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A UNIQUENESS RESULT FOR A MODEL FOR MIXTURES

IN THE ABSENCE OF EXTERNAL FORCES

AND INTERACTION MOMENTUM*
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 , Bonn, and � � � � 
 � � ����� , Praha
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Abstract. We consider a continuum model describing steady flows of a miscible mixture
of two fluids. The densities %i of the fluids and their velocity fields u(i) are prescribed at
infinity: %i|∞ = %i∞ > 0, u(i)|∞ = 0. Neglecting the convective terms, we have proved
earlier that weak solutions to such a reduced system exist. Here we establish a uniqueness
type result: in the absence of the external forces and interaction terms, there is only one
such solution, namely %i ≡ %i∞, u(i) ≡ 0, i = 1, 2.

Keywords: miscible mixture, compressible fluid, uniqueness, zero force

MSC 2000 : 35Q30, 76N10

1. Introduction

The aim of this introductory section is to describe the main result in a simplified

form, to outline the scheme of the paper, to fix the notation and to give some insight
into the difficulty of the problem.

For given positive numbers c1, c2, %1,ref , %2,ref and for γ > 1 we define

(1) Pi(%) = Pi(%1, %2) = ci%i

( %1

%1,ref
+

%2

%2,ref

)γ−1

(i = 1, 2).

Note that no summation convention over repeated indices i, i = 1, 2, is used in this
paper.

*This work was supported by the SFB 611 at the University of Bonn and the European
HYKE network (contract no. HPRN-CT-2002-00282). The third author was also sup-
ported by the project CSF 201/03/0934, and by MSM 0021620839.
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Further, for µij , νij , i, j = 1, 2, we set

(2) σ(i) = σ(i)
(
∇u(1),∇u(2)

)
= µi1 �

(
u(1)

)
+µi2 �

(
u(2)

)
+νi1 div u(1) � +νi2 div u(2) �

requiring that there is a c0 > 0 such that µij , νij fulfil

(3)
2∑

i=1

∫
� 3
σ(i)

(
∇u(1),∇u(2)

)
: ∇u(i) dx > c0‖∇u‖2L2 .

We use the notation �
(
u(i)

)
= 1

2

(
∇u(i) +∇u(i),T

)
, � being the identity tensor.

Let %1∞ and %2∞ be positive numbers. We consider the following problem: find

(4) % =
(
%1

%2

)
and u =

(
u(1)

u(2)

)
=

( (
u

(1)
1 , u

(1)
2 , u

(1)
3

)T

(
u

(2)
1 , u

(2)
2 , u

(2)
3

)T

)

solving

div
(
%iu

(i)
)

= 0 in � 3 (i = 1, 2),(5)

− div
(
σ(i)

)
= −∇Pi(%) in � 3 (i = 1, 2),(6)

u(i) → 0 and %i → %i∞ as |x| → ∞ (i = 1, 2).(7)

We formulate the main result of this paper.

Theorem 1. Assume that P (%) = (P1(%), P2(%))T is of the form (1) and σ(i),

i = 1, 2, of the form (2) fulfil the condition (3).
Then there is (%, u), a weak solution to (5)–(7), such that

%i − %i∞ ∈ L2( � 3 ) ∩ L2γ( � 3 ) (i = 1, 2),(8)

u(i) ∈ H1
0 ( � 3 ; � 3 ) (i = 1, 2).(9)

Even more, if (%, u) is a weak solution to (5)–(7) satisfying (8) and (9), then neces-
sarily

(10) % ≡ %∞ and u ≡ 0.

In other words, % ≡ %∞, u ≡ 0 is the unique solution to (5)–(7) within the class (8)–
(9). Since the existence part of Theorem 1 follows from a more general result proved

in [7] (see also [6]), the statement concerning the uniqueness is the main achievement
herein.
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The problem (1)–(6) arises from the continuum theory of mixtures. We provide

a brief derivation of the model in Section 2 and motivate the boundary conditions (7)
we have chosen.
In Section 3, we first formulate more general assumptions on the structure of Pi

under which the statement of Theorem 1 is still valid. (The form (1) serves then as
an example satisfying these assumptions.) We also discuss the interest in proving

the result presented in Theorem 1. The core of Section 3 is the proof of Theorem 1
and its generalization (Theorem 3).

We complete this section by discussing the remarkable difference between the
model (1)–(7) describing the steady flow of two miscible fluids on the one hand and

the analogous model for a one-constituent compressible fluid on the other.
If we consider a fluid constituted of one homogeneous compressible liquid or gas,

then the equations analogous to (1)–(7) are

div(%v) = 0 in � 3 ,(11)

−µ∆v − (λ+ µ)∇ div v = −∇%γ in � 3 ,(12)

v → 0 and %→ %∞ as |x| → ∞,(13)

with % : � 3 → � , v : � 3 → � 3 , and a given %∞ > 0.
Assuming that % ∈ L2γ( � 3 ) ∩L2( � 3 ) and v ∈ H1

0 ( � 3 ; � 3 ) solve weakly (11)–(12),
we can set ϕ = v in the weak formulation of (12) and obtain

µ‖∇v‖2
L2 + (λ+ µ)‖div v‖2

L2 =
∫
� 3
%γ div v dx = −γ

∫
� 3
%γ−1v · ∇% dx(14)

= − γ

γ − 1

∫
� 3
%v · ∇%γ−1 dx

=
γ

γ − 1

∫
� 3

div(%v)%γ−1 dx = 0.

If µ > 0 and λ+ 2µ > 0, then it follows from (14) and (13) that

(15) v ≡ 0 in � 3 ,

and (12) simplifies (in the weak formulation) to

(16)
∫
� 3

(
%γ − %γ

∞
)
divϕ dx = 0.

Taking (at least formally) in (16) ϕ such that divϕ = %−%∞, the strict monotonicity
of %γ then implies that

(17) % ≡ %∞ in � 3 .
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This argument however fails if we try to imitate the same procedure for (1)–(6). In-

deed, multiplying the ith equation in (6) by u(i) and summing the resulting equations
over i = 1, 2, we obtain with the aid of (3)

(18) c0‖∇u‖2L2 6
2∑

i=1

ci

∫
� 3

(%1 + %2)γ−1%i div u(i) dx,

and for any γ > 1 the right-hand side of (18) is not vanishing. This means that no
energy inequality is available for the model (1)–(7).

In the analysis of the classical compressible fluid model, a crucial role is played by

a quantity which is called the effective viscous flux (see [11], [12], [3], [4]). This tool
also helps when studying mixture models of the type (1)–(7).

Just for clarity and simplicity, we explain this idea within the context of (11)–(13).
Taking formally the divergence of equation (12) and applying (−∆)−1, we obtain

(19) (λ+ 2µ) div v = %γ − %γ
∞.

Multiplying (19) by % − %∞ and integrating over � 3 leads (due to the fact that∫ � 3 %
γ div u dx = 0, see (14) for a proof) to

∫
� 3

(
%γ − %γ

∞
)
(%− %∞) dx = 0,

which implies that % ≡ %∞. Then (12) implies v ≡ 0.
The advantage of this approach consists in its applicability to the system (1)–(7),

see Section 3 for details.

On the other hand, while the approach described between (14) and (17) can be
extended easily to the model where the inertial (convective) terms are included, it is

not clear whether one can conclude that % ≡ %∞ if one “replaces” (19) by

(20) (2µ+ λ) div v + (−∆)−1 div div(%v ⊗ v) = %γ − %γ
∞.

Another drawback of the approach based on the effective viscous flux equation is
its sensibility to the boundary conditions. In particular, it is not obvious how to

extend this technique to the case of a bounded domain with homogeneous Dirichlet
boundary conditions.
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2. A continuum mixture theory

A continuum mechanics approach to model mixtures starts with the assumption
of co-occupancy requiring that at each point x ∈ Ω ⊂ � 3 all components of the

mixture (so-called constituents) coexist (see [14], [13], [8], [9]).
Here, for simplicity, we restrict ourselves to the mixture of two fluid constituents

(labelled by i, i = 1 or 2).
We also assume that the motion of the mixture takes place at constant temperature

and that there is no mass conversion between the two constituents (as it could be if
chemical reactions between the constituents took place). Under these circumstances,

the motion of the mixture can be described in terms of the balance of mass for each
constituent, the balance of linear momentum for each constituent and the balance of

entropy for the whole mixture. Since the considered flow is isothermal, the balance
of energy is not even written below.

Let %i, u(i), T (i), ψi, f (i), I(i) be the density, the velocity field, the Cauchy stress
tensor, the Helmholtz potential, the density of the external forces and the momentum

source associated to the ith constituent, i = 1, 2. Then the balance of mass takes
the form

(21) (%i)t + div
(
%iu

(i)
)

= 0

(summation over repeated indices i never takes place unless it is explicitly men-
tioned), the balance of linear momentum leads to

(22)
(
%iu

(i)
)
t
+ div

(
%iu

(i) ⊗ u(i)
)

= div T (i) + I(i) + %if
(i),

and the entropy inequality (rewritten in terms of Helmholtz potentials) gives

(23)
2∑

i=1

(%iψi)t + div
( 2∑

i=1

%iψiu
(i)

)
−

2∑

i=1

T (i) : ∇u(i) −
2∑

i=1

I(i) · u(i) 6 0.

The balance of linear momentum for the whole mixture implies

I(2) = −I(1).

Thus, (23) can be rewritten as

2∑

i=1

T (i) : ∇u(i) + I(1) ·
(
u(1) − u(2)

)
−

2∑

i=1

(%iψi)t − div
( 2∑

i=1

%iψiu
(i)

)
> 0(24)

or

2∑

i=1

T (i) : ∇u(i) + I(1) ·
(
u(1) − u(2)

)
−

2∑

i=1

[
%i(ψi)t + %iu

(i)
k (ψi)xk

]
> 0.(25)
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Next, we assume that the energy storage mechanism is the same for each constituent,

i.e.,

(26) ψ1 = ψ2,

and we require that

(27) ψi = Ψ(%1 + %2)

or slightly more generally

(28) ψi = Ψ̃
( %1

%1,ref
+

%2

%2,ref

)
.

Assuming (27), for simplicity, we compute

(ψi)t + u
(i)
k (ψi)xk

= Ψ′(%1 + %2)
[
(%1)t + (%2)t + u

(i)
k ((%1)xk

+ (%2)xk
)
]

= Ψ′(%1 + %2)
[
− div

(
%1u

(1)
)
− div

(
%2u

(2)
)

+ u
(i)
k

(
(%1)xk

+ (%2)xk

)]
.

Then

2∑

i=1

[
%i(ψi)t + %iu

(i)
k (ψi)xk

]

= Ψ′(%1 + %2)
[
−%1 div

(
%1u

(1)
)
− %1 div

(
%2u

(2)
)

+ %1u
(1)
k

(
(%1)xk

+ (%2)xk

)

− %2 div
(
%1u

(1)
)
− %2 div

(
%2u

(2)
)

+ %2u
(2)
k

(
(%1)xk

+ (%2)xk

)]

= Ψ′(%1 + %2)
[
−%2

1 div u(1) − %1%2 div u(2) + %1(%2)xk

(
u

(1)
k − u

(2)
k

)

− %2(%1)xk

(
u

(1)
k − u

(2)
k

)
− %1%2 div u(1) − %2

2 div u(2)
]

= −Ψ′(%1 + %2)(%1 + %2)
[
%1
� : ∇u(1) + %2

� : ∇u(2)
]

+ Ψ′(%1 + %2)
[
(%1∇%2 − %2∇%1) ·

(
u(1) − u(2)

)]
.

Incorporating the last result into (25), we conclude that

2∑

i=1

[
T (i) + Ψ′(%)%%i

� ]: ∇u(i)(29)

+
[
I(1) − ψ′(%)(%1∇%2 − %2∇%1)

]
·
(
u(1) − u(2)

)
> 0.

Setting

(30) σ(i) := T (i) + Ψ′(%)%%i
� and J := I(1) + ψ′(%)(%2∇%1 − %1∇%2),
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we observe that the inequality (29) will be fulfilled if we set

σ(i) = µ1i �
(
u(1)

)
+ µ2i �

(
u(2)

)
+ ν1i div u(1) � + ν2i div u(2) � ,

J = a
(
%1, %2,

∣∣u(1) − u(2)
∣∣)(u(1) − u(2)

)

and require for a certain c0 > 0

2∑

i=1

σ(i) : ∇u(i) > c0|∇u|2,(31)

a
(
%1, %2,

∣∣u(1) − u(2)
∣∣) > 0.

It follows from (30) that

T (i) = − Pi(%) � + σ(i) with Pi(%) = Ψ(%)%%i,(32)

I(i) = a
(
%1, %2,

∣∣u(1) − u(2)
∣∣)(u(1) − u(2)

)
+ ψ′(%)(%1∇%2 − %2∇%1).

For later use, we denote

(33) L(i)u = − div σ(i) = −
2∑

k=1

(
µik∆u(k) + (µik + νik)∇ div u(k)

)
.

To summarize, we observe that the four unknown functions (%1, %2) and
(
u(1), u(2)

)

can be found as the solution of the system

(34) (%i)t + div
(
%iu

(i)
)

= 0 (i = 1, 2)

and

(35)
(
%iu

(i)
)
t
+div

(
%iu

(i)⊗u(i)
)

= −∇Pi(%)−L(i)
((
u(1),T , u(2),T

)T )
+J

(i)
0 +%if

(i)

with

J
(1)
0 = −J (2)

0 = a
(
%1, %2,

∣∣u(1) − u(2)
∣∣)(u(1) − u(2)

)
+ ψ′(%)(%1∇%2 − %2∇%1),(36)

Pi(%) = ψ′(%)%%i(37)

and L(i)
((
u(1),T , u(2),T

)T )
fulfils (33) and (31).

The system (34)–(37) satisfies an energy inequality.

We however consider the approximation of this system neglecting the second term
in (36). This means that we replace J (1)

0 and J (2)
0 , respectively, by

(38) J (1) = −J (2) = a
(
%1, %2,

∣∣u(1) − u(2)
∣∣)(u(1) − u(2)

)
.
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This approximation, motivated by mathematical reasons (it is more or less hopeless

to expect any information on ∇%1 and/or ∇%2 that would allow to pass to the limit
in the term ψ′(%)(%1∇%2 − %2∇%1)), can be justified physically as follows:
(i) (38) is a very good approximation of (36) provided that the variations of the

densities are of lower order.

(ii) As it is very difficult to capture the term ψ′(%)(%1∇%2−%2∇%1) experimentally, it
is always preferable to neglect it. In fact, it has been confirmed that the flows in

simple geometries will not change significantly whether the second term in (36)
is present or not.

However, once we accept (38) instead of (36), the basic energy identity is lost. In

this paper, we use (38) instead of (36).

If we, in addition, restrict ourselves to steady flows, i.e. (%i)t = 0 and (%iu
(i))t = 0,

then we end up with the system (i = 1, 2)

div
(
%iu

(i)
)

= 0,(39)

div
(
%iu

(i) ⊗ u(i)
)

+ L(i)u = −∇Pi(%) + %1f
(i) + J (i),(40)

L(i)u being of the form (33) and J (i) of the form (38), both satisfying (31).

One can imagine that the mixture occupies a large domain (e.g. BR(0) ⊂ � 3 ,

R � 1) and it is at rest, i.e. u(i) ≡ 0 and %i ≡ %i∞. Then if the motion is initiated
near the origin, it can take some time t∗ till the motion reaches the boundary of the

domain. Before t∗, it is reasonable to assume that

(41) %i = %i∞ and u(i) = 0 on [0, t∗)× ∂BR(0).

Of course, this type of boundary condition is not acceptable if we consider steady

flows in a bounded domain. On the other hand, it does not seem too awful to assume
that

%i → %i∞ and u(i) → 0 as |x| → ∞

if the mixture fills the whole space � 3 .

Finally, we neglect the convective term in (40), which may be acceptable for spe-

cial flows or under the conditions that u(i) ⊗ u(i) are of smaller order. Since the full
system is very complex, our motivation was rather technical: to start with the inves-

tigation of a simpler system first and thus, in analogy to the mathematical theory
for incompressible fluids, we study first the Stokes-like system for mixtures.
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3. Mathematical theory for the Stokes-like system

for mixtures

Neglecting the convective term in (40), the system reduces to

div
(
%iu

(i)
)

= 0 (i = 1, 2),(42)

L(i)u = −∇Pi(%) + %if
(i) + J (i) (i = 1, 2).(43)

We consider (42) and (43) in � 3 and assume that for given %1∞, %2∞ > 0

(44) %i → %i∞ and u(i) → 0 as |x| → ∞.

Further, L(i) are of the form (33) and fulfil for a c0 > 0

(45)
2∑

i=1

∫
� 3
σ(i) : ∇u(i) dx > c0‖∇u‖2L2 ,

which is a weaker condition in comparison to (31). We also assume that

(46) J (1) = −J (2) and J (1) = a
(
%1, %2,

∣∣u(1) − u(2)
∣∣)(u(1) − u(2)

)

and

(47) a is a sublinear continuous function of
∣∣u(1) − u(2)

∣∣.

We also require that P (%) = (P1(%), P2(%))T ∈ C( � ) × C( � ) satisfies the condition

there are γ > 1, C > 0 and β0 6= 0 such that(48)

(%− %̃)TA0(P (%)− P (%̃)) > C
(
|%|γ−1 + |%̃|γ−1

)
|%− %̃|2,

for all % = (%1, %2)T and %̃ = (%̃1, %̃2)T with %i > 0, %̃i > 0

where

(49) A0 =
(
β0 0
0 1

) (
2µ11 + ν11 2µ12 + ν12
2µ21 + ν21 2µ22 + ν22

)−1

.

Note that β0 is imposed in order to include more general forms for P (%). We remark
that the pressure given in (1) satisfies the condition (48), as proved in [6].

Finally, we require that

(50) f (i) ∈ L∞( � 3 ; � 3 ) and f (i) and a have compact support in � 3 .
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Theorem 2. Let the assumptions (45)–(50) be fulfilled. Then there is (%, u)
such that

%i − %i∞ ∈ L2γ( � 3 ) ∩ L2( � 3 ),

u(i) ∈ H1
0 ( � 3 ; � 3 ),

solving (42), (43) in distributional sense.

���������
. See [6], [7]. Note that this proves the existence part of Theorem 1 since

a ≡ 0 and f (i) ≡ 0 certainly satisfy the required assumptions. �

Once having the existence of a weak solution to such a system, it is natural to ask
whether such a solution is unique.

In general, this is a difficult task even for a one-component fluid, as the reader can
check in the case of steady isothermal flows in a recent survey article by J. Heywood

and M. Padula, where the uniqueness is established under a severe restriction on the
data (cf. [10]). Even more, as observed by E. Feireisl and H. Petzeltová (see [5]),

even if u ≡ 0 and f = ∇F , the equations

∇P (%) = %∇F

can have multiple solutions. For a more detailed and complete exposition in this

direction see also [2].

Thus we ask herein if the uniqueness of the solution can be deduced provided the

external body forces f (i) and the interaction terms vanish. The following theorem
gives an affirmative answer to this issue.

Theorem 3. Let (%, u) =
(
(%1, %2)T , (u(1),T , u(2),T )T

)
, satisfying

%i − %i∞ ∈ L2( � 3 ) ∩ L2γ( � 3 ),(51)

u(i) ∈ H1
0 ( � 3 ; � 3 ),(52)

be a weak solution to

div
(
%iu

(i)
)

= 0 in � 3 ,(53)

L(i)u = −∇Pi(%) in � 3 ,(54)

u(i) → 0 and %i → %i∞ as |x| → ∞(55)

with L(i) of the form (33) fulfilling (45), P (%) fulfilling the condition (48).
Then % ≡ %∞ and u ≡ 0.

536



���������
. We start with the equation1

(56)

(
β0 div u(1)

div u(2)

)
= A0(P (%)− P (%∞)),

where A0 is introduced in (49), and multiply this equation by τ(% ∗ωh− %∞), where
τ is the usual localization function with support in B2R, being equal to 1 in BR.

Integrating over � 3 , we obtain

∫
A0(P (%)− P (%∞)) · (% ∗ ωh − %∞)τ dx = β0

∫
div u(1)τ(%1 ∗ ωh − %1∞) dx(57)

+
∫

div u(2)τ(%2 ∗ ωh − %2∞) dx.

Analyzing the terms on the right-hand side, we arrive by integration by parts at

∫
div u(i)τ (%i ∗ ωh − %i∞) dx = −

∫
u(i)∇τ(%i ∗ ωh − %i∞) dx

−
∫
u(i)τ∇(%i ∗ ωh) dx =: Ai1 +Ai2.

First we observe that

|Ai1| 6 ‖(%− %∞) ∗ ωh‖L2(B2R\BR)‖u‖L6(B2R\BR)‖∇τ‖L3(B2R\BR)

6 C‖(%− %∞) ∗ ωh‖L2(B2R\BR)‖∇u‖L2(B2R\BR).

We see that, thanks to (51)–(52), the term Ai1 will vanish when the parameter R

tends to infinity (after h has gone to 0). We study now the term Ai2:

Ai2 = −
∫

(%i ∗ ωh + δ)u(i)τ∇ log(%i ∗ ωh + δ) dx

=
∫

div
(
(%i ∗ ωh + δ) u(i)

)
τ log(%i ∗ ωh + δ) dx

+
∫

(%i ∗ ωh + δ)u(i)∇τ log (%i ∗ ωh + δ) dx

1 Eq. (56), modulo multiplication by constant matrices, can be formally obtained by taking
the divergence of (54) followed by applying (−∆)−1 to the result. The proof of (56), even
with additional terms due to nonzero f (i) and I(i) can be found in [7], see the sketch of
the same in [6].
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=
∫

div
(
(%i ∗ ωh)u(i)

)
τ log(%i ∗ ωh + δ) dx

+ δ

∫
div u(i) log(%i ∗ ωh + δ)τ dx

+ δ

∫
u(i)∇τ log(%i ∗ ωh + δ) dx

+
∫

(%i ∗ ωh)u(i) log(%i ∗ ωh + δ)∇τ dx

=: Di1 +Di2 +Di3 +Di4.

The term Di1 can be treated with the aid of the lemma of DiPerna and Lions (cf. [1]),
which asserts that under our assumptions

τ
(
div

[
(%i ∗ ωh)u(i)

]
− div

[
ωh ∗

(
%iu

(i)
)])

⇀ 0 weakly in L2γ/(γ+1) as h→ 0.

Since div
(
%iu

(i)
)

= 0 weakly, we conclude that

Di1 → 0 as h→ 0.

Moreover,

Di2 → δ

∫
div u(i) log(%i + δ)τ dx as h→ 0,

Di3 → δ

∫
u(i)∇τ log(%i + δ) dx as h→ 0.

As the integration takes place over B2R, both the integrals are finite for fixed R and
consequently

Di2 → 0 and Di3 → 0 as h, δ → 0.

Finally, we deal with Di4 observing first that

Di4 →
∫
%iu

(i) log(%i + δ)∇τ dx as h→ 0.

Using again the fact that div
(
%iu

(i)
)

= 0 weakly, we see that

(58)
∫
%iu

(i) log(%i + δ)∇τ dx =
∫
%iu

(i)(log(%i + δ)− log(%i∞ + δ))∇τ dx.

Setting ε0 = 1
2%i∞ and L = 2%i∞ we see that

|{x ∈ � 3 ; %i 6 ε0}|
(%i∞

2

)2

6
∫

{x∈ � 3; %i6ε0}
|%i − %i∞|2 dx 6 K,

|{x ∈ � 3 ; %i > L}|4%2
i∞ 6

∫

{x∈ � 3; %i>L}
|%i − %i∞|2 dx 6 K.
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Consequently,

(59) |{x ∈ � 3 ; %i 6 ε0}| 6 C <∞ and |{x ∈ � 3 ; %i > L}| 6 C <∞.

Thus, with the aid of (59),

∣∣∣∣
∫

{%i6ε0}
%iu

(i)(log(%i + δ)− log(%i∞ + δ))∇τ dx
∣∣∣∣

6 K(%i∞)‖∇τ‖L∞‖u‖L6 |{%i 6 ε0}|6/5 6 K

R
,

and the integral vanishes as R→∞. Next,
∫

{%i>ε0}
%iu

(i)(log(%i + δ)− log(%i∞ + δ))∇τ dx

=
∫

{%i>ε0}
(%i − %i∞)u(i)(log(%i + δ)− log(%i∞ + δ))∇τ dx

+ %i∞

∫

{%i>ε0}
u(i)(log(%i + δ)− log(%i∞ + δ))∇τ dx =: Ei1 +Ei2.

Using the fact that on {%i > ε0} the function log(%i + δ) is Lipschitz and on {ε0 6
%i < L} the function %i log(%i + δ) is Lipschitz, we obtain

|Ei1| =
∣∣∣∣
∫

{ε0<%i6L}
. . .+

∫

{%i>L}
. . .

∣∣∣∣

6 C(%i∞)
[∫

{ε0<%i6L}
|%i − %i∞| |u| |∇τ | dx+

∫

{%i>L}
|%i − %i∞|2|u| |∇τ | dx

]

6 C(%i∞)‖%i − %i∞‖L2(B2R\BR)‖u‖L6(B2R\BR)

+ ‖%i − %i∞‖L2γ‖u‖L6‖∇τ‖L∞ |{%i > L}|6γ/(5γ−6).

From (59), (51)–(52) and ‖∇τ‖L∞ 6 C/R, we conclude that

Ei1 → 0 as R→∞.

Similarly, we have

|Ei2| 6 C(%i∞)
∫

{%i>ε0}

∣∣u(i)
∣∣ |%i − %i∞| |∇τ | dx

6 C(%i∞)‖u‖L6(B2R\BR)‖%i − %i∞‖L2(B2R\BR)‖∇τ‖L3 ,

and as above
Ei2 → 0 as R→∞.
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To summarize: letting in (57) h→ 0, then δ → 0 and finally R→∞, we obtain

(60)
∫
A0(P (%)− P (%∞)) · (%− %∞) dx = 0.

It then follows from the monotonicity condition (48) that

% ≡ %∞.

Thus, it follows that ∇P (%) = 0, and Eq. (54) simplifies to

Lu = 0.

With the aid of Cacciopoli’s inequality one can conclude from this equation that the
velocity u vanishes everywhere. We briefly mention the proof. Denoting by u the

mean value of u taken over the support of τ and taking the scalar product of the
equation with (u− u)τ2, we obtain

(Lu, (u− u)τ2) = 0.

Using then (45) implies
∫
|∇u|2τ2 dx 6 C

∫
τ |∇u| |∇τ |(u− u) dx

6 1
2

∫
|∇u|2τ2 dx+ C

∫
|∇τ |2|u− u|2 dx.

The first integral can be absorbed into the left-hand side. The second can be esti-
mated by Poincaré’s inequality because |∇τ |2 behaves like 1/R2. Thus, we have

∫
|∇u|2τ2 dx 6 K

∫

B2R\BR

|∇u|2 dx,

and the last term vanishes, as R→∞, since ∇u ∈ L2. This implies u ≡ 0. �
 "!$#&%'��(

. The statement of the theorem also holds if

(61) %if
(i) = curl g(i)

(i.e. f need not be necessarily vanishing), and also some small interaction term is
allowed (where a having compact support is used):

(62) a small enough.
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