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Abstract. The methods of arbitrarily high orders of accuracy for the solution of an ab-
stract ordinary differential equation are studied. The right-hand side of the differential
equation under investigation contains an unbounded operator which is an infinitesimal gen-
erator of a strongly continuous semigroup of operators. Necessary and sufficient conditions
are found for a rational function to approximate the given semigroup with high accuracy.
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1. Preliminaries

In this paper we will deal with approximations of the solution to an abstract

differential equation of the form

(1.1) u′(t) = Au(t), t ∈ (0, T )

with the initial condition

(1.2) u(0) = η.

The values of the unknown function u(t) lie in a (complex) Banach space X and A

is a closed linear operator with domain which is dense in X .
For the reader’s convenience we recall some special results from the functional

analysis in this section, namely, some theorems concerning abstract functions of

*The research was supported by the Academy of Sciences of the Czech Republic, Institu-
tional Research Plan No. AV0Z10190503.
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a real variable, the operator calculus for unbounded operators, and the theory of

semigroups of operators. We will not prove them, the details may be found in many
textbooks on functional analysis, e.g., in [1], [3], [4] and [6].

Theorem 1.1. Let ϕ : (0, h0) → X , let ϕ′(h) exist for any h ∈ (0, h0), and let,
moreover, lim

h→0
ϕ′(h) exist. Then lim

h→0
ϕ(h) also exists, and the function ϕ(h) defined

by its limit as h tends to zero has the right derivative at h = 0 equal to lim
h→0

ϕ′(h).

Theorem 1.2. Let ϕ(h) have the nth derivative at h = 0. Then

lim
h→0

ϕ(h)− ϕ(0)− ϕ′(0)hn/1!− . . .− ϕ(n)(0)hn/n!
hn

= 0.

Theorem 1.3. Let ϕ(h) have the (n + 1)st derivative in [0, h0], and let
‖ϕ(n+1)(h)‖ 6 M for h ∈ [0, h0]. Then

∥∥∥ϕ(h)−
[
ϕ(0) + ϕ′(0)

h

1!
+ . . . + ϕ(n)(0)

hn

n!

]∥∥∥ 6 M
hn+1

(n + 1)!

for all h ∈ [0, h0].

Further, let us recall some concepts of the operator calculus for unbounded oper-

ators. By the operator calculus we mean the technique which enables us to define
functions of operators. Thus, let X be a Banach space and A a closed operator

mapping the subspace D ⊆ X into X , and let D be dense in X . The set r(A) of such
complex λ that the operator R(λ, A) = (λI − A)−1 exists, is bounded and defined

on the whole space X , is called the resolvent set. The operator R(λ, A) is called
the resolvent of A and the complement of the set r(A) is called the spectrum of the
operator A and is denoted by σ(A).
The symbol F(A) will denote the family of all functions f of a complex variable

which are regular in a neighbourhood of the spectrum and at infinity. This neigh-
bourhood need not be connected and may depend on the individual f . Let V be an

open set containing the spectrum σ(A) of A, let the boundary Γ of V consist of a
finite number of rectifiable Jordan curves, and let f be regular on V ∪Γ. Further, let
Γ be positive orientated with respect to V . Then the function f(A) of the operator A
is defined by

(1.3) f(A) = f(∞)I +
1

2πi

∫

Γ

f(λ)R(λ, A) dλ.

This formula defines a bounded operator the properties of which are summarized in
the following theorem.
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Theorem 1.4. Let f, g ∈ F(A). Then
(a) (f + g)(A) = f(A) + g(A);
(b) (fg)(A) = f(A)g(A);
(c) σ(f(A)) = f(σ(A) ∪∞);
(d) if f ∈ F(A), g ∈ F(f(A)) and F (ξ) = g(f(ξ)), then F ∈ F(A) and F (A) =

g(f(A));
(e) if U is any bounded operator which commutes with A, then it commutes also

with any f(A).

Further, we want to define the powers of an (unbounded) operator A. The for-

mula (1.3) cannot be used here since any nonconstant polynomial has a pole at
infinity. Consequently, we succeed to define a polynomial of A only on a proper

subset of X . It is clear that it is sufficient to define a power of A and we will do it
in the following natural recurrent way:

A0 = I, A1 = A,

D(An) = {x : x ∈ D(An−1) and An−1x ∈ D(A)},
An = A(An−1).

The basic properties of a polynomial of A and its relation to f(A) are given in the
following theorems.

Theorem 1.5. Let A be a closed operator with a nonempty resolvent set and let

P be a polynomial of degree n. Then P (A) is also a closed operator. If, moreover,
the domain of A is dense in X , then the domain of P (A) is also dense in X .

Theorem 1.6. Let P be a polynomial of degree n and let f ∈ F(A) have a root
of order m, 0 6 m 6 ∞ at infinity. Then
(a) if x ∈ D(An), then f(A)x ∈ D(An+m) (n+m = ∞ ifm = ∞) and P (A)f(A)x =

f(A)P (A)x;
(b) if 0 6 n 6 m and g(λ) = P (λ)f(λ), then g ∈ F(A) and g(A) = P (A)f(A).

Theorem 1.7. Let P be a polynomial. Then P (σ(A)) = σ(P (A)).

Finally, let us present some results concerning the theory of semigroups of opera-
tors. The set {U(t); 0 6 t < ∞} of bounded linear operators in X is said to form a
strongly continuous semigroup of operators if

(i) U(s + t) = U(s)U(t), s, t > 0,
(ii) U(0) = I ,
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(iii) the function U(·)x is continuous (in the topology of the space X ) on [0,∞) for
any x ∈ X .

Define, for any h > 0, an operator Ah by

Ah =
U(h)x− x

h
, x ∈ X ,

and suppose that D(A) is the set of all x ∈ X for which lim
h→0

Ahx exists. Then the

operator A with the domain D(A) defined by

Ax = lim
h→0

Ahx, x ∈ X

will be called the infinitesimal generator of the semigroup of operators U(t). The
following theorems on infinitesimal generators are of basic importance for us.

Theorem 1.8. The domain D(A) of A is dense in X and A is a closed operator

on D(A). Further, if η ∈ D(A), then U(t)η ∈ D(A) for 0 6 t < ∞ and dU(t)η/dt =
AU(t)η = U(t)Aη.

Theorem 1.9. The limit ω0 = lim
t→∞

log ‖U(t)‖/t exists, and ω0 < ∞. Any λ with

Re λ > ω0 belongs to the resolvent set of A, and we have

R(λ, A)η =
∫ ∞

0

exp(−λt)U(t)η dt, η ∈ X , Re λ > ω0.

Note that the existence of ω0 implies that, for any ω > ω0, there exists a con-
stant Mω such that

(1.4) ‖U(t)‖ 6 Mω exp(ωt)

for any t > 0.

Theorem 1.10. For a closed operator with domain which is dense in X , to be the
infinitesimal generator of a strongly continuous semigroup of operators it is necessary

and sufficient that there exist real constants M and ω such that

(1.5) ‖Rn(λ, A)‖ 6 M

(Re λ− ω)n
, n = 1, 2, . . .

for any λ such that Re λ > ω.

2. Auxiliary lemmas

In what follows we suppose that A is the infinitesimal generator of a strongly
continuous semigroup of operators U(t).
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Lemma 2.1. Let F (z) be a rational function which has poles in the (open) right-
hand halfplane and is regular at infinity. Then

lim
h→0

F (i)(hA)x = F (i)(0)x

for any x ∈ X and any i = 0, 1, . . .

���������
. Let Ṽ be a bounded domain containing the poles of F (z). Obviously,

it can be chosen in such a way that its closure lies in the open right-hand halfplane
and that its boundary Γ is a Jordan curve. Further, let V be the complement of Ṽ .

Then the function F (i)(z) is regular in V and at infinity for any i = 0, 1, . . . The
spectrum of the operator hA lies, for sufficiently small h, in V and we can write

(2.1) F (i)(hA) = F (i)(∞)I +
1

2πi

∫

Γ

F (i)(λ)R(λ, hA) dλ

for h 6 h0. The operator A is an infinitesimal generator of a semigroup U(t). Thus,
Theorem 1.9 implies

R(λ, hA)x =
1
h

R
(λ

h
, hA

)
x =

1
h

∫ ∞

0

exp
(
−λ

h
t
)
U(t)x dt =

∫ ∞

0

exp(−λt)U(ht)x dt

for any x ∈ X and for any λ with Re λ > hω0. Consequently,

(2.2) lim
h→0

R(λ, hA)x = lim
h→0

∫ ∞

0

exp(−λt)U(ht)x dt

for any x ∈ X and for any λ with Re λ > hω0 and the more so for Re λ > h0ω0.

Since ‖U(ht)‖ 6 Mω exp(ωht) for any ω > ω0 (see (1.4)) we conclude that

‖exp(−λt)U(ht)x‖ 6 Mω exp(−(λ− ωh)t)‖x‖ 6 Mω exp(−(λ− ωh0)t)‖x‖.

Thus, the function exp(−λU(ht))x has an integrable majorant independent of h for
any λ with Re λ > h0ω. Consequently, the limit sign in (2.2) can be interchanged

with the integral sign so that we obtain

lim
h→0

R(λ, h)x =
1
λ

x

for any x ∈ X and for any Re λ > h0ω. Using the assumption that A is the infinites-

imal generator of U(t) again we find that

‖R(λ, hA)‖ 6 M

Re λ− ωh0
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for Reλ > ωh0 and h 6 h0. Hence we can pass in (2.1) to the limit under the

integration sign, which yields

lim
h→0

F (i)(hA)x = F (i)(∞)x +
1

2πi

∫

Γ

F (i)(λ) lim
h→0

R(λ, hA)x dλ

= F (i)(∞)x +
1

2πi

∫

Γ

F (i)(λ)
λ

x dλ

= F (i)(∞)x + F (i)(0)x− F (i)(∞)x.

The lemma is proved. �

Lemma 2.2. Let 0 < λF < %F and let

Ω = {z : Re z > λF , |z| < %F },
Ωh = {z : hz ∈ Ω},

Ωh0,h1 =
⋃

h06h6h1

Ωh,

where 0 < h0 < h1 are given. Further, denote by Γh0,h1 the boundary of Ωh0,h1 and

let

Kh =
{
z,

1
h

z ∈ Γh0,h1

}
,

K =
⋃

h06h6h1

Kh.

Then K ∩ Ω = ∅ and K is compact.
���������

. It is obvious that

Ωh0,h1 =
{
z ;

λF

h1
< Re z <

λF

h0
, |Im z| < (%2

F − λ2
F )1/2

λF
Re z

}

∪
{
z ; Re z > λF

h0
, |z| < %F

h0

}

and

Γh0,h1 =
{
z ; Re z =

λF

h1
, |z| 6 %F

h1

}
∪

{
z ; Re z > λF

h0
, |z| = %F

h0

}

∪
{

z ;
λF

h1
< Re z <

λF

h0
, |Im z| = (%2

F − λ2
F )1/2

λF
Re z

}

∪
{

z; Re z =
λF

h0
,

(%2
F − λ2

F )1/2

h0
6 |Im z| 6 %F

h0

}
.
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This implies immediately that

Kh =
{
z ; Re z = h

λF

h1
, |z| 6 h

%F

h1

}
∪

{
z ; Re z > h

λF

h0
, |z| = h

%F

h0

}

∪
{
z ; h

λF

h1
< Re z < h

λF

h0
, |Im z| = (%2

F − λ2
F )1/2

λF
Re z

}

and, consequently,

K =
{
z ;

h0

h1
λF 6 Re z 6 λF , |Im z| 6 (%2

F − λ2
F )1/2

λF
Re z

}

∪
{
z ; %F 6 |z| 6 h1

h0
%F , |Im z| 6 (%2

F − λ2
F )1/2

λF
Re z

}

∪
{
z ; %F 6 |z| 6 h1

h0
(λF + %F ), |Im z| = (%2

F − λ2
F )1/2

λF
Re z

}
.

The assertion of the lemma now immediately follows. �

Lemma 2.3. Let the assumptions of Lemma 2.1 be satisfied. Then the function
F (hA) : (0, h0) → B(X )1 of the variable h has derivatives of arbitrary orders for any

sufficiently small positive h and we have

(2.3)
di

dhi
F (hA) = AiF (i)(hA), i = 0, 1, . . .

���������
. First, let us note that the operator on the right-hand side of (2.3) is

a bounded operator for any i and for any sufficiently small h. Indeed, the func-

tion F (i)(hz) is regular at infinity for any h > 0 and for i = 1, 2, . . ., and its poles
lie in the halfplane Re z > b(h) with lim

h→0
b(h) = ∞. Moreover, it has a root of order

at least i + 1 at infinity. Consequently, ziF (i)(hz) ∈ F(A) for sufficiently small h as
follows from Theorem 1.6. Note that the function ziF (i)(hz) has a root of order at
least 1 at infinity.

Let us prove our assertion by induction. For i = 1 it is, obviously, true. So, let us
suppose that it is true for some i and let us prove it for i := i+1. It follows from the
properties of F that there exist constants %F and λF such that the poles of F (i)(z)
and F (i+1)(z) lie in Ω from Lemma 2.2. But this yields that the poles of ziF (i)(hz)
and zi+1F (i+1)(hz) lie in Ωh0,h1 of the same lemma for any 0 < h0 6 h 6 h1.

1 B(X ) is the space of linear bounded operators in X .
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Moreover, let us choose h1 so small that the spectrum of A lies in the complement

of Ωh0,h1 . This is, obviously, possible. Thus, for any h, h + ε ∈ [h0, h1], we have

AiF (i)((h + ε)A)−AiF (i)(hA)
ε

(2.4)

=
1

2πi

∫

Γh0,h1

λiF (i)((h + ε)λ)− λiF (i)(hλ)
ε

R(λ, A) dλ.

Further, we have for λ ∈ Γh0,h1

∣∣∣F
(i)((h + ε)λ)− F (i)(λ)

ε
− λF (i+1)(λ)

∣∣∣(2.5)

=
1
2
|ε||λ2F (i+1)((h + θε)λ)|

6 1
2
|ε| max

λ∈Γh0,h1

|λ|2 max
h06h1

λ∈Γh0,h1

|F (i+2)(hλ)|

=
1
2
|ε| max

λ∈Γh0,h1

|λ|2 max
z∈K

|F (i+2)(z)|.

The set K is disjoint with Ω and compact, hence, the continuous function F (i+2)(z)
is bounded on K. Consequently, (2.5) implies that

lim
ε→0

F (i)((h + ε)λ)− F (i)(hλ)
ε

= λF (i+1)(hλ)

uniformly with respect to λ ∈ Γh0,h1 . Thus, we can pass in (2.4) to the limit under
the integration sign obtaining finally

lim
ε→0

F (i)((h + ε)A)− F (i)(hA)
ε

=
1

2πi

∫

Γh0,h1

λi+1F (i+1)(hλ)R(λ, A) dλ = Ai+1F (i+1)(hA).

This identity proves the lemma. �

Lemma 2.4. Let F satisfy the assumptions of Lemma 2.1. Then the function
ϕ(h) = F (hA)x with x ∈ D(Am) has m derivatives in [0, h0] and

(2.6)
di

dhi
ϕ(h) = F (i)(hA)Aix for i = 0, . . . , m and h > 0

and

(2.7)
di

dhi
ϕ(h) = F (i)(0)Aix for i = 0, . . . , m and h = 0.

���������
. Formula (2.6) follows directly from Lemma 2.3; formula (2.7) follows

from Lemmas 2.3, 2.1 and from Theorem 1.1. �
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Lemma 2.5. Let F satisfy the assumptions of Lemma 2.1. Then there exists a

constant M such that

‖F (i)(hA)‖ 6 M, i = 0, 1, . . .

for any h ∈ [0, h0].
���������

. The assertion of the lemma follows immediately from the uniform
boundedness principle. In fact, the function F (i)(hA)x is continuous on [h0, h1] for
any x ∈ X as follows from Lemma 2.3 and, thus, it is bounded. �

3. Main results

Let us investigate the problem (1.1), (1.2) and let A be the infinitesimal generator

of a continuous semigroup of operators U(t), t ∈ [0, T ]. The function U(t)η is
continuous and differentiable in [0, T ] for any η ∈ D(A) and satisfies (1.1) for any
t ∈ [0, T ] (see Theorem 1.8). Thus, this function represents the classical solution of
the problem (1.1)–(1.2). However, U(t)η has sense and is continuous for any η ∈ X .
Thus, this function may be referred to as the generalized solution even though it
may not be differentiable.

Let F be a rational function with poles in the right-hand halfplane and let it be
regular at infinity. Further, let the coefficients of the polynomials in the numerator

and denominator of F be real and let F approximate the exponential with order p,
i.e., let

(3.1) exp(z) = F (z) + O(zp+1) for z → 0,

where p is a positive integer. Divide the interval [0, T ] into N subintervals [tj , tj+1] of
length h = T/N by the mesh points 0 = t0 < t1 < . . . < tN = T . The semigroup U(t)
is the generalization of the exponential function of the operator tA. Therefore,
it seems natural to approximate the solution of (1.1)–(1.2) at the points tj , j =
0, 1, . . . , N by the sequence {uj} ⊂ X defined recurrently by

(3.2) uj+1 = F (hA)uj , j = 0, . . . , N − 1, . . . , u0 = η.

In the sequel we will investigate the conditions under which it will be really so.

We begin with determining what we will mean by convergence.

Definition 3.1. The method given by (3.2) is said to be convergent on the class
of problems (1.1)–(1.2) if

lim
h→0
jh→t

uj = U(t)η

for any η ∈ X and any t ∈ [0, T ].
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Theorem 3.1. Let a rational function F be given having its poles in the right-

hand halfplane and being regular at infinity. Further, let F define the method (3.2)
which is convergent for the class of problems (1.1)–(1.2). Then there exists a constant
M = M(t) such that

(3.3) ‖F j(hA)‖ 6 M

for any sufficiently small h and for any j satisfying 0 6 jh 6 t.
���������

. Obviously, uj = F j(hA). Thus, we have

lim
h→0
jh→t

F j(hA)η = U(t)η.

Let us show now that the set {F j(hA)η ; 0 < h 6 h0, jh 6 t} is bounded for any
fixed η ∈ X . We will prove it by contradiction. Thus, let us suppose that there exist
η ∈ X , t ∈ [0, T ] and sequences jk and hk such that jkhk 6 t and

(3.4) ‖F jk(hkA)η‖ → ∞.

Taking into account the inequality jkhk 6 t we may assume that jkhk → t0. But

then the sequence F jk (hkA)η is convergent and, consequently, bounded. This fact
contradicts (3.4). Hence, we have ‖F j(hA)‖ 6 M(η) and the assertion of Theo-
rem 3.1 follows from the uniform boundedness principle. �

Theorem 3.2. Let a rational function F be given with poles in the right-hand

halfplane and regular at infinity. Further, let (3.1) hold with some p > 1. Finally,
let (3.3) be satisfied. Then the method given by recurrences (3.2) is convergent.
���������

. For the exact solution u(t) = U(t)η we have

u(tj+1) = U(tj+1)η = U(h)U(tj)η

= F (hA)U(tj)η − [F (hA)− U(h)]U(tj)η

= F (hA)u(tj)η − U j(h)[F (hA) − U(h)]η

since the operators U(tj) and F (hA) commute (see Theorem 1.4). Thus, the error
ej = uj − u(tj) of the approximate solution satisfies

ej+1 = F (hA)ej + U j(h)[F (hA) − U(h)]η, e0 = 0,

or

ej =
j−1∑

s=0

F j−1−s(hA)Us(h)[F (hA)− U(h)]η.
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From this identity, from (3.3) and from (1.4) we obtain

(3.5) ‖ej‖ 6 M(T )Mω exp(ωT )j‖[F (hA)− U(h)]η‖

with some T > t.
Let us suppose now that η ∈ D(Ap+1). Then Theorem 1.8 and Lemma 1.4 imply

that the function [F (hA)− U(h)]η has p + 1 derivatives and that

(3.6)
di

dhi
[F (hA) − U(h)]η

∣∣∣
h=0

= [F (i)(0)− 1]Aiη, i = 0, . . . , p

and
dp+1

dhp+1
[F (hA)− U(h)]η = [F (p+1)(hA)− U(h)]Aiη.

By Lemma 2.5 it follows immediately that

∥∥∥ dp+1

dhp+1
[F (hA)− U(h)]η

∥∥∥ 6 Mp+1‖Ap+1η‖

for any sufficiently small h. Using now Theorem 1.3 and observing that (3.1) implies

F (i)(0) = 1 for i = 0, . . . , p we obtain from (3.6)

‖[F (hA)− U(h)]η‖ 6 Mp+1
hp+1

(p + 1)!
‖Ap+1η‖.

If we substitute this estimate into (3.5) we have

‖ej‖ 6 M̃‖Ap+1η‖hp,

where M̃ is a constant depending only on T . Hence, the method is convergent for
any η ∈ D(Ap+1) (and this convergence is, obviously, uniform on any finite interval
of t’s).
To conclude the proof it is now sufficient to take into account that D(Ap+1) is

dense in X and to remember the well-known theorem stating that the sequence {Th}
of bounded linear operators in a Banach space X is convergent for any η ∈ X if and
only if
(i) the sequence of norms {‖Th‖} is bounded, and
(ii) {Thη} is convergent on a dense subset of X . �

Note that we have proved in fact more than is stated in Theorem 3.2. We have

proved that the method of the order p leads in the case of sufficiently smooth data
to the convergence of order hp.
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4. Concluding remarks

In this section, let us briefly check condition (3.4) which controls the convergence
of the method (3.2).

Let us begin with a trivial example when the given method is the Rothe method.
In that case, the function F in (3.2) has the form

F (hA) = (I − hA)−1 =
1
h

R
( 1

h
, A

)
.

Using now (1.5) (A is the infinitesimal generator of a continuous semigroup of oper-

ators), we obtain the estimate

‖Rj(hA)‖ 6 M

(1− hω)t/h

and this inequality holds for any sufficiently small h and for any j satisfying jh 6 t.

But the right-hand term of the last inequality is bounded since lim
h→0

(1− hω)−t/h =

exp(tω). Consequently, any power of F (hA) is bounded and the Rothe method is
convergent.

To be able to make more general conclusions, suppose that ‖F (x)‖ < 1 for neg-
ative x,2 and that the space X is a Hilbert space and A is selfadjoint. In that

situation, the spectrum of A is real, F (hA) is also selfadjoint (the values of F are
real for real z’s) and, hence the norm of F j(hA) is equal to the spectral radius

‖F j(hA)‖ = %(F j(hA)) 6 %j(F (hA)).

From Theorem 1.4 we have

(4.1) %(F (hA)) 6 sup
λ6ω

|F (hλ)|.

Now observe that the assumption |F (hλ)| < 1 for λ < 0 implies that

sup
λ6ω

|F (hA)| 6 1 + Mh,

whereM is a constant independent of h. The reason is that F is regular at the point
z = 0. Using this result in (4.1) we obtain immediately that

‖F j(hA)‖ 6 (1 + Mh)j ,

which proves (3.3).

2 In the language of ordinary differential equations, this property is known as A(0)-stability.
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The general situation is substantially more complicated. If we assume that the

resolvent of A is compact we hope that we succeed to prove, at least, that the method
converges in the case of the A-stable method.
Let us remark that an effective way leading to methods with rational F in (3.2)

may be the Runge-Kutta implicit methods (see, e.g., [2]) or the overimplicit methods
introduced in [5].
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