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ON STABILITY OF THE Pmod
n /Pn ELEMENT

FOR INCOMPRESSIBLE FLOW PROBLEMS*

Petr Knobloch, Praha
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Abstract. It is well known that finite element spaces used for approximating the velocity
and the pressure in an incompressible flow problem have to be stable in the sense of the
inf-sup condition of Babuška and Brezzi if a stabilization of the incompressibility constraint
is not applied. In this paper we consider a recently introduced class of triangular noncon-
forming finite elements of nth order accuracy in the energy norm called Pmodn elements.
For n 6 3 we show that the stability condition holds if the velocity space is constructed
using the Pmodn elements and the pressure space consists of continuous piecewise polynomial
functions of degree n.

Keywords: nonconforming finite element method, inf-sup condition, incompressible flow
problem

MSC 2000 : 65N30, 65N12, 76D05

1. Introduction

In computational fluid dynamics, nonconforming finite elements are often used for
discretizing incompressible flow problems. One advantage of nonconforming finite
elements in comparison to conforming ones is that they usually satisfy inf-sup condi-
tions with more convenient pressure spaces and that discretely divergence-free bases
can often be more easily constructed for this type of finite elements. Another reason
for the application of nonconforming finite elements may be that they are more suit-
able for parallel implementation since their degrees of freedom are associated with
edges (or with interior points of the elements of the triangulation), which leads to
a cheap local communication between processors. In addition, nonconforming finite
elements often exhibit nice stability properties and lead to very efficient procedures

*This research has been supported by the Grant Agency of the Czech Republic under the
grant No. 201/05/0005 and by the grant MSM 0021620839.
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for numerical solution of partial differential equations. We refer to [9], [10], [15],
[18] for more details on the properties of nonconforming finite elements applied to
incompressible flow problems.
In the two-dimensional case, the typical feature of nonconforming finite elements

is that, on edges between neighbouring elements, the finite element functions are
continuous at some points only. Often, this property is equivalent to the fact that the
jump [|vh|]E of any finite element function vh across any inner edgeE is L2 orthogonal
to the space Pk(E) of polynomials on E of degree k:

(1)
∫

E

[|vh|]Eq dσ = 0 ∀ q ∈ Pk(E).

If a nonconforming finite element is locally of approximation order n with respect to
the energy norm, the usual requirement is the validity of (1) with k = n− 1. Then
optimal error estimates in the energy norm can be proved for second order elliptic
problems (see e.g. Ciarlet [5] and Crouzeix and Raviart [6]).
However, it was observed that nonconforming finite elements sometimes do not

lead to the expected accuracy if they are applied to the numerical solution of con-
vection dominated problems. This phenomenon was thoroughly investigated by
Knobloch and Tobiska [14] and by Knobloch [12] for a scalar convection-diffusion
equation discretized by means of the streamline diffusion method. It was shown
that, in the convection dominated case, the validity of (1) with k = n− 1 for finite
elements of local approximation order n is not sufficient for proving optimal conver-
gence results uniform with respect to the perturbation parameter. Therefore, it was
suggested to use k = n+1, for which optimal convergence results were proved. In [14],
Knobloch and Tobiska developed a new triangular nonconforming finite element of
first order accuracy called the Pmod

1 element which satisfies (1) with k = 2. Later,
using the ideas of [14], Knobloch [12] introduced a class of triangular nonconforming
finite elements of an arbitrary order n of accuracy satisfying (1) with any prescribed
k > n. These finite elements were named Pmod

n . Numerical experiments in [14] for
convection-diffusion equations and in [11] for the Stokes equations show that the
Pmod

1 element leads to a considerable improvement of the accuracy in comparison
with the nonconforming piecewise linear Crouzeix-Raviart element [6].
The main reason for developing the Pmod

n elements was to have nonconforming
finite elements suitable for approximating the velocity u in incompressible flow prob-
lems, e.g., in the incompressible Navier-Stokes equations

−ν∆u + (∇u)u +∇p = f in Ω,(2)

div u = 0 in Ω,(3)

u = 0 on ∂Ω.(4)
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Here, Ω ⊂ � 2 is a bounded domain with a polygonal boundary ∂Ω, ν > 0 is the
kinematic viscosity, f is an outer volume force and p is a second unknown function,
the pressure. In view of the incompressibility constraint, finite element spacesVh and
Qh for approximating the velocity u and pressure p, respectively, cannot be chosen
arbitrarily if one wants to obtain a stable discretization with respect to h → 0 and
no additional stabilization of the continuity equation (3) is used (see e.g. Brezzi and
Fortin [4] or Girault and Raviart [8]). A sufficient requirement on the spaces Vh, Qh

is the validity of the inf-sup condition

(5) sup
vh∈Vh\{0}

bh(vh, qh)
|vh|1,h

> β‖qh‖0,Ω ∀ qh ∈ Qh,

where β > 0 is independent of the discretization parameter h,

bh(vh, qh) = −
∑

K∈Th

∫

K

qh div vh dx, |vh|1,h =
( ∑

K∈Th

|vh|21,K

)1/2

and Th is a triangulation of Ω consisting of elements K used for constructing the
spaces Vh and Qh. The notation |vh|1,K is used for the seminorm of vh|K in the
space H1(K)2. The inf-sup condition (5) makes it possible to establish optimal error
estimates for the discrete solution of (2)–(4), see e.g. Girault and Raviart [8].
Let us consider spaces Vh defined using the Pmod

n element (n > 1) and denote
these spaces by Vmod,n

h . We assume that these spaces approximate the homogeneous
Dirichlet boundary condition (4). It follows from the results of Knobloch [11], [13]
and Scott and Vogelius [16] that, for any n ∈ � , the inf-sup condition (5) holds if
we use the space Vmod,n

h together with a pressure space Q̄n−1
h ⊂ L2

0(Ω) consisting of
discontinuous piecewise polynomial functions of degree n− 1.
The use of a velocity space of approximation order n together with a pressure space

of approximation order n− 1 is optimal with respect to the asymptotic convergence
rate. Moreover, a pressure space consisting of piecewise discontinuous functions
guarantees local mass conservation, which is sometimes of importance. Therefore,
the combination Vmod,n

h /Q̄n−1
h mentioned in the preceding paragraph is often sat-

isfactory. However, as explained by Bernardi and Hecht [2], who investigated the
validity of the inf-sup condition (5) for a velocity space defined using the noncon-
forming Crouzeix-Raviart element and a pressure space consisting of certain contin-
uous piecewise polynomial functions, it is sometimes important to use continuous
pressures. This is essential when working with geophysical flows, where the Coriolis
acceleration must be taken into account. The use of continuous pressures is then
necessary to respect the geostrophic equilibrium. It is also necessary for optimiz-
ing the geometry of the fluid domain when the optimization criterion involves local
gradients of the pressure. Moreover, as mentioned by Ainsworth and Coggins [1],
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also in other cases many practitioners prefer the use of continuous pressures. The
reasons cited for this preference include the superior stability of methods based on
continuous pressures in general, the reduced number of degrees of freedom associ-
ated with continuous pressure spaces and the more aesthetically pleasing pressure
contours arising from continuous pressure spaces.
Therefore, in this paper, we consider pressure spaces

(6) Qn
h = {qh ∈ C(Ω̄) ∩ L2

0(Ω); qh|K ∈ Pn(K) ∀K ∈ Th}

consisting of continuous piecewise polynomial functions of degree n having zero mean
value on Ω. Of course, it follows from the above-mentioned results that, for any
n ∈ � , the inf-sup condition (5) is satisfied if we use the velocity space Vmod,n

h

together with the pressure space Qn−1
h . However, the discussion in Knobloch [11]

shows that, in some cases, a significant improvement of the velocity approximation
can be achieved if velocity and pressure spaces of the same approximation order are
applied. Thus, the aim of this paper is to investigate whether the inf-sup condition (5)
holds if we use the velocity space Vmod,n

h together with the pressure space Qn
h. This

will be proved for n 6 3.
The paper is organized in the following way. First, in Sect. 2, we introduce some

assumptions and summarize the notation which will be used in the subsequent sec-
tions. Then, in Sect. 3, we recall the definition of the Pmod

n element and mention some
of its properties. In Sect. 4, we introduce the macroelement technique which will be
the basic tool for proving the inf-sup condition (5) for the combination Vmod,n

h /Qn
h

with n = 1, 2, 3 in Sect. 5–7. The paper will be finished with conclusions in Sect. 8.

2. Assumptions and notation

We assume that we are given a bounded domain Ω ⊂ � 2 with a polygonal bound-
ary ∂Ω and a family {Th} of triangulations of Ω. The triangulations are assumed to
consist of closed triangular elements K, to possess the usual compatibility properties
(see e.g. Ciarlet [5]) and to satisfy hK ≡ diam(K) 6 h for any K ∈ Th. We assume
that the family of triangulations is regular, i.e., there exists a constant σ independent
of h such that

(7)
hK

%K
6 σ ∀K ∈ Th, h > 0,

where %K is the maximum diameter of circles inscribed into K. Finally, we assume
that any element K ∈ Th has at least one vertex in Ω.
We denote by Eh the set of edges E of Th and by E i

h the subset of Eh consisting
of inner edges. Further, for any edge E, we denote by hE the length of E, by xE,1,
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xE,2 the end points of E and by λE,1, λE,2 the linear functions on E satisfying
λE,i(xE,j) = δij , i, j = 1, 2, where δij denotes the Kronecker symbol. For any
edge E, we denote by tE = (tE1, tE2) the unit tangent vector to E which points
from xE,1 to xE,2 and by nE ≡ (−tE2, tE1) a normal vector to E. For any inner
edge E ∈ E i

h, we define the jump of a function v across E by

[|v|]E = (v|K)|E − (v|K̃)|E ,

whereK, K̃ are the two elements adjacent to E denoted in such a way that nE points
into K̃. If an edge E ∈ Eh lies on the boundary of Ω, then we set [|v|]E = v|E .
Throughout the paper we use standard notation L2(Ω), Hk(Ω) = W k,2(Ω), Pk(Ω)

etc. for the usual function spaces, see e.g. Ciarlet [5]. We only mention that we
denote by L2

0(Ω) the space of functions from L2(Ω) having zero mean value on Ω.
The norm and seminorm in the Sobolev space Hk(Ω) will be denoted by ‖ · ‖k,Ω and
| · |k,Ω, respectively. Further, we use the notation |G| to denote the d-dimensional
Lebesgue measure of a set G ⊂ � d , d = 1, 2. Finally, we denote by (·, ·)G the inner
product in the space L2(G).

3. Definition and properties of the Pmod
n element

In this section we recall the definition of the Pmod
n element introduced in

Knobloch [12] and mention some of its basic properties.
We start with describing the space Pmod

n (K̂) of shape functions on the standard
reference element K̂. Given an integer n > 1, we set

Pmod
n (K̂) = Pn(K̂)⊕ span{b̂1, b̂2, b̂3},

where b̂1, b̂2 and b̂3 are functions on K̂ associated respectively with the edges Ê1,
Ê2 and Ê3 of the element K̂. We assume that

b̂1 ∈ H1(K̂), b̂1|∂K̂\Ê1
= 0,(8)

b̂1|Ê1
is odd with respect to the midpoint of Ê1,(9)

∫

Ê1

[(1− 2λ̂2) + b̂1]q̂ dσ̂ = 0 ∀ q̂ ∈ Pk(Ê1),(10)

where k > n and λ̂2 is the barycentric coordinate on K̂ with respect to the vertex x̂2

which is the vertex of K̂ opposite the edge Ê2 (the remaining vertices x̂1 and x̂3 and
the barycentric coordinates λ̂1 and λ̂3 are defined analogously). The functions b̂2 and
b̂3 are simply defined by affine transformations of b̂1, i.e., b̂i = b̂1 ◦ F̂i, i = 2, 3, where
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F̂2 and F̂3 are affine regular mappings on
� 2 such that F̂i(K̂) = K̂, F̂i(Êi) = Ê1,

i = 2, 3.
The following functions are examples of the function b̂1 satisfying (8)–(10) for

various values of k:

k = 2 : b̂1 = 10 λ̂2λ̂3(λ̂2 − λ̂3),

k = 4 : b̂1 = (28 λ̂2λ̂3 − 126 λ̂2
2λ̂

2
3)(λ̂2 − λ̂3),

k = 6 : b̂1 = (54 λ̂2λ̂3 − 594 λ̂2
2λ̂

2
3 + 1716 λ̂3

2λ̂
3
3)(λ̂2 − λ̂3).

Generally, to satisfy the assumptions (8)–(10) with k = 2l, where l is a given positive
integer, we can set

(11) b̂1 = (λ̂2 − λ̂3)
l∑

i=1

ai(λ̂2λ̂3)i,

where a1, . . . , al ∈
�
are uniquely determined numbers.

For introducing a finite element space we have to specify a set of the so-called nodal
functionals which have to be unisolvent with the space Pmod

n (K̂). For example, we
can use n+ 1 moments on each edge, i.e.,

1
|Êi|

∫

Êi

v̂λ̂j
i+1 dσ̂, j = 0, . . . , n, i = 1, 2, 3,

where λ̂4 ≡ λ̂1. If n > 2, then we further add a set of nodal functionals unisolvent
with the space Pn(K̂) ∩H1

0 (K̂). These nodal functionals may be e.g. some suitable
integrals over K̂ or values at the inner points of the principal lattice of order n of
the triangle K̂.
For any element K ∈ Th, we introduce a regular affine mapping FK : K̂ → K such

that FK(K̂) = K and transform the space Pmod
n (K̂) to the space

Pmod
n (K) = {v̂ ◦ F−1

K ; v̂ ∈ Pmod
n (K̂)}.

Similarly, we transform the nodal functionals defined on the space Pmod
n (K̂) to analo-

gous nodal functionals defined on the spaces Pmod
n (K). Now, the Pmod

n finite element
space approximating the spaceH1

0 (Ω) consists of functions which belong to Pmod
n (K)

on each element K and for which the nodal functionals assigned to boundary edges
vanish and the corresponding pairs of nodal functionals assigned to inner edges give
the same value. Thus, we obtain the space

V mod,n
h =

{
vh ∈ L2(Ω); vh|K ∈ Pmod

n (K) ∀K ∈ Th,

∫

E

[|vh|]Eq dσ = 0 ∀ q ∈ Pn(E), E ∈ Eh

}
.
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As we see, the space V mod,n
h is of approximation order n with respect to | · |1,h. It is a

nonconforming finite element space which is edge- and element-oriented, i.e., one can
use basis functions which are all associated with edges or with elements. Precisely,
for any inner edge, we have n+1 basis functions associated with this edge and having
their supports in the two elements adjacent to this edge. Further, on each element,
we have 1

2 (n − 1)(n − 2) basis functions having their supports in this element. An
important property of the Pmod

n element is that (see Knobloch [12])

(12)
∫

E

[|vh|]Eq dσ = 0 ∀ vh ∈ V mod,n
h , q ∈ Pk(E), E ∈ Eh,

where k is the integer introduced in (10). Thus, choosing the function b̂1 in a suitable
way, we can enforce the validity of (12) with an arbitrarily high k. The relation (12)
together with the Gauss integral theorem implies that

(13) bh(vh, qh) =
∫

Ω

vh · ∇qh dx ∀vh ∈ [V mod,n
h ]2, qh ∈ Qn

h, n ∈ � .

To describe a basis of the space V mod,n
h , let us first introduce some notation.

Consider any K ∈ Th and any E ∈ Eh such that E ⊂ ∂K. Let i ∈ {1, 2, 3} be such
that E = FK(Êi). Then we set

bK,E =

{
±b̂i ◦ F−1

K in K,

0 in Ω \K,

where the sign is chosen in such a way that

(14)
∫

E

(bK,E |K)λE,1 dσ > 0.

Thus, the space Pmod
n (K) of shape functions on K can be written as

Pmod
n (K) = Pn(K)⊕ span{bK,E |K}E∈Eh, E⊂∂K .

Now let us consider any inner edge E ∈ E i
h and denote by K, K̃ the two elements

adjacent to E, by E, E1, E2 the edges of K, and by E, E3, E4 the edges of K̃. Let
ζE be the standard nonconforming piecewise linear basis function associated with
the edge E (i.e., ζE is piecewise linear, equals 1 on E and vanishes at the midpoints
of all edges different from E). Then we define functions ψE , χE ∈ V mod,n

h by

ψE = ζE + βE,1bK,E1 + βE,2bK,E2 + βE,3bK̃,E3
+ βE,4bK̃,E4

,(15)

χE =

{
bK,E in K,

bK̃,E in Ω \K,
(16)
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where βE,i = −1 if xEi,1 ∈ E and βE,i = 1 if xEi,1 6∈ E, i = 1, . . . , 4. In view of
the assumptions on b̂1, we have χE ∈ H1

0 (Ω) and hence the functions χE generate a
conforming subspace of V mod,n

h . The functions ψE are purely nonconforming func-
tions since they have jumps across the edges E1, . . . , E4. They can be viewed as
modifications of the basis functions ζE , which gave rise to the notation Pmod

n . The
functions {ψE , χE}E∈Ei

h
represent a basis of the space V mod,n

h for n = 1. If n > 1,
then

V mod,n
h = span{ψE , χE}E∈Ei

h
⊕ {v ∈ H1

0 (Ω); v|K ∈ Pn(K) ∀K ∈ Th,

v(x) = 0 at any vertex x of Th}.

Thus, a basis of the space V mod,n
h is formed by the functions {ψE, χE}E∈Ei

h
and by

the standard conforming basis functions of the right-hand space in the above direct
sum. In such a basis the only nonconforming functions are the functions ψE and the
functions generated by the function b̂1 appear only in the functions ψE and χE .
Note also that there is no difference between defining the Pmod

n elements of odd
and even approximation order whereas standard triangular nonconforming finite el-
ements of even degree are difficult to handle. A further difference from standard
nonconforming finite elements is that the spaces V mod,n

h with various values of n can
be made nested by defining them using the same function b̂1.
Now let us turn our attention to the case n 6 3 for which we will investigate the

validity of inf-sup conditions in the next sections. For any inner edge E ∈ E i
h we

introduce functions %E , ζE ∈ C(Ω̄) vanishing outside the two elements adjacent to E
and defined by

%E |K = λ1λ2, ζE |K = λ1λ2(λ1 − λ2)

for any element K adjacent to E, where λ1, λ2 are the barycentric coordinates on K
with respect to xE,1, xE,2, respectively. Further, for any element K ∈ Th we define
the bubble function πK by

πK |K = λ1λ2λ3, πK |Ω\K = 0,

where λ1, λ2, λ3 are the barycentric coordinates on K. Then

V mod,1
h = span{ψE, χE}E∈Ei

h
,

V mod,2
h = span{ψE, χE , %E}E∈Ei

h
,

V mod,3
h = span

{
{ψE , χE , %E , ζE}E∈Ei

h
∪ {πK}K∈Th

}
.

Since all these basis functions can be obtained by affine transformations of functions
defined on the reference element K̂, we have (cf. Ciarlet [5, Sect. 15])

(17) |ψE |1,h + |χE |1,Ω + |%E |1,Ω + |ζE |1,Ω 6 C ∀E ∈ E i
h, |πK |1,Ω 6 C ∀K ∈ Th,

where the constant C depends only on b̂1 and σ from (7).
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To make the proof of the inf-sup condition possible, we introduce additional as-
sumptions on the function b̂1. First, we assume that, for any function g :

� 2 → �
such that g(x, y) = g(y, x) for all x, y ∈ �

, the function b̂1 satisfies

(18)
∫

K̂

b̂1g(λ̂2, λ̂3) dx̂ = 0,

which is satisfied for any function b̂1 of the type (11). We denote

(19) A =
1
|K̂|

∫

K̂

b̂1λ̂2 dx̂, B =
1
|K̂|

∫

K̂

b̂1λ̂
2
2 dx̂, D = 6A− 7B.

If n = 2, we assume that

A 6= 0, A 6= 1
30
.

If n = 3, we assume that

D 6= 0, D 6= − 1
30
, A 6= B, 3B − 2A 6= 1

45
.

These assumptions are satisfied for the examples of the function b̂1 given above.

Finally, let us mention a few useful relations which can be readily verified. Let
E ∈ E i

h be any inner edge of the triangulation Th and let K ∈ Th be any element
adjacent to this edge. Let λ1 and λ2 be the barycentric coordinates onK with respect
to xE,1, xE,2, respectively, and let λ3 be the remaining barycentric coordinate on K.
Then

∫

K

ψEλ1 dx =
∫

K

ψEλ2 dx =
(1

6
−A

)
|K|,

∫

K

ψEλ3 dx = 2A|K|,(20)
∫

K

ψEλ
2
1 dx =

∫

K

ψEλ
2
2 dx =

( 1
10

−B
)
|K|,(21)

∫

K

ψEλ
2
3 dx =

(
− 1

30
+ 2B

)
|K|,

∫

K

χEλ1 dx = −
∫

K

χEλ2 dx = A|K|,
∫

K

χEλ3 dx = 0,(22)
∫

K

χEλ
2
1 dx = −

∫

K

χEλ
2
2 dx = B|K|,

∫

K

χEλ
2
3 dx = 0.(23)
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4. Macroelement technique

The proof of the inf-sup conditions will be related to the macroelement technique
of Boland and Nicolaides [3] and Stenberg [17] which was extended to the noncon-
forming case by Crouzeix and Falk [7] and Knobloch [11].
We denote by {xi}Nh

i=1 the inner vertices of the triangulation Th and, for any
vertex xi, we introduce a macroelement

∆i =
⋃

K∈Th, xi∈K

K

consisting of elements grouped around xi. Further, we set

Q̄h = {qh ∈ L2
0(Ω); qh|K ∈ P0(K) ∀K ∈ Th}

and, for any m,n ∈ � , denote
Q̃m

h = {qh ∈ Qm
h ⊕ Q̄h; qh|K ∈ L2

0(K) ∀K ∈ Th},
Vi,n

h = {vh ∈ Vmod,n
h ; vh = 0 in Ω \∆i}, i = 1, . . . , Nh,

where Qm
h is the space defined in (6) and Vmod,n

h ≡ [V mod,n
h ]2. Then the following

theorem holds.

Theorem 1. Let m,n ∈ � be such that, for any q̃h ∈ Q̃m
h and any i ∈

{1, . . . , Nh}, there exists vi
h ∈ Vi,n

h satisfying

bh(vi
h, q̄h) = 0 ∀ q̄h ∈ Q̄h,(24)

bh(vi
h, q̃h) = ‖q̃h‖2

0,∆i
,(25)

|vi
h|1,h 6 C‖q̃h‖0,∆i ,(26)

where C is a constant independent of h. Then there exists a constant β > 0 depending
only on C , σ, b̂1 and Ω such that

sup
vh∈Vmod,n

h \{0}

bh(vh, qh)
|vh|1,h

> β‖qh‖0,Ω ∀ qh ∈ Qm
h .

�������	�
. See the proof of Theorem 2 in Knobloch [11]. �


���
������
1. The assumption that any element K ∈ Th has at least one vertex

in Ω (cf. Sect. 2) ensures that any element K ∈ Th is contained in at least one
macroelement, which is crucial for the proof of Theorem 1.

In the forthcoming sections we shall show that the assumptions of Theorem 1 are
satisfied for m = n 6 3.
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5. Inf-sup condition for the Pmod
1 element

In this section we prove that the spaces Vmod,1
h ≡ [V mod,1

h ]2 and Q1
h satisfy the

inf-sup condition (5). First, let us prove a simple auxiliary result.

Lemma 1. Let E1 and E2 be two edges of an arbitrary element K ∈ Th. Let
P = E1 ∩ E2 and let Q be the vertex of K not contained in E1. Let t be the unit
tangent vector to E2 which points from P to Q. Then

(27) ∇λQ = − hE1

2|K|n∂K |E1 , t · ∇λQ =
1
hE2

,

where λQ is the barycentric coordinate on K with respect to Q and n∂K is the unit
outer normal vector to the boundary of K.

�������	�
. In view of the Gauss integral theorem, we have

−2|K|∇λQ =
∫

K

∇(1− 2λQ) dx =
∫

∂K

(1− 2λQ)n∂K dσ = hE1n∂K |E1 .

The second relation is obvious. �

Lemma 2. For any q̃h ∈ Q̃1
h and any i ∈ {1, . . . , Nh} there exists vi

h ∈ Vi,1
h

satisfying (24)–(26), where the constant C depends only on σ and b̂1.
�������	�

. Consider any i ∈ {1, . . . , Nh} and let ∆i consist of elementsK1, . . . ,Kn,
i.e.,

∆i =
n⋃

j=1

Kj ,

and let Kj−1 and Kj have a common edge Ej , j = 1, . . . , n, see Fig. 1. Here and in
the sequel, the index 0 is considered as the index n and the index n+1 is considered
as the index 1. Without loss of generality, we may assume that xEj ,1 = xi for
j = 1, . . . , n. Then, for any j ∈ {1, . . . , n}, the normal vector nEj points into Kj

and the tangent vector tEj points from xi to the other vertex of Ej (cf. Fig. 1).
Finally, we denote by ϕj the usual continuous piecewise linear basis function which
equals 1 at the vertex of Ej different from xi and vanishes at all other vertices of the
triangulation.
Now, let us consider any function q̃h ∈ Q̃1

h and denote

vi
h =

n∑

k=1

αkψEk
tEk
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Figure 1. Notation inside a macroelement ∆i.

with constants αk, k = 1, . . . , n, to be determined later. Then vi
h ∈ Vi,1

h and (24)
holds. Moreover, bh(vi

h, 1) = 0. For any j = 1, . . . , n, we derive using (13), (20)
and (27)

bh(vi
h, ϕj) =

∫

Kj−1∪Kj

vi
h · ∇ϕj dx = αj

∫

Kj−1∪Kj

ψEj tEj · ∇ϕj dx

= αj
|Kj−1|+ |Kj |

3hEj

.

Thus, setting

αj =
3hEj

|Kj−1|+ |Kj |
(q̃h, ϕj)∆i , j = 1, . . . , n,

we have

(28) bh(vi
h, qh) = (q̃h, qh)∆i ∀ qh ∈ Q̃1

h.

For qh = q̃h we obtain (25). Using (7), we deduce that

(29) h2
Ej

6 σhEj%Kj−1 6 2σ|Kj−1|, |Kj−1| 6
1
2
hEjhKj−1 6 σ

2
h2

Ej
.

Similarly, we get

(30) h2
Ej

6 2σ|Kj |, |Kj | 6
σ

2
h2

Ej
.

Thus, we derive that |αj | 6 3
√
σ‖q̃h‖0,Kj−1∪Kj , j = 1, . . . , n, which implies (26) in

view of (17) and the fact that the maximum number of elements K ∈ Th having a
common vertex depends only on σ. �

Lemma 2 and Theorem 1 immediately imply the following result.
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Corollary 1. There exists a constant β > 0 depending only on σ, b̂1 and Ω such
that

sup
vh∈Vmod,1

h \{0}

bh(vh, qh)
|vh|1,h

> β‖qh‖0,Ω ∀ qh ∈ Q1
h.


���
������
2. The above result also follows from Knobloch [11] where an inf-sup

condition for the Pmod
1 element used with discontinuous piecewise linear pressure

was proved. Since the proof of Lemma 2 is very easy and this lemma as well as most
of the material introduced in this section will be needed in the sequel, we included
the proof for completeness.

6. Inf-sup condition for the Pmod
2 element

This section is devoted to the proof of the inf-sup condition (5) for the spaces
Vmod,2

h ≡ [V mod,2
h ]2 and Q2

h. We will use the notation introduced in the preceding
section.

Lemma 3. For any q̃h ∈ Q̃2
h and any i ∈ {1, . . . , Nh}, there exists vi

h ∈ Vi,2
h

satisfying (24)–(26), where the constant C depends only on σ and b̂1.
�������	�

. Consider any q̃h ∈ Q̃2
h and any i ∈ {1, . . . , Nh}. Then, according to the

proof of Lemma 2, there exists a function ṽi
h ∈ Vi,2

h satisfying (24), (26) and (28).
Let us denote

vi
h =

n∑

k=1

{(αkψ̃Ek
+ βkχEk

)tEk
+ γkχEk

nEk
}

with

ψ̃Ek
= ψEk

− 4%Ek
, k = 1, . . . , n,

and constants αk, βk, γk, k = 1, . . . , n, to be determined later. Then vi
h belongs

to Vi,2
h and satisfies (24). For any K ∈ Th and any k ∈ {1, . . . , n}, we derive

using (20) and (22) that
∫

K ψ̃Ek
dx =

∫
K χEk

dx = 0 and hence, in view of (13),
we have bh(vi

h, qh) = 0 for any qh ∈ Q1
h. Thus, setting vi

h = ṽi
h + vi

h, we obtain a
function from Vi,2

h satisfying

(31) bh(vi
h, qh) = (q̃h, qh)∆i ∀ qh ∈ Q̃1

h.

We shall show that the constants αk, βk, γk, k = 1, . . . , n, can be chosen in such a
way that

(32) bh(vi
h, qh) = (q̃h, qh)∆i ∀ qh ∈ Q̃2

h.
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In view of (31), it suffices to fulfil

bh(vi
h, ϕ

2
j ) = (q̃h, ϕ2

j )∆i , j = 1, . . . , n,(33)

bh(vi
h, ϕjϕj+1) = (q̃h, ϕjϕj+1)∆i , j = 1, . . . , n.(34)

Applying (13), (27), (20) and (22), we obtain for any j ∈ {1, . . . , n}

bh(vi
h, ϕjϕj+1) =

(
2A− 1

15

)
|Kj |

( αj

hEj

+
αj+1

hEj+1

)
+

1
2
A(γj+1hEj+1 − γjhEj ).

Thus, setting

γj = − (60A− 2)|Kj−1|
15Ah2

Ej

αj , j = 1, . . . , n,

we get

bh(vi
h, ϕjϕj+1) =

(
2A− 1

15

)
(|Kj−1|+ |Kj |)

αj

hEj

, j = 1, . . . , n.

Then αj , j = 1, . . . , n, are uniquely determined by (34). Since, due to (13), (27)
and (22),

bh(vi
h, ϕ

2
j ) = −2A(|Kj−1|+ |Kj |)

βj

hEj

+ bh(αjψ̃Ej tEj + γjχEj nEj , ϕ
2
j ),

there are uniquely determined constants βj , j = 1, . . . , n, such that (33) holds. Us-
ing (17), (29) and (30), it is easy to show that |vi

h|1,h 6 C‖q̃h‖0,∆i with C depending
only on σ and b̂1. Finally, setting qh = q̃h in (32), we obtain (25). �

Corollary 2. There exists a constant β > 0 depending only on σ, b̂1 and Ω such
that

sup
vh∈Vmod,2

h \{0}

bh(vh, qh)
|vh|1,h

> β‖qh‖0,Ω ∀ qh ∈ Q2
h.

�������	�
. The corollary again immediately follows from Theorem 1 and Lemma 3.

�
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7. Inf-sup condition for the Pmod
3 element

In this section we finally prove that the inf-sup condition (5) holds also for the
spaces Vmod,3

h ≡ [V mod,3
h ]2 and Q3

h. We shall proceed in a similar way as above but
the proof will meet with more difficulties.
It is convenient to replace the basis functions ψE , χE , %E , ζE and πK introduced

in Sect. 3 by functions having some special properties. Consider any inner edge
E ∈ E i

h and let K, K̃ be the two elements adjacent to E denoted in such a way that
nE points into K̃. Then, using the constants A and D from (19), we define

πE =





πK in K,

πK̃ in K̃,

0 in Ω \ {K ∪ K̃},
ψE = ψE + (180A− 10)%E + (30− 900A)πE,

χ̄E = χE − 180AζE ,

%̄E = %E − 5πE ,

ζE = χ̄E − 180DζE,

ξE = ψE − 6%E + 10πE,

πE =
πK

|K| −
πK̃

|K̃|
.

Some properties of these functions are summarized in the next two lemmas which
can be easily proved using the relations from Sect. 3 and the standard relations for
barycentric coordinates (cf. Ciarlet [5]).

Lemma 4. Consider any E ∈ E i
h and let K ∈ Th be an element adjacent to E.

Let λ1 and λ2 be the barycentric coordinates on K with respect to xE,1 and xE,2,
respectively. Further, let f, g :

� 2 → �
be any functions satisfying f(x, y) = −f(y, x)

and g(x, y) = g(y, x) for all x, y ∈ �
. Then

∫

K

ψEf(λ1, λ2) dx =
∫

K

%̄Ef(λ1, λ2) dx = 0,(35)
∫

K

πEf(λ1, λ2) dx =
∫

K

ξEf(λ1, λ2) dx = 0,(36)
∫

K

χ̄Eg(λ1, λ2) dx =
∫

K

ζEg(λ1, λ2) dx = 0.(37)


���
������
3. Let λ1, λ2 be as in Lemma 4 and let λ3 be the remaining barycentric

coordinate on K. Then λ3 = g(λ1, λ2) with g(x, y) = 1− x− y.
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Lemma 5. Consider any E ∈ E i
h and let K ∈ Th be an element adjacent

to E. Let λ1 and λ2 be the barycentric coordinates on K with respect to xE,1, xE,2,
respectively, and let λ3 be the remaining barycentric coordinate on K. Then

∫

K

%̄E dx =
∫

K

ζE dx =
∫

K

ξE dx =
∫

E

ξE dσ = 0,(38)
∫

K

ψEq dx =
∫

K

χ̄Eq dx = 0 ∀ q ∈ P1(K), K ∈ Th,(39)
∫

K

%̄Eλ3 dx = −|K|
90

,

∫

K

ζEλ2 dx = D|K|,
∫

K

ζEλ
2
2 dx = D|K|,(40)

∫

K

ψEλ
2
2 dx =

( 1
210

+
D

7

)
|K|,

∫

K

χ̄Eλ
2
2 dx =

D

7
|K|,(41)

∫

K

ψEλ
2
3 dx = −2

∫

K

ψEλ2λ3 dx =
(
− 11

630
− 8

7
A+ 2B

)
|K|,(42)

∫

K

χ̄Eλ1λ3 dx = −
∫

K

χ̄Eλ2λ3 dx =
D

7
|K|,

∫

K

πKλ2λ3 dx =
|K|
630

,(43)
∫

K

ζEλ1λ2 dx =
∫

K

ζEλ1λ3 dx =
∫

K

ζEλ2λ3 dx = 0,(44)
∫

K

ξE(λ1 − λ3)λ2 dx = 3(B −A)|K|,(45)
∫

K

πKλi dx =
|K|
180

,

∫

K

πKλ
2
i dx =

|K|
420

, i = 1, 2, 3.(46)

Further, we shall need the following simple result.

Lemma 6. Let n ∈ � be any positive integer and f1, . . . , fn ∈ �
any real

numbers. Let us consider the linear system

(47) xj + xj+1 = fj , j = 1, . . . , n,

with xn+1 ≡ x1. If n is even, we assume that

(48)
n∑

j=1

(−1)jfj = 0,

which is a necessary condition for the solvability of (47). Then the linear system (47)
has a solution which satisfies

xj = (−1)j+1x1 +
j−1∑

k=1

(−1)j+k+1fk, j = 2, . . . , n.
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If n is odd, then x1 is uniquely determined by

x1 =
1
2

n∑

j=1

(−1)j+1fj .

If n is even, then x1 can be chosen arbitrarily.
�������	�

. The proof is straightforward. �

The following lemma shows that the assumptions of Theorem 1 hold true for
m = n = 3.

Lemma 7. For any q̃h ∈ Q̃3
h and any i ∈ {1, . . . , Nh} there exists vi

h ∈ Vi,3
h

satisfying (24)–(26), where the constant C depends only on σ and b̂1.
�������	�

. Consider any q̃h ∈ Q̃3
h and any i ∈ {1, . . . , Nh}. Then, according to the

proof of Lemma 3, there exists a function ṽi
h ∈ Vi,3

h satisfying (24), (26) and (32).
Let us denote

vi
h =

n∑

k=1

{(αkψEk
+ βkχ̄Ek

+ γk%̄Ek
+ δkζEk

+ εkπEk
)tEk

+ (κkξEk
+ µkζEk)nEk

}

with constants αk, βk, γk, δk, εk, κk, µk, k = 1, . . . , n, to be determined later. Then
vi

h belongs to Vi,3
h and satisfies (24). Moreover, due to (13), (27), (38) and (39), it

is easy to verify that
bh(vi

h, qh) = 0 ∀ qh ∈ Q1
h.

Our aim is to choose the above introduced constants in such a way that the function
vi

h ≡ ṽi
h + vi

h satisfies

(49) bh(vi
h, qh) = (q̃h, qh)∆i ∀ qh ∈ Q̃3

h.

To this end, it is sufficient to fulfil

bh(vi
h, ϕjϕj+1) = 0,(50)

bh(vi
h, ϕ

2
j ) = 0,(51)

bh(vi
h, 2ϕ

3
j − 3ϕ2

j ) = rh(ṽi
h, 2ϕ

3
j ),(52)

bh(vi
h, ϕjϕj+1(ϕj − ϕj+1)) = rh(ṽi

h, ϕjϕj+1(ϕj − ϕj+1)),(53)

bh(vi
h, πKj ) = rh(ṽi

h, πKj ),(54)

where j = 1, . . . , n and

rh(v, q) = (q̃h, q)∆i − bh(v, q).
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Let ϕi be the continuous piecewise linear basis function equal to 1 at the vertex xi

and vanishing at all other vertices. Then

∇πKj |Kj = (ϕi − ϕj)ϕj+1∇ϕj + (ϕi − ϕj+1)ϕj∇ϕj+1.

Therefore, we obtain using (13), (27), (35), (36) and (43)–(45)

bh(vi
h, πKj ) =

3
2
(A−B)(κj+1hEj+1 − κjhEj ) +

2D
7
|Kj |

( βj

hEj

+
βj+1

hEj+1

)
,

which shows that we can fulfil (54) using Lemma 6. First we choose the constants κj

to satisfy (48) if n is even. This can be done in many ways and we set

sj =
j∑

k=1

(−1)k rh(ṽi
h, πKk

)
|Kk|

, j = 1, . . . , n,

κ1 =
2|K1| |Kn|

3(A−B)hE1(|K1|+ |Kn|)
sn, κj = 0, j = 2, . . . , n.

Now, denoting

β1 = −7hE1

2D
|K1|

|K1|+ |Kn|
sn, βj = (−1)j 7hEj

2D
(sn − sj−1), j = 2, . . . , n,

the equation (54) holds if

(55) βj = (−1)jθhEj + βj , j = 1, . . . , n,

where θ = 0 if n is odd. If n is even, then the value of θ can be chosen arbitrarily
and will be fixed later.
In what follows, we use notation of the type

vi,κ
h =

n∑

k=1

κkξEk
nEk

, vi,γ
h =

n∑

k=1

γk%̄Ek
tEk

, vi,β
h =

n∑

k=1

βkχ̄Ek
tEk

and set vi,γ+κ
h = vi,γ

h + vi,κ
h , vi,β+γ+κ

h = vi,β
h + vi,γ

h + vi,κ
h , etc. Then we derive

using (13), (27), (37), (39), (40) and (46)

bh(vi
h − vi,κ

h , ϕjϕj+1) = − |Kj |
90

( γj

hEj

+
γj+1

hEj+1

)
+

1
180

( εj+1

hEj+1

− εj

hEj

)

+
D

2
(µjhEj − µj+1hEj+1).
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Thus, to fulfil (50), we can set

γj =
90hEj

|Kj−1|+ |Kj |
bh(vi,κ

h , ϕjϕj+1), j = 1, . . . , n,(56)

εj − 90Dh2
Ej
µj = 2|Kj−1|γj , j = 1, . . . , n.(57)

Further, due to (37), (39), (40), (41) and (46) we have

bh(vi
h − vi,γ+κ

h , ϕ2
j ) = 2D(|Kj−1|+ |Kj |)

δj
hEj

(58)

+DnEj · (hEj−1nEj−1 − hEj+1nEj+1)µj ,

bh(vi
h − vi,γ+κ

h , ϕ3
j ) = 3

|Kj−1|+ |Kj |
hEj

[( 1
210

+
D

7

)
αj +

D

7
βj +Dδj

]
(59)

+
3D
2

nEj · (hEj−1nEj−1 − hEj+1nEj+1)µj .

Therefore,

bh(vi
h − vi,γ+κ

h , 2ϕ3
j − 3ϕ2

j ) = 6
|Kj−1|+ |Kj |

7hEj

[( 1
30

+D
)
αj +Dβj

]
.

Denoting

αj = − 30D
1 + 30D

βj +
35hEj

(1 + 30D)(|Kj−1|+ |Kj |)
[rh(ṽi

h, 2ϕ
3
j )−bh(vi,γ+κ

h , 2ϕ3
j −3ϕ2

j )],

we see that (52) holds if

(60) αj = (−1)j+1θ
30D

1 + 30D
hEj + αj , j = 1, . . . , n.

Finally, applying (37), (40), (42), (43), (44) and (46) we derive

bh(vi
h − vi,γ+κ

h , ϕjϕj+1(ϕj − ϕj+1))

=
D

2
(µjhEj + µj+1hEj+1)−

1
1260

( εj

hEj

+
εj+1

hEj+1

)

+ |Kj |
[( 11

315
+

16A− 28B
7

)( αj

hEj

− αj+1

hEj+1

)
− 2D

7

( βj

hEj

− βj+1

hEj+1

)]
.

This implies in view of (53), (55), (57) and (60) that

3D
7

(µjhEj + µj+1hEj+1) = (−1)jθ
8|Kj |D(1 + 90A− 135B)

3 + 90D
(61)

+ rh(ṽi
h + vi,α+β+γ+κ

h , ϕjϕj+1(ϕj − ϕj+1))

+
1

630

(γj |Kj−1|
hEj

+
γj+1|Kj |
hEj+1

)
.
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If n is odd, then θ = 0 and the constants µj , j = 1, . . . , n, are uniquely determined
according to Lemma 6. If n is even, we define θ in such a way that the right-
hand sides of (61) satisfy (48). Then the constants µj satisfying (61) can be again
computed using Lemma 6. The values of θ and µj , j = 1, . . . , n, now determine the
constants αj , βj and εj , j = 1, . . . , n, by (60), (55) and (57), respectively. Finally,
(51) and (58) uniquely determine δj , j = 1, . . . , n.
Thus, we have defined all constants in the definition of vi

h in such a way that
(50)–(54) hold for j = 1, . . . , n. Consequently, the function vi

h satisfies (49) and if
we set qh = q̃h in (49), we obtain (25). Using (17), (29) and (30), we can easily verify
that vi

h also satisfies (26), which completes the proof. �

Corollary 3. There exists a constant β > 0 depending only on σ, b̂1 and Ω such
that

sup
vh∈Vmod,3

h \{0}

bh(vh, qh)
|vh|1,h

> β‖qh‖0,Ω ∀ qh ∈ Q3
h.

�������	�
. The corollary again follows directly from Theorem 1 and Lemma 7. �


���
������
4. We conjecture that the validity of the assumptions of Theorem 1

can be also proved for m = n > 3 using the same techniques as above. However, due
to the increasing complexity of this proceeding for m = n > 3, another type of the
proof should be developed to show the stability of the Pmod

n /Pn element for n > 3.
This will be a subject of our further research.

8. Conclusions

In this paper we have investigated the triangular nonconforming Pmod
n elements

which were recently introduced to enhance the accuracy of discrete solutions to con-
vection dominated problems. Applying the macroelement technique, we have proved
(for n 6 3) that these finite elements are well suited for approximating the velocity in
incompressible flow problems since they satisfy the inf-sup condition of Babuška and
Brezzi for pressures approximated by continuous piecewise polynomial functions of
degree n. This in particular enables us to apply the Pmod

n /Pn element to the numeri-
cal solution of convection dominated incompressible flow problems. Our preliminary
numerical results for the incompressible Navier-Sokes equations are very promising
and indicate that the Pmod

n /Pn element leads to efficient and accurate procedures
for the numerical solution of incompressible flow problems.
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