2
L2(0,t;H) + k

∫ t

0

(ϑ, u) +
1
2
‖1 ∗ [kϑ + ku](t)‖2(6.5)

= k

∫ t

0

〈ϑ0 + λ(χ01)− λ(χ02) + 1 ∗ f, ϑ + u〉+ k

∫ t

0

∫

Ω

(λ(χ1)− λ(χ2))(ϑ + u).

First, we observe that (cf., e.g., [8]) there exists a positive constant d such that

(6.6) (ϑ, u) > d

∫

Ω

|u|2
1 + |u1|2 + |u2|2

,

and, thanks to (2.26), using Young’s inequality we obtain (cf. also [6, (5.9)–(5.11)])

−
∫ t

0

∫

Ω

k(λ(χ1)− λ(χ2))u 6 C

∫ t

0

∫

Ω

|χ||u|(6.7)

6 d

2

∫

Ω

|u|2
1 + |u1|2 + |u2|2

+ C

∫

Ω

(1 + |u1|2 + |u2|2)|χ|2

6 d

2

∫

Ω

|u|2
1 + |u1|2 + |u2|2

+ ‖χ‖2
L2(0,t;H) +

2∑

i=1

∫ t

0

‖ui‖2
L∞(Ω)|χ|2.

Note that, if N = 1, there is no need of (2.26) since C0([0, T ]; V ) ↪→ C0(Q). In this
case, the constant C depends on M1 as well. Moreover, using Young’s inequality, we
get

(6.8) −
∫ t

0

∫

Ω

(λ(χ1)− λ(χ2))kϑ 6 δ‖ϑ‖2
L2(0,t;H) + Cδ‖χ‖2

L2(0,t;H)

for all δ > 0 and for a positive constant Cδ . Finally, we have to integrate by parts
in time the term containing f in (6.5) and to use Young’s inequality once more, to
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arrive at

∫ t

0

〈1 ∗ f, kϑ + ku〉 = 〈(1 ∗ f)(t), 1 ∗ [kϑ + ku](t)〉 −
∫ t

0

〈f, 1 ∗ (kϑ + ku)〉(6.9)

6 1
4
‖[1 ∗ (kϑ + ku)](t)‖2 + C‖(1 ∗ f)(t)‖2

∗

+ ‖f‖2
L2(0,t;V ′) +

∫ t

0

‖1 ∗ (kϑ + ku)‖2.

Hence, using the estimates (6.6)–(6.9) and choosing δ sufficiently small, (6.5) becomes

‖ϑ‖2
L2(0,t;H) +

∫ t

0

|u|2
1 + |u1|2 + |u2|2

+ ‖[1 ∗ (kϑ + ku)](t)‖2(6.10)

6 C

(
‖ϑ0‖2

∗ + |χ0|2 + ‖f‖2
L2(0,t;V ′) +

∫ t

0

‖1 ∗ (kϑ + ku)‖2

+ ‖χ‖2
L2(0,t;H) +

2∑

i=1

∫ t

0

‖ui‖2
L∞(Ω)|χ|2

)
,

where the constant C depends also on M1.

Now, let us take v = χt in (6.3) and then integrate it over (0, t) to obtain

µ

2
|χt(t)|2 + ‖χt‖2

L2(0,t;H) +
1
2
|∇χ(t)|2(6.11)

6 −
∫ t

0

(g(χ1)− g(χ2), χt) +
∫ t

0

(λ′(χ1)u1 − λ′(χ2)u2, χt)

+
µ

2
|χ1|2 +

1
2
|∇χ0|2.

We notice here that this argument is only formal since χt(t) does not belong to V , but
it may be made rigorous for example by using the same techniques as that employed

in [5].

Now, in order to estimate the terms on the right-hand side in (6.11), we may

proceed exactly like in [6, (5.14)–(5.16)]. Let us recall here the procedure performed
in order to get a bound for the second integral on the right-hand side in (6.11)

because it is just here that the assumption (2.49) is necessary. Indeed, first we may
write

∫ t

0

(λ′(χ1)u1 − λ′(χ2)u2, χt)(6.12)

=
∫ t

0

∫

Ω

u1(λ′(χ1)− λ′(χ2))χt +
∫ t

0

∫

Ω

λ′(χ2)uχt.
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Then, let us estimate the two integrals in (6.12) separately, using (2.26), (2.49) and

Young’s inequality, as follows:

(6.13)
∫ t

0

∫

Ω

u1(λ′(χ1)− λ′(χ2))χt 6 δ

∫ t

0

|χt|2 + Cδ

∫ t

0

‖u1‖2
L∞(Ω)|χ|2

for all positive δ and for a positive constant Cδ . Moreover, in order to estimate the
second integral in (6.12), we may observe that, thanks also to (6.6) and (2.50), we

have
∫ t

0

∫

Ω

λ′(χ2)uχt 6 C

∫ t

0

∫

Ω

|u| |χt|(6.14)

6 C

∫ t

0

∫

Ω

|u|√
1 + |u1|2 + |u2|2

√
1 + |u1|2 + |u2|2|χt|

6 d

4

∫ t

0

∫

Ω

|u|2
1 + |u1|2 + |u2|2

+ C

∫ t

0

2∑

i=1

(1 + ‖ui‖2
L∞(Ω))|χt|2.

Further, adding to both sides of (6.11) the term

1
2
|χ(t)|2 =

1
2
|χ0|2 +

∫ t

0

(χt, χ)

in order to recover the full V -norm of χ(t) on the left-hand side, using (6.12)–(6.14)
and choosing δ sufficiently small, we get

µ

2
|χt(t)|2 + ‖χt‖2

L2(0,t;H) +
1
2
‖χ(t)‖2(6.15)

6 C
(µ

2
|χ1|2 + ‖χ0‖2 + ‖χt‖2

L2(0,t;H)

+ ‖χ‖2
L2(0,t;V )

)
+

d

4

∫ t

0

∫

Ω

|u|2
1 + |u1|2 + |u2|2

+ C

∫ t

0

2∑

i=1

‖ui‖2
L∞(Ω)|χt|2,

where the constant C depends also on M1.
Finally, let us set v = J−1ϑ in (6.2) and integrate over (0, t) to obtain, thanks

to (2.15)–(2.16) and to the monotonicity of the function ϑ 7→ −1/ϑ from (0, +∞)
into (−∞, 0),

1
2
‖ϑ(t)‖2

∗ + k‖ϑ‖2
L2(0,t;H)(6.16)

6 1
2
‖ϑ0‖2

∗ +
∫ t

0

〈
f, J−1ϑ

〉

−
∫ t

0

∫

Ω

(λ′(χ1)(χ1)t − λ′(χ2)(χ2)t)J−1ϑ.
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Now, write down the last integral in (6.6) as

(6.17) −
∫ t

0

∫

Ω

(λ′(χ1)(χ1)t − λ′(χ2)(χ2)t)J−1ϑ = I1 + I2,

where

I1 := −
∫ t

0

∫

Ω

J−1(ϑ)(λ′(χ1)− λ′(χ2))(χ1)t,(6.18)

I2 := −
∫ t

0

∫

Ω

λ′(χ2)J−1(ϑ)((χ1)t − (χ2)t),(6.19)

and estimate the above two integrals separately, using (2.26) and (2.50), Young’s

and Hölder’s inequalities as follows:

I1 6 C

∫ t

0

‖J−1ϑ‖L4(Ω)‖χ‖L4(Ω)|(χ1)t|(6.20)

6 C‖χ‖2
L2(0,t;V ) +

∫ t

0

|(χ1)t|2‖ϑ‖2
∗,

I2 6 C

∫ t

0

|J−1ϑ| |χt| 6 C(‖ϑ‖2
L2(0,t;V ′) + ‖χt‖2

L2(0,t;H)),(6.21)

where the constant C depends also on M1. Now, inserting (6.17)–(6.21) into (6.16),

we get

‖ϑ(t)‖2
∗ + ‖ϑ‖2

L2(0,t;H) 6 C(‖ϑ0‖2
∗ + ‖f‖2

L2(0,t;V ′) + ‖ϑ‖2
L2(0,t;V ′)(6.22)

+ ‖χ‖2
L2(0,t;V ) + ‖χt‖2

L2(0,t;H) +
∫ t

0

‖ϑ‖2
∗|(χ1)t|2).

Finally, we may collect estimates (6.10), (6.15), (6.22) arriving at

‖ϑ(t)‖2
∗ + ‖ϑ‖2

L2(0,t;H) +
∫ t

0

∫

Ω

|u|2
1 + |u1|2 + |u2|2

+ ‖1 ∗ (kϑ + ku)(t)‖2(6.23)

+ µ|χt(t)|2 + ‖χt‖2
L2(0,t;H) + ‖χ(t)‖2

6 C

(
‖ϑ0‖2

∗ + µ|χ1|2 + ‖χ0‖2 + ‖f‖2
L2(0,t;V ′) +

∫ t

0

‖1 ∗ (kϑ + ku)‖2

+ ‖ϑ‖2
L2(0,t;V ′) + ‖χ‖2

L2(0,t;V ) + ‖χt‖2
L2(0,t;H)

)
+

∫ t

0

‖ϑ‖2
∗|(χ1)t|2

+ C

∫ t

0

2∑

i=1

‖ui‖2
L∞(Ω)|χ|2 + C

∫ t

0

2∑

i=1

‖ui‖2
L∞(Ω)|χt|2
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and, applying a standard version of Gronwall’s lemma to (6.23) and recalling (2.50),

we find the continuous dependence estimate (2.51), which yields the uniqueness of
solutions to problem (Pµ) in the case of N = 1. Hence the proof of Theorem 2.8 is
completed.

7. Proof of Theorem 2.9

Throughout this section, we will use the same notation as in the previous Section 6.
Observe that, thanks to (2.52), (6.5) becomes

k‖ϑ‖2
L2(0,t;H) + k

∫ t

0

(ϑ, u) +
∫ t

0

∫

Ω

χ(kϑ + ku) +
1
2
‖[1 ∗ (kϑ + ku)](t)‖2(7.1)

=
∫ t

0

〈ϑ0 + χ0 + 1 ∗ f, kϑ + ku〉

and, integrating by parts (in time) the third term in (7.1), we obtain

−
∫ t

0

∫

Ω

χ(kϑ + ku) =
∫ t

0

∫

Ω

χt[1 ∗ (kϑ + ku)]−
∫

Ω

χ(t)[1 ∗ (kϑ + ku)(t)](7.2)

6
∫ t

0

‖χt‖∗‖[1 ∗ (kϑ + ku)]‖+ C‖χ(t)‖∗‖[1 ∗ (kϑ + ku)](t)‖.

Therefore, taking (6.6) and (7.2) into account, integrating by parts the terms con-

taining f as in the previous section and using Young’s and Hölder’s inequalities,
(7.1) becomes

k‖ϑ‖2
L2(0,t;H) +

1
2
‖[1 ∗ (kϑ + k)u](t)‖2 +

∫ t

0

|u|2
1 + |u1|2 + |u2|2

(7.3)

6 C

(
‖ϑ0‖2

∗ + ‖χ0‖2
∗ + ‖f‖2

L2(0,t;V ′) +
∫ t

0

‖χt‖2
∗ +

∫ t

0

‖1 ∗ (kϑ + ku)‖2

)
.

Now, we may consider equation (6.3) and proceed like in [6, Section 6]: we inte-
grate (6.3) with respect to time over (0, t), finding

〈µχt, v〉+ (χ, v) + (∇(1 ∗ χ),∇v) + (1 ∗ (g(χ1)− g(χ2))− 1 ∗ u, v)(7.4)

=
〈
µχ1, v

〉
+ (χ0, v) ∀ v ∈ V, a.e. in (0, T ).

Set now v = χ(t) in (7.4) and integrate in time again in order to obtain

µ

2
|χ(t)|2 +

∫ t

0

|χ|2 +
1
2
|∇(1 ∗ χ)(t)|2(7.5)

= −
∫ t

0

(1 ∗ (g(χ1)− g(χ2))− 1 ∗ u, χ) +
µ

2
|χ0|2 +

〈
µχ1 + χ0, 1 ∗ χ(t)

〉
.
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First we can estimate the term
∫ t

0
(1 ∗ u, χ) using the fact that

(7.6)
∫ t

0

|1 ∗ u|2 6 C

∫ t

0

|1 ∗ (kϑ + ku)|2 + C

∫ t

0

(∫ s

0

|ϑ(τ)|2 dτ

)
.

Then we may recall the estimate of the term
∫ t

0
(1∗(g(χ1)−g(χ2)), χ) in (7.5) already

performed in [6, (6.6)–(6.8)] because it is just the same in our case, obtaininig in this
way (with (7.6)) the estimate

µ

2
|χ(t)|2 +

∫ t

0

|χ|2 +
1
2
|∇(1 ∗ χ)(t)|2 6 C

(
|χ0|2 + ‖χ1‖2

∗ +
∫ t

0

‖ϑ‖2
L2(0,s;H)(7.7)

+
∫ t

0

|1 ∗ (kϑ + ku)|2 +
∫ t

0

|∇(1 ∗ χ)|2
)

+ C(M2)
∫ t

0

|χ|2,

thanks also to Young’s inequality. Moreover, by comparison with (7.4) and thanks

to (7.7), we obtain

‖χt(t)‖2
∗ 6 C(M2)

(
|χ0|2 + ‖χ1‖2

∗ +
∫ t

0

‖ϑ‖2
L2(0,s;H)(7.8)

+
∫ t

0

|1 ∗ (kϑ + ku)|2 +
∫ t

0

|χ|2 +
∫ t

0

|∇(1 ∗ χ)|2
)

+ 2|1 ∗ u(t)|2.

Next, we may take v = J−1ϑ in (6.2), integrate over (0, t) and treating the result as
in (6.16)–(6.22) in the previous section, find the estimate

(7.9) ‖ϑ(t)‖2
∗+‖ϑ‖2

L2(0,t;H) 6 C(‖ϑ0‖2
∗+‖f‖2

L2(0,t;V ′)+‖χt‖2
L2(0,t;V ′)+‖ϑ‖2

L2(0,t;V ′)).

Finally, multiplying (7.8) by a sufficiently small constant and summing it up
with (7.3), (7.7) and (7.9), using again (7.6) without the integral over (0, t) in
order to estimate 2|1 ∗ u(t)|2 in (7.8), and applying a standard version of Gron-
wall’s lemma, we recover immediately the estimate (2.54). Hence, Theorem 2.9 is

completely proved.

8. Appendix

Let us recall here a lemma whose proof can be found in [1, p. 841].
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Lemma 8.1. Let a > 1, b > 0, c ∈ � , C0 > 1, C1 > 1 and δ0 be given numbers

such that δ0 + c(a− 1)−1 > 0. Moreover, consider the sequence {δk}k>0 of real

numbers defined by δk+1 = aδk + c, k ∈ & . If {γk}k>0 is a sequence of positive real

numbers satisfying

γ0 6 Cδ0
1 ,

γk+1 6 C0δ
b
k+1 max {Cδk+1

1 , γa
k},

then the sequence {γ1/δk

k }k>0 is bounded.
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