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Abstract. Asymptotic error expansions in the sense of L∞-norm for the Raviart-Thomas
mixed finite element approximation by the lowest-order rectangular element associated with
a class of parabolic integro-differential equations on a rectangular domain are derived, such
that the Richardson extrapolation of two different schemes and an interpolation defect
correction can be applied to increase the accuracy of the approximations for both the vector
field and the scalar field by the aid of an interpolation postprocessing technique, and the key
point in deriving them is the establishment of the error estimates for the mixed regularized
Green’s functions with memory terms presented in R. Ewing at al., Int. J. Numer. Anal.
Model 2 (2005), 301–328. As a result of all these higher order numerical approximations,
they can be used to generate a posteriori error estimators for this mixed finite element
approximation.
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1. Introduction

The aim of this paper is to discuss the asymptotic behavior of the mixed finite ele-
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ment approximation for a parabolic integro-differential equation with the Neumann

boundary condition: Find u = u(x, t) such that

ut = ∇ · σ + cu+ f in Ω × J,(1.1)

σ = A(t) · ∇u −

∫ t

0

B(t, s) · ∇u(s) ds in Ω × J,

∂u

∂n
= 0 on ∂Ω × J,

u = u0(x) x ∈ Ω, t = 0,

where Ω is an open bounded domain in R2 with Lipschitz boundary ∂Ω, and n is

the outward unit normal vector along ∂Ω, J = (0, T ) with T > 0, A(t) = A(x, t) and

B(t, s) = B(x, t, s) are two 2 × 2 matrices with A being positive definite, c, f and

u0 are known smooth functions.

At present there is an extensive literature available for numerical approximations

of the problem (1.1). See, for instance, [6], [7], [17], [19], [20], [22]–[24], [27], [28],

[30]–[33] for the finite element method and the finite difference method. Recently,

mixed finite element methods have been investigated for (1.1) in [10]–[13], and [16],

in which optimal and superconvergent estimates in the L2-norm and the L∞-norm

as well as Richardson extrapolation in L2-norm have been obtained by means of a

mixed Ritz-Volterra projection, regularized Green’s functions and an interpolation

postprocessing method.

In the present paper we study two numerical approaches of higher accuracy–the

Richardson extrapolation method of two different forms in the L∞-norm and an

interpolation defect correction method in the L2-norm and the L∞-norm. As an

efficient numerical method to increase the accuracy of approximations, Richardson

extrapolation has been demonstrated in [29] for the difference method, in [3], [5], [8],

[15], [19], [21]–[25], [26], [34], [35], [37], [38] for the (Galerkin and Petrov-Galerkin)

finite element method and the mixed finite element method, in [18] and [36] for the

collocation method and the boundary element method, respectively.

The defect correction of (Galerkin and Petrov-Galerkin) finite elements by means

of an interpolation postprocessing technique is another numerical method to obtain

approximations of higher accuracy, which has been probed for a wide variety of

models. See, for example, [2], [5], [19], [21], [24], and the references cited therein.

As we have done in [14], we employ the analysis for the “short side” in the FE-

right triangle plus the sharp integral estimates of the “hypotenuse” (see, for example,

[19] and [20]) to present an immediate analysis for the asymptotic expansion of the

error between the mixed finite element solution and the corresponding interpolation

function of the exact solution to (1.1) in the sense of L∞-norm on the basis of the
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estimates for the mixed regularized Green’s functions with memory terms introduced

in [13]. Thus, the asymptotic expansion of the error in the mixed finite element

solution is derived, by which the Richardson extrapolation of two different types and

the interpolation defect correction can be applied to generate mixed finite element

approximations of higher accuracy. In addition, by means of these approximations

with higher precision, a class of a posteriori error estimators are constructed for this

mixed finite element method.

This paper is organized as follows. In Section 2, the approximate subspace and

the variational formula of (1.1) are provided. Also, the asymptotic expansion of

the Raviart-Thomas projection is presented in this section for the future need. Sec-

tion 3 is devoted to investigating the asymptotic expansion of the error between the

mixed finite element solution and the Raviart-Thomas projection of the exact solu-

tion to (1.1) in the L∞-norm. Finally, Section 4 deals with an interpolation defect

correction approximation in the L2- and the L∞-norm based on the results given in

Section 3. Furthermore, at each end of Sections 3 and 4, a posteriori error estimators

are furnished as by-products of these numerical solutions with higher convergence

rates.

2. The asymptotic expansion

In this section we first give the formula of the mixed finite element method for the

parabolic integro-differential equation (1.1). For the sake of simplicity of analysis,

we take the domain Ω to be a rectangle in this paper.

Let

W := L2(Ω) and V := H(div,Ω) = {σ ∈ (L2(Ω))2 : ∇ · σ ∈ L2(Ω)}

be the standard L2-space on Ω with norm ‖ · ‖0 and the Hilbert space equipped with

the norm

‖σ‖V := (‖σ‖2
0 + ‖∇ · σ‖2

0)
1/2,

respectively. Moreover, set

V0 := {σ ∈ V : σ · n = 0 on x ∈ ∂Ω}.

Then, from [10] we recall that the weak mixed formulation of (1.1) is given by finding

(u,σ) ∈W × V0 such that

(ut, w) − (∇ · σ, w) − (cu, w) = (f, w), w ∈W,(2.1)

(ασ,v) +

∫ t

0

(M(t, s)σ(s),v) ds+ (∇ · v, u) = 0, v ∈ V0,

u(0, x) = u0(x) in L2(Ω),
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where α = A−1(t),M(t, s) = R(t, s)A−1(s), and R(t, s) is the resolvent of the matrix

A−1(t)B(t, s) and is presented by

R(t, s) = A−1(t)B(t, s) +

∫ t

s

A−1(t)B(t, τ)R(τ, s) dτ, t > s > 0.

Let Th,k be a finite element partition of Ω into uniform rectangles and Vh,k ×

Wh,k ⊂ V × W denote a pair of finite element spaces associated with this parti-

tion which satisfy the inf-sup stability condition of Babuška and Brezzi (see, for

instance, [1] and [4]), where h and k are the mesh sizes in x- and y-axis, respec-

tively. Some spaces like that have been constructed and analyzed for rectangular

elements. However, here our analysis is concentrated on the Raviart-Thomas space

of the lowest order; i.e.,

Vh,k := {vh,k ∈ V : vh,k|e ∈ Q1,0(e) ×Q0,1(e), e ∈ Th,k},(2.2)

Wh,k := {wh,k ∈W : wh,k|e ∈ Q0(e), e ∈ Th,k},

where Qm,n(e) stands for the space of polynomials of degree no more than m and

n in x and y on e, respectively. The extension to other stable rectangular element

spaces can also be made.

The corresponding semi-discrete version of (2.1) seeks a pair (uh,k,σh,k) ∈Wh,k ×

V0,h,k ⊂W × V0 to satisfy

(uh,k,t, wh,k) − (∇ · σh,k, wh,k) − (cuh,k, wh,k) = (f, wh,k), wh,k ∈Wh,k,(2.3)

(ασh,k,vh,k) +

∫ t

0

(M(t, s)σh,k(s),vh,k) ds+ (uh,k,∇ · vh,k) = 0,

vh,k ∈ V0,h,k, uh,k(0, x) = u0,h,k,

where u0,h,k ∈ Wh,k is some appropriately chosen approximation of the initial

data u0(x). Furthermore, σh,k(0, x) is also chosen to satisfy (2.3) at t = 0; i.e.,

(2.4) (α(0)σh,k(0),vh,k) + (u0,h,k,∇ · vh,k) = 0, vh,k ∈ V0,h,k.

In addition, from (2.1) and (2.3) one derives the following mixed finite element error

equation:

(ut − uh,k,t, wh,k) − (∇ · (σ − σh,k), wh,k) − (c(u− uh,k), wh,k) = 0,(2.5)

wh,k ∈ Wh,k,

(α(σ − σh,k),vh,k) +

∫ t

0

(M(t, s)(σ − σh,k)(s),vh,k) ds+ (u − uh,k,∇ · vh,k) = 0,

vh,k ∈ V0,h,k.
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We recall that the Raviart-Thomas projection

Π
0
h,k × P 0

h,k : V ×W → V0,h,k ×Wh,k

is defined by the following conditions:

∫

si

(σ − Π
0
h,kσ) · n ds = 0, i = 1, 2, 3, 4,(2.6)

∫

e

(u− P 0
h,ku) = 0,

where si (i = 1, 2, 3, 4) are the four edges of the rectangle e ∈ Th,k and n is the

outward normal direction on the si. This projection has the following properties [9]:

(i) P 0
h,k is the local L

2(Ω) projection;

(ii) Π
0
h,k and P

0
h,k satisfy

(∇ · (σ − Π
0
h,kσ), wh,k) = 0, wh,k ∈ Wh,k,(2.7)

(∇ · vh,k, u− P 0
h,ku) = 0, vh,k ∈ Vh,k;

(iii) there hold the approximation properties,

‖σ − Π
0
h,kσ‖0,p 6 CH‖σ‖1,p, 1 6 p 6 ∞,(2.8)

‖∇ · (σ − Π
0
h,kσ)‖−s,p 6 CH1+s‖∇ · σ‖1,p, 0 6 s 6 1, 1 6 p 6 ∞,

‖u− P 0
h,ku‖−s,p 6 CH1+s‖u‖1,p, 0 6 s 6 1, 1 6 p 6 ∞,

where H := max{h, k}.

Also, from [14] we recall the following two theorems to conclude the section.

Theorem 2.1. Assume that σ ∈ V ∩ (W 4,p(Ω))2 for some p ∈ [1,∞]. Then, for

sufficiently smooth functions αij(x, y) (1 6 i, j 6 2) we have

(α · (σ − Π
0
h,kσ),vh,k) = −

h2

3

∫

Ω

[α11(σ1)xx + α12(σ2)xx]v1,h,k

+
h2

3

∫

Ω

[(α22)x(σ2)x − α21(σ1)xx]v2,h,k

+
k2

3

∫

Ω

[(α11)y(σ1)y − α12(σ2)yy]v1,h,k

−
k2

3

∫

Ω

[α22(σ2)yy + α21(σ1)yy]v2,h,k

+O(H4)‖σ‖4,p‖vh,k‖0,q, vh,k ∈ V0,h,k,
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where σ1, σ2 and v1,h,k, v2,h,k are the first components and the second components

of the vector-valued functions σ and vh,k, respectively, and q = p/(p − 1) is the

conjugate of p and α = (αij)2×2.

Theorem 2.2. Assume that u ∈ W 3,p(Ω) for some p ∈ [1,∞]. Then, for a

sufficiently smooth function c(x, y) we have the following asymptotic expansion:

(c(u − P 0
h,ku), wh,k) =

h2

3

∫

Ω

cxuxwh,k +
k2

3

∫

Ω

cyuywh,k +O(H4)‖u‖3,p‖wh,k‖0,q,

wh,k ∈ Wh,k,

where q = p/(p− 1) is the conjugate of p.

From Theorems 2.1 and 2.2 we immediately obtain

Corollary 2.1. If σ ∈ V ∩ (W 2,p(Ω))2 for some p ∈ [1,∞], then, we have for

sufficiently smooth functions αij (1 6 i, j 6 2) that

|(α · (σ − Π
0
h,kσ),vh,k)| 6 CH2‖σ‖2,p‖vh,k‖0,q, vh,k ∈ V0,h,k,

where q = p/(p− 1).

Corollary 2.2. If u ∈W 1,p(Ω), we have for a sufficiently smooth function c(x, y)

that

|(c(u − P 0
h,ku), wh,k)| 6 CH2‖u‖1,p‖wh,k‖0,q, wh,k ∈ Wh,k,

where q = p/(p− 1).

3. The Richardson extrapolation

On the basis of Theorems 2.1 and 2.2, we discuss in this section the asymptotic

expansion of the error between the mixed finite element solution and the Raviart-

Thomas projection of the exact solution of (1.1) in the L∞-norm in order to establish

the asymptotic error expansion of the mixed finite element approximation in maxi-

mum norm. First, let us define the following two linear operators M∗ and M ∗∗ for

any smooth function f(t) defined on (0, T ) by

(M ∗ f)(t) :=

∫ t

0

M(t, s)f(s) ds and (M ∗∗f)(t) :=

∫ T

t

M(s, t)f(s) ds.

Then, we have the following three lemmas according to [13].
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Lemma 3.1. We have

∫ T

0

M ∗ f(t)g(t) dt =

∫ T

0

f(t)M ∗∗ g(t) dt.

Lemma 3.2. Assume that f(t), g(t) ∈ L1(0, T ∗) and there exists C > 0 such

that for an arbitrary non-negative ϕ(t) ∈ C∞[0, T ],

∣

∣

∣

∣

∫ T

0

f(t)ϕ(t) dt

∣

∣

∣

∣

6 C

∣

∣

∣

∣

∫ T

0

g(t)(1 + ϕ(t)) dt

∣

∣

∣

∣

, 0 6 T 6 T ∗.

Then, we have

|f(t)| 6 C

∣

∣

∣

∣

g(t) +

∫ t

0

g(s) ds

∣

∣

∣

∣

, ∀ t ∈ (0, T ), a.e.

Especially, if
∣

∣

∣

∣

∫ T

0

f(t)ϕ(t) dt

∣

∣

∣

∣

6 C

∣

∣

∣

∣

∫ T

0

g(t)ϕ(t) dt

∣

∣

∣

∣

,

then,

|f(t)| 6 C|g(t)|, ∀ t ∈ (0, T ), a.e.

Lemma 3.3. Suppose that the matrix A(t) is positive definite. Then, the norms

‖σ‖0 := (σ,σ)1/2 and ‖σ‖A−1 := (A−1σ,σ)1/2 are equivalent.

Next we shall define two regularized Green’s functions with memory terms for

problem (1.1) in mixed form in the fashion analogous to that employed earlier for

finite elements methods of elliptic and integro-differential equations ([39] and [28])

as well as mixed finite element methods of elliptic equations [35], which will play an

important role in the analysis of L∞-norm estimates.

For an arbitrary point z0 ∈ Ω̄ the first pair regularized Green’s function (G1, λ1) =

(G1(z, z0), λ1(z, z0)) with memory is defined by

αG1 +M ∗∗G1 −∇λ1 = 0 in Ω × (0, T ),(3.1)

div G1 = δh
1ϕ1(t) in Ω × (0, T ),

λ1 = 01 on ∂Ω × (0, T ),

where ϕ1(t) ∈ C∞(0, T ), and δh,k
1 = δh,k

1 (z, z0) ∈ Wh is the regularized Dirac

δ-function at any fixed point z0 ∈ Ω̄. Also, the second pair regularized Green’s
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function (G2, λ2) = (G2(z, z0), λ2(z, z0)) is defined such that

αG2 +M ∗∗G2 −∇λ2 = δh
2ϕ2(t) in Ω × (0, T ),(3.2)

div G2 = 0 in Ω × (0, T ),

λ2 = 0 on ∂Ω × (0, T ),

where ϕ2(t) ∈ C∞(0, T ) and δh,k
2 is either (δh,k

2 , 0) or (0, δh,k
2 ) with δh,k

2 being a

regularized Dirac δ-function at z0. From [13] we know that

‖wh,k‖∞ 6 C|(wh,k, δ
h,k
1 )|, wh ∈ Wh,(3.3)

‖vh,k‖∞ 6 C|(vh,k, δ
h,k
2 )|, vh,k ∈ Vh,k.

In addition, we have the following estimates for the regularized Green’s func-

tions [13].

Lemma 3.4. Assume that (G1, λ1), (G2, λ2) and (Gh,k
1 , λh,k

1 ), (Gh,k
2 , λh,k

2 ) are

the true solutions and the mixed finite element solutions of (3.1) and (3.2), respec-

tively. Then, we have

‖Gh,k
1 ‖0 6 C|logH |1/2(1 + ϕ1(t)),

‖∇λh,k
1 ‖0 6 C|logH |1/2(1 + ϕ1(t)),

‖Gh,k
2 ‖1 6 C|logH |(1 + ϕ2(t)),

‖λh,k
2 ‖0 6 C|logH |1/2(1 + ϕ2(t)),

‖∇λh,k
2 ‖0 6 CH−1(1 + ϕ2(t)).

3.1. The global Richardson extrapolation in two directions

We first discuss the extrapolation method of mixed finite element approximation

for (1.1) in both x and y directions as follows.

Theorem 3.1. Suppose that (u,σ) and (uh,k,σh,k) are the exact solution

of (2.1) and its mixed finite element solution, respectively, with the chosen ini-

tial value uh,k(0) = P 0
h,ku0. Then, in the sense of L

∞-norm we have the following

asymptotic expansions under the conditions that (u,σ), c, α and M are sufficiently

smooth:

uh,k − P 0
h,ku = H2ξh,k +O(H4|logH |1/2),

σh,k − Π
0
h,kσ = H2ηh,k +O(H3),
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where (ξh,k,ηh,k) ∈ Wh,k ×V0,h,k and P
0
h,k ×Π

0
h,k : W ×V0 →Wh,k ×V0,h,k is the

Raviart-Thomas projection operator.

P r o o f. Set

̺h,k := uh,k − P 0
h,ku and θh,k := σh,k − Π

0
h,kσ.

Then, it follows from (2.5) and (2.7) that

(αθh,k,vh,k) +

∫ t

0

(M(t, s)θh,k(s),vh,k) ds+ (̺h,k,∇ · vh,k)(3.4)

= (α(σ − Π
0
h,kσ),vh,k) +

∫ t

0

(M(t, s)(σ − Π
0
h,kσ)(s),vh,k) ds, vh,k ∈ V0,h,k,

(̺h,k,t, wh,k) − (∇ · θh,k, wh,k) − (c̺h,k, wh,k)

= −(c(u− P 0
h,ku), wh,k), wh,k ∈ Wh,k.

Thus, from Theorems 2.1 and 2.2 we know that for vhk ∈ V0,h,k and whk ∈ Whk

(α(σ − Π
0
h,kσ) +M ∗ (σ − Π

0
h,kσ),vh,k) = H2

Lh,k(vh,k) +O(H4)‖vh,k‖0,q,(3.5)

−(c(u− P 0
h,ku), wh,k) = H2Gh,k(wh,k) + O(H4)‖wh,k‖0,q,

where α = (αij)2×2, M = (mij)2×2, and

Gh,k(ϕ) = −
1

3

( h

H

)2
∫

Ω

cxuxϕ−
1

3

( k

H

)2
∫

Ω

cyuyϕ,

Lh,k(ψ) =
1

3

( h

H

)2
∫

Ω

{−[α11(σ1)xx + α12(σ2)xx]ψ1 + [(α22)x(σ2)x − α21(σ1)xx]ψ2}

+
1

3

( h

H

)2
∫

Ω

∫ t

0

{−[m11(σ1)xx +m12(σ2)xx]ψ1

+ [(m22)x(σ2)x −m21(σ1)xx]ψ2} ds

+
1

3

( k

H

)2
∫

Ω

{[(α11)y(σ1)y − α12(σ2)yy]ψ1 − [α22(σ2)yy + α21(σ1)yy]ψ2}

+
1

3

( k

H

)2
∫

Ω

∫ t

0

{[(m11)y(σ1)y −m12(σ2)yy]ψ1

− [m22(σ2)yy +m21(σ1)yy]ψ2} ds

with ψ = (ψ1, ψ2) being a vector-valued function. Evidently,

(3.6) Lh/2,k/2(ψ) = Lh,k(ψ) and Gh/2,k/2(ϕ) = Gh,k(ϕ).
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Let (ξ,η) ∈ W × V0 and (ξh,k,ηh,k) ∈ Wh,k × V0,h,k be the variational solution

and the mixed finite element solution of the auxiliary problem, respectively,

(αη,v) + (M ∗ η,v) ds+ (ξ,∇ · v) = Lh,k(v), v ∈ V0,(3.7)

(ξt, w) − (∇ · η, w) − (cξ, w) = Gh,k(w), w ∈ W,

ξ(0) = 0.

Then, from (3.4), (3.5), and (3.7) one finds that

(α(θh,k −H2ηh,k) +M ∗ θh,k(s) −H2ηh,k(s),vh,k) + (̺h,k −H2ξh,k,∇ · vh,k)

= O(H4)‖vh,k‖0,q, vh,k ∈ V0,h,k,

(̺h,k,t −H2ξh,k,t, wh,k) − (∇ · (θh,k −H2ηh,k), wh,k) − (c(̺h,k −H2ξh,k), wh,k)

= O(H4)‖wh,k‖0, wh,k ∈ Wh,k.

Let

θ∗h,k := θh,k −H2ηh,k and ̺∗h,k := ̺h,k −H2ξh,k.

Thus, we have

(3.8) (αθ∗h,k +M ∗ θ∗h,k,vh,k) + (̺∗h,k,∇ · vh,k) = O(H4)‖vh,k‖0,q, vh,k ∈ V0,h,k.

Moreover, in [16] we have proved that

(3.9) ‖θ∗h,k‖0 + ‖̺∗h,k‖0 6 CH4.

Set vh,k = G
h,k
1 in (3.8). Then, it follows from Lemma 3.4 for q = 2 that

(αθ∗h,k +M ∗ θ∗h,k,G
h,k
1 ) + (̺∗h,k,∇ ·Gh,k

1 ) = O(H4|logH |1/2)(1 + ϕ1(t)),

and from Lemma 3.1 and (3.1) that

∣

∣

∣

∣

∫ T

0

(̺∗h,k, δ
h,k
1 )ϕ1(t) dt

∣

∣

∣

∣

6

∣

∣

∣

∣

∫ T

0

(αGh,k
1 +M ∗∗G

h,k
1 ,θ∗h,k) dt

∣

∣

∣

∣

+ CH4|logH |1/2

∫ T

0

(1 + ϕ1(t)) dt

=

∣

∣

∣

∣

∫ T

0

(∇λh,k
1 ,θ∗h,k) dt

∣

∣

∣

∣

+ CH4|logH |1/2

∫ T

0

(1 + ϕ1(t)) dt.

Hence, from Lemma 3.4 and (3.9) we get

∣

∣

∣

∣

∫ T

0

(̺∗h,k, δ
h,k
1 )ϕ1(t) dt

∣

∣

∣

∣

6 C|logH |1/2H4

∫ T

0

(1 + ϕ1(t)) dt
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which, together with Lemma 3.2 and (3.3), leads to

(3.10) ‖̺∗h,k‖∞ 6 CH4|logH |1/2.

Letting vh,k = G
h,k
2 in (3.8), we have according to Lemma 3.4 that

(αθ∗h,k +M ∗ θ∗h,k,G
h,k
2 ) + (̺∗h,k,∇ ·Gh,k

2 ) = O(H4|logH |)(1 + ϕ2(t)).

Since ∇ · Gh,k
2 = 0 by the mixed finite element approximation of (3.2), we further

obtain by means of Lemmas 3.1, 3.4, and (3.9) that

∣

∣

∣

∣

∫ T

0

(θ∗h,k, δ
h,k
2 )ϕ2(t) dt

∣

∣

∣

∣

6

∣

∣

∣

∣

∫ T

0

(∇λh,k
2 ,θ∗h,k) dt

∣

∣

∣

∣

+ CH4|logH |

∫ T

0

(1 + ϕ2(t)) dt

6 CH3

∫ T

0

(1 + ϕ2(t)) dt.

Finally, we get via Lemma 3.2 and (3.3) that

‖θ∗h,k‖∞ 6 CH3

which, together with (3.10), completes the proof of Theorem 3.1. �

For the future need we shall next present a superconvergent estimate for the mixed

finite element solution of (3.7). For this purpose we first introduce the so-called mixed

Ritz-Volterra projection.

Definition 3.1. For (u,σ) ∈ W × V its mixed Ritz-Volterra projection

(ūh,k,σh,k) : [0, T ] →Wh,k × V0,h,k

is defined by

(α(σ − σh,k) +M ∗ (σ − σh,k),vh,k) + (u− ūh,k,∇ · vh,k) = 0, vh,k ∈ Vh,k,

(∇ · (σ − σh,k), wh,k) + (c(u − ūh,k), wh,k) = 0, wh,k ∈Wh,k.

In [10] it has been shown that the mixed Ritz-Volterra projection (ūh,k,σh,k) ∈

Wh,k × Vh,k for an arbitrary pair (u,σ) ∈ W × V exists uniquely. In addition, we

have [10]

(3.11) ‖P 0
h,ku− ūh,k‖W + ‖Π0

h,kσ − σh,k‖V = O(H2),

where

‖u‖W := ‖u‖0 and ‖σ‖V := (‖σ‖2
0 + ‖∇ · σ‖2

0)
1/2.

23



In order to obtain superconvergence of the mixed finite element approximation for

the variational equation (3.7), we choose the initial data approximation as the mixed

elliptic projection; i.e.,

(α(0)(ηh,k − η(0)),vh,k) + (ξh,k(0) − ξ(0),∇ · vh,k) = 0, vh,k ∈ V0,h,k,(3.12)

(∇ · (ηh,k(0) − η(0)), wh,k) + (c(0)(ξh,k(0) − ξ(0)), wh,k) = 0, wh,k ∈ Wh,k.

Theorem 3.2. Assume that (ξ,η) and (ξh,k,ηh,k) are the exact solution of (3.7)

and its mixed finite element solution, respectively, and (ξh,k(0),ηh,k(0)) is chosen to

satisfy (3.12). Then, we have

‖ξh,k − P 0
h,kξ‖0 + ‖(ξh,k − P 0

h,kξ)t‖0 + ‖ηh,k − Π
0
h,kη‖0 6 CH2.

P r o o f. Let τh,k := ξh,k − P 0
h,kξ and γh,k := ηh,k − Π

0
h,kη. Then, from (2.7)

and the mixed finite element error equation of (3.7) one derives that

(αγh,k +M ∗ γh,k,vh,k) + (τh,k,∇ · vh,k)(3.13)

= (α(η − Π
0
h,kη) +M ∗ (η − Π

0
h,kη),vh,k), vh,k ∈ V0,h,k,

(τh,k,t, wh,k) − (∇ · γh,k, wh,k) − (cτh,k, wh,k)

= −(c(ξ − P 0
h,kξ), wh,k), wh,k ∈ Wh,k,

and by Corollaries 2.1 and 2.2 that

(αγh,k +M ∗ γh,k,vh,k) + (τh,k,∇ · vh,k) = O(H2)‖vh,k‖0,q, vh,k ∈ V0,h,k,

(τh,k,t, wh,k) − (∇ · γh,k, wh,k) − (cτh,k, wh,k) = O(H2)‖wh,k‖0,q, wh,k ∈Wh,k.

Therefore, setting wh,k = τh,k and vh,k = γh,k in (3.13), we obtain from their sum

that

1

2

d

dt
‖τh,k‖

2
0 − (cτh,k, τh,k) + ‖γh,k‖

2
A−1

6 −

∫ t

0

(M(t, s)γh,k(s), γh,k) ds+ CH2(‖γh,k‖0 + ‖τh,k‖0),

and by means of Lemma 3.3 and the ε-type inequality that

d

dt
‖τh,k‖

2
0 + ‖γh,k‖

2
0 6 C

{
∫ t

0

‖γh,k(s)‖2
0 ds+ ‖τh,k‖

2
0 +H4

}

.
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Integrating the above inequality from 0 to t and noticing τh,k(0) = 0 leads to

‖τh,k‖
2
0 +

∫ t

0

‖γh,k(s)‖2
0 ds 6 C

∫ t

0

{

‖τh,k(s)‖2
0 +

∫ s

0

‖γh,k(τ)‖2
0 dτ

}

ds+ CH4

which, together with Gronwall’s lemma, implies

‖τh,k‖
2
0 +

∫ t

0

‖γh,k(s)‖2
0 ds 6 CH4.

Thus,

(3.14) ‖τh,k‖0 6 CH2.

In order to get the estimate for γh,k we first differentiate (3.13) to obtain

(αtγh,k + αγh,k,t +Mγh,k +Mt ∗ γh,k,vh,k) + (τh,k,t,∇ · vh,k) = O(H2)‖vh,k‖0,

vh,k ∈ V0,h,k,

and then by setting vh,k = γh,k in the above equation and wh,k = τh,k,t in (3.13), we

have from their sum that

‖τh,k,t‖
2
0 + (αγh,k,t, γh,k) + (αtγh,k, γh,k)(3.15)

= −(Mγh,k +Mt ∗ γh,k, γh,k) + (cτh,k, τh,k,t).

It follows from

α(γ2
h,k)t = (αγ2

h,k)t − αtγ
2
h,k

that

(αγh,k,t, γh,k) =

∫

Ω

αγh,k,tγh,k =
1

2

∫

Ω

α
d

dt
(γ2

h,k)

=
1

2

∫

Ω

d

dt
(αγ2

h,k) −
1

2

∫

Ω

αtγ
2
h,k

=
1

2

d

dt
‖γh,k‖

2
A−1 −

1

2
(αtγh,k, γh,k)

which, together with (3.15) and the ε-type inequality, produces that

1

2

d

dt
‖γh,k‖

2
A−1 +

1

2
(αtγh,k, γh,k) 6 C

{

‖γh,k‖
2
0 +

∫ t

0

‖γh,k‖
2
0 ds

}

+ C‖τh,k‖
2
0,
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and then via (3.14), integrating from 0 to t and using Lemma 3.3,

‖γh,k‖
2
0 6 ‖γh,k(0)‖2

0 + C

{

H4 +

∫ t

0

‖γh,k(s)‖2
0 ds

}

.

To estimate ‖γh,k(0)‖0 we set t = 0 and vh,k = γh,k(0) in (3.13) to gain that

(α(0)γh,k(0), γh,k(0)) 6 CH2‖γh,k(0)‖0, where τh,k(0) = 0 is used,

and by Lemma 3.3 that

‖γh,k(0)‖0 6 CH2.

Thus,

‖γh,k‖
2
0 6 C

{

H4 +

∫ t

0

‖γh,k‖
2
0 ds

}

which, together with Gronwall’s lemma, demonstrates

(3.16) ‖γh,k‖0 6 CH2.

Hence, only ‖τh,k,t‖0 remains to be estimated to finish the proof of the theorem.

We differentiate (3.13) to obtain

(αtγh,k + αγh,k,t +Mγh,k +Mt ∗ γh,k,vh,k) + (τh,k,t,∇ · vh,k) = O(H2)‖vh,k‖0,

(τh,k,t, wh,k) − (∇ · γh,k,t, wh,k) − (ctτh,k + cτh,k,t, wh,k) = O(H2)‖wh,k‖0,

and thus, letting vh,k = γh,k,t and wh,k = τh,k,t yields from their sum, Lemma 3.3,

the ε-inequality, (3.14) and (3.16) that

d

dt
‖τh,k,t‖

2
0 6 C{H4 + ‖τh,k,t‖

2
0},

or

(3.17) ‖τh,k,t‖
2
0 6 ‖τh,k,t(0)‖2

0 + C

{

H4 +

∫ t

0

‖τh,k,t(s)‖
2
0 ds

}

.

From Definition 3.1 and (3.12) we derive that

(α(0)(ηh,k − ηh,k)(0),vh,k) + (ξ̄h,k(0) − ξh,k(0),∇ · vh,k) = 0, vh,k ∈ V0,h,k,

(∇ · (ηh,k − ηh,k)(0), wh,k) + (c(0)(ξ̄h,k − ξh,k)(0), wh,k) = 0, wh,k ∈Wh,k,
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where (ξ̄h,k,ηh,k) ∈ Wh,k×V0,h,k is the Ritz-Volterra projection of (ξ,η). Therefore,

the uniqueness of the solution to (3.12) implies

ηh,k(0) − ηh,k(0) = ξ̄h,k(0) − ξh,k(0) = 0

which, together with (3.11), indicates that

‖∇ · γh,k(0)‖0 = ‖∇ · (ηh,k − Π
0
h,kη)(0)‖0 6 CH2.

Thus, it follows from (3.14), setting t = 0 and wh,k = τh,k,t(0) in (3.13) that

‖τh,k,t(0)‖2
0 6 CH2‖τh,k,t(0)‖0

or

‖τh,k,t(0)‖0 6 CH2.

This, together with (3.17) and Gronwall’s lemma, claims that

‖τh,k,t‖0 6 CH2.

�

Theorem 3.3. We have under the conditions of Theorem 3.2 that

|logH |1/2‖ξh,k − P 0
h,kξ‖∞ + ‖ηh,k − Π

0
h,kη‖∞ 6 CH2|logH |.

P r o o f. Set vh,k = G
h,k
1 in (3.13) and follow the steps for (3.10) to get

(3.18) ‖τh,k‖∞ 6 CH2|logH |1/2.

It follows from Theorem 3.2 and (3.13) that

|(∇ · γh,k, wh,k)| 6 ‖τh,k,t‖0‖wh,k‖0 + C‖τh,k‖0‖wh,k‖0 + CH2‖wh,k‖0

6 CH2‖wh,k‖0,

which implies

(3.19) ‖∇ · γh,k‖0 6 CH2.
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Let vh,k = G
h,k
2 in (3.13) to obtain according to Lemmas 3.4 and 3.1, Green’s

formula and (3.19) that

∣

∣

∣

∣

∫ T

0

(γh,k, δ
h,k
2 )ϕ2(t) dt

∣

∣

∣

∣

6

∣

∣

∣

∣

∫ T

0

(λh,k
2 ,∇ · γh,k) dt

∣

∣

∣

∣

+ CH2|logH |

∫ T

0

(1 + ϕ2(t)) dt

6 CH2|logH |1/2

∫ T

0

(1 + ϕ2(t)) dt+ CH2|logH |

∫ T

0

(1 + ϕ2(t)) dt.

Thus, Lemma 3.2 and (3.3) lead to

‖γh,k‖∞ 6 CH2|logH |, where ∇ ·Gh,k
2 = 0 has been used.

This, together with (3.18), completes the proof of the theorem. �

As we have done in our previous work [10], we now utilize an interpolation postpro-

cessing method to gain the global extrapolation approximations of higher accuracy

for the pressure field and the velocity field. For this end, we need to define two

postprocessing interpolation operator Π2
3h,3k and P

3
4h,4k to satisfy

Π
2
3h,3kΠ

0
h,k = Π

3
3h,3k,(3.20)

‖Π2
3h,3kvh,k‖0,p 6 C‖vh,k‖0,p ∀vh,k ∈ V0,h,k, 1 6 p 6 ∞,

‖Π2
3h,3kσ − σ‖0,p 6 CH3‖σ‖3,p ∀σ ∈ (W 3,p(Ω))2, 1 6 p 6 ∞,

P 3
4h,4kP

0
h,k = P 3

4h,4k,

‖P 3
4h,4kwh,k‖0,p 6 C‖wh,k‖0,p ∀wh,k ∈ Wh,k, 1 6 p 6 ∞,

‖P 3
4h,4ku− u‖0,p 6 CH4‖u‖4,p ∀u ∈W 4,p(Ω), 1 6 p 6 ∞.

We assume that the rectangular partition Th,k has been obtained from T3h,3k with

mesh size 3H and T4h,4k with mesh size 4H by subdividing each element of T3h,3k and

T4h,4k into nine and sixteen small congruent rectangles, respectively. Let τ :=
9
⋃

i=1

ei

and τ̂ :=
16
⋃

i=1

êi with ei, êi ∈ Th,k. Then, we can define two projection interpolation

operators Π
2
3h,3k and P

3
4h,4k associated with T3h,3k and T4h,4k of degree at most 2

and 3 in x and y on τ and τ̂ , respectively, according to the following conditions:

Π
2
3h,3kσ|τ ∈ Q3,2(τ) ×Q2,3(τ), P 3

4h,4ku|τ̂ ∈ Q3,3(τ̂ ),(3.21)
∫

si

(σ − Π
2
3h,3kσ) · n ds = 0, i = 1, 2, . . . , 24, and

∫

êi

(u− P 3
4h,4ku) = 0, i = 1, 2, . . . , 16, respectively,
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where si (i = 1, 2, . . . , 24) is one of the twenty-four sides of the nine small elements ei

(i = 1, 2, . . . , 9). It is easy to check that the two operators Π2
3h,3k and P

3
4h,4k defined

by (3.21) possess the properties described in (3.20).

We are now in a position to assert our main result in this section. In fact, using

Theorems 3.1, 3.3, (3.20) and following the procedure for Theorem 4.2 in [16] we can

establish:

Theorem 3.4. Under the conditions of Theorem 3.1 we have in the sense of

L∞-norm that
P 3

4h,4kuh,k − u = H2ξ +O(H4|logH |1/2),

Π
2
3h,3kσh,k − σ = H2η +O(H3),

where (ξ,η) ∈W × V0 is the variational solution of (3.7).

On the basis of Theorem 3.4 we can generate the approximations of higher precision

for problem (1.1) by Richardson extrapolation. For this end, in addition to Wh,k ×

V0,h,k, we employ another Raviart-Thomas mixed finite element space Wh/2,k/2 ×

V0,h/2,k/2 of the lowest order gained by subdividing each element ei ∈ Th,k into four

small congruent elements êi,j ∈ Th/2,k/2 (j = 1, 2, 3, 4). Let (uh/2,k/2,σh/2,k/2) ∈

Wh/2,k/2 × V0,h/2,k/2 and P
3
2h,2k × Π

2
3h/2,3k/2

stand for the mixed finite element

solution and the Raviart-Thomas projection operator with respect to this new par-

tition, respectively. Then, we know from Theorem 3.4 that

P 3
2h,2kuh/2,k/2 − u =

(H

2

)2

ξ +O(H4|logH |1/2),

which gives by applying once the Richardson extrapolation that

(3.22)
4P 3

2h,2kuh/2,k/2 − P 3
4h,4kuh,k

3
= u+O(H4|logH |1/2).

Similarly, we have

(3.23)
4Π2

3h/2,3k/2
σh/2,k/2 − Π

2
3h,3kσh,k

3
= σ +O(H3).

An important application of the approximations of higher accuracy given by (3.22)

and (3.23) is that they can provide efficient a posteriori error estimators to assess the

accuracy of the approximate solutions in applications. In fact, following the same

way as that for Theorem 5.3 in [16] we are led to
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Theorem 3.5. Under the assumptions of Theorem 3.1, we have

‖u− P 3
2h,2kuh/2,k/2‖∞ =

1

3
‖P 3

2h,2kuh/2,k/2 − P 3
4h,4kuh,k‖∞ +O(H4|logH |1/2),

‖σ − Π
2
3h/2,3k/2σh/2,k/2‖∞ =

1

3
‖Π2

3h/2,3k/2σh/2,k/2 − Π
2
3h,3kσh,k‖∞ +O(H3).

Moreover, if there exist positive constants C1, C2 and sufficiently small ε1, ε2 ∈ (0, 1)

such that

‖u− P 3
2h,2kuh/2,k/2‖∞ > C1H

4−ε1 |logH |1/2,(3.24)

‖σ − Π
2
3h/2,3k/2σh/2,k/2‖∞ > C2H

3−ε2 ,(3.25)

then we have

lim
H→0

3‖u− P 3
2h,2kuh/2,k/2‖∞

‖P 3
2h,2kuh/2,k/2 − P 3

4h,4kuh,k‖∞
= 1,

lim
H→0

3‖σ − Π
2
3h/2,3k/2

σh/2,k/2‖∞

‖Π2
3h/2,3k/2

σh/2,k/2 − Π2
3h,3kσh,k‖0

= 1.

From Theorem 3.4 we know that the optimal convergence rates of

‖u− P 3
2h,2kuh/2,k/2‖∞ and ‖σ − Π

2
3h/2,3k/2σh/2,k/2‖∞

are O(H2). Therefore, the assumed conditions (3.24) and (3.25) seem to be reason-

able.

3.2. The global Richardson extrapolation in one direction

It is clear according to (3.22) and (3.23) that this extrapolation approach requires

a global refinement to generate an approximation of higher accuracy, which wastes

computing time and memory. Therefore, it is natural for us to develop a new type of

extrapolation to overcome this shortcoming. In fact, here we shall construct a new

extrapolation formula of a partial refinement, in which the meshes are refined just in

one direction, x- or y-direction, such that it is more efficient and more suitable for

parallel computations.
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Theorem 3.6. Under the conditions of Theorem 3.1 we have in L∞-norm that

uh,k − P 0
h,ku = h2ξ1h,k + k2ξ2h,k +O(H4|logH |1/2),

σh,k − Π
0
h,kσ = h2η1

h,k + k2η2
h,k +O(H3),

where (ξ1h,k,η
1
h,k), (ξ2h,k,η

2
h,k) ∈Wh,k × V0,h,k.

P r o o f. Let (ξ1,η1), (ξ2,η2) ∈ W × V0 and (ξ1h,k,η
1
h,k), (ξ2h,k,η

2
h,k) ∈ Wh,k ×

V0,h,k be the exact solutions and the mixed finite element solutions of the following

two auxiliary variational problems, respectively:

(αη1 +M ∗ η1,v) + (ξ1,∇ · v) = L1(v), v ∈ V0,(3.26)

(ξ1t , w) − (∇ · η1, w) − (cξ1, w) = L3(w), w ∈W,

ξ1(0) = 0,

and

(αη2 +M ∗ η2,v) + (ξ2,∇ · v) = L2(v), v ∈ V0,(3.27)

(ξ2t , w) − (∇ · η2, w) − (cξ2, w) = L4(w), w ∈W,

ξ2(0) = 0,

where

L1(v) =
1

3

∫

Ω

{−[α11(σ1)xx + α12(σ2)xx]v1 + [(α22)x(σ2)x − α21(σ1)xx]v2}

+
1

3

∫

Ω

∫ t

0

{−[m11(σ1)xx +m12(σ2)xx](s)v1

+ [(m22)x(σ2)x −m21(σ1)xx](s)v2} ds,

L2(v) =
1

3

∫

Ω

{[(α11)y(σ1)y − α12(σ2)yy]v1 − [α22(σ2)yy + α21(σ1)yy]v2}

+
1

3

∫

Ω

∫ t

0

{[(m11)y(σ1)y −m12(σ2)yy](s)v1

− [m22(σ2)yy +m21(σ1)yy](s)v2} ds,

L3(w) = −
1

3

∫

Ω

cxuxw,

L4(w) = −
1

3

∫

Ω

cyuyw.
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From (3.4), Theorems 2.1 and 2.2 one finds that

(αθh,k +M ∗ θh,k,vh,k) + (̺h,k,∇ · vh,k)(3.28)

= h2
L1(vh,k) + k2

L2(vh,k) +O(H4)‖vh,k‖0,q, vh,k ∈ V0,h,k,

(̺h,k,t, wh,k) − (∇ · θh,k, wh,k) − (c̺h,k, wh,k)

= h2L3(wh,k) + k2L4(wh,k) +O(H4)‖wh,k‖0,q, wh,k ∈ Wh,k.

Let

θ̂h,k := θh,k − h2η1
h,k − k2η2

h,k, ˆ̺h,k := ̺h,k − h2ξ1h,k − k2ξ2h,k.

Then, it follows from (3.26)–(3.28) that

(αθ̂h,k +M ∗ θ̂h,k,vh,k) + (ˆ̺h,k,∇ · vh,k) = O(H4)‖vh,k‖0,q, vh,k ∈ V0,h,k,(3.29)

(ˆ̺h,k,t, wh,k) − (∇ · θ̂h,k, wh,k) − (c ˆ̺h,k, wh,k) = O(H4)‖wh,k‖0,q, wh,k ∈ Wh,k.

It has been shown in [16] that

(3.30) ‖ ˆ̺h,k‖0 + ‖θ̂h,k‖0 6 CH4.

Thus, we can also obtain by using (3.29)–(3.30) and following the procedure for the

estimates of ‖̺∗h,k‖∞ and ‖θ∗h,k‖∞ in Theorem 3.1 that

‖ ˆ̺h,k‖∞ 6 CH4|logH |1/2 and ‖θ̂h,k‖∞ 6 CH3.

�

Also, we can get the analog of Theorem 3.4 by means of the analog of Theorem 3.2.

Theorem 3.7. Under the conditions of Theorem 3.1 we have in the L∞-norm

that

P 3
4h,4kuh,k − u = h2ξ1 + k2ξ2 +O(H4|logH |1/2),

Π
2
3h,3kσh,k − σ = h2η1 + k2η2 +O(H3),

where (ξ1,η1), (ξ2,η2) ∈W × V0.

Like (3.22) and (3.23), from Theorem 3.7 we can obtain the following unidirectional

Richardson extrapolation in the L∞ norm:

4(Π2
3h/2,3kσh/2,k + Π

2
3h,3k/2

σh,k/2) − 5Π2
3h,3kσh,k

3
= σ +O(H3),(3.31)

4(P 3
2h,4kuh/2,k + P 3

4h,2kuh,k/2) − 5P 3
4h,4kuh,k

3
= u+O(H4|logH |1/2),
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where (uh/2,k,σh/2,k), (uh,k/2,σh,k/2) and (uh,k,σh,k) are the mixed finite element

solutions corresponding to the meshes Th/2,k, Th,k/2 and Th,k, respectively. Here,

Th/2,k and Th,k/2 are the meshes gained by subdividing each element of Th,k into two

small congruent rectangles in x- and y-direction, respectively.

Similar to Theorem 3.5, a posteriori error indicators can also be constructed by

virtue of (3.31). In fact, we have:

Theorem 3.8. Under the conditions of Theorem 3.1 we have

‖u− P 3
2h,4kuh/2,k‖∞

=
1

3
‖P 3

2h,4kuh/2,k + 4P 3
4h,2kuh,k/2 − 5P 3

4h,4kuh,k‖∞ +O(H4|logH |1/2),

‖σ − Π
2
3h/2,3kσh/2,k‖∞

=
1

3
‖Π2

3h/2,3kσh/2,k + 4Π2
3h,3k/2σh,k/2 − 5Π2

3h,3kσh,k‖∞ +O(H3),

‖u− P 3
4h,2kuh,k/2‖∞

=
1

3
‖4P 3

2h,4kuh/2,k + P 3
4h,2kuh,k/2 − 5P 3

4h,4kuh,k‖∞ +O(H4|logH |1/2),

‖σ − Π
2
3h,3k/2σh,k/2‖∞

=
1

3
‖4Π2

3h/2,3kσh/2,k + Π
2
3h,3k/2σh,k/2 − 5Π2

3h,3kσh,k‖∞ +O(H3).

In addition, if there exist positive constants C1, C2, C3, C4 and sufficiently small ε1,

ε2, ε3, ε4 ∈ (0, 1) such that

‖u− P 3
2h,4kuh/2,k‖∞ > C1H

4−ε1 |logH |1/2,

‖σ − Π
2
3h/2,3kσh/2,k‖∞ > C2H

3−ε2 ,

‖u− P 3
4h,2kuh,k/2‖∞ > C3H

4−ε3 |logH |1/2,

‖σ − Π
2
3h,3k/2σh,k/2‖∞ > C4H

3−ε4 ,

then

lim
H→0

3‖u− P 3
2h,4kuh/2,k‖∞

‖P 3
2h,4kuh/2,k + 4P 3

4h,2kuh,k/2 − 5P 3
4h,4kuh,k‖∞

= 1,

lim
H→0

3‖σ − Π
2
3h/2,3kσh/2,k‖∞

‖Π2
3h/2,3kσh/2,k + 4Π2

3h,3k/2
σh,k/2 − 5Π2

3h,3kσh,k‖∞
= 1,

lim
H→0

3‖u− P 3
4h,2kuh,k/2‖∞

‖4P 3
2h,4kuh/2,k + P 3

4h,2kuh,k/2 − 5P 3
4h,4kuh,k‖∞

= 1,

lim
H→0

3‖σ − Π
2
3h,3k/2

σh,k/2‖∞

‖4Π2
3h/2,3kσh/2,k + Π2

3h,3k/2
σh,k/2 − 5Π2

3h,3kσh,k‖0

= 1.
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4. Interpolation defect correction

In this section we propose and investigate an interpolation defect correction

scheme (see, for example, [19], [21], [22]) applied to the mixed finite element solu-

tion (uh,k,σh,k) ∈ Wh,k × V0,h,k to obtain approximations with higher convergence

rate. Also, these new approximations are naturally used to form a posteriori error

estimators in order to estimate the actual accuracy of the mixed finite element

solutions.

First of all, for the future need we construct two projection interpolation opera-

tors P 1
2h,2k and Π

1
2h,2k associated with the mesh T2h,2k to satisfy

Π
1
2h,2kΠ

0
h,k = Π

1
2h,2k,(4.1)

‖Π1
2h,2kvh,k‖0,p 6 C‖vh,k‖0,p ∀vh,k ∈ Vh,k, 1 6 p 6 ∞,

‖Π1
2h,2kσ − σ‖0,p 6 CH2‖σ‖2,p ∀σ ∈ (W 2,p(Ω))2, 1 6 p 6 ∞,

P 1
2h,2kP

0
h,k = P 1

2h,2k,

‖P 1
2h,2kwh,k‖0,p 6 C‖wh,k‖0,p ∀wh,k ∈ Wh,k, 1 6 p 6 ∞,

‖P 1
2h,2ku− u‖0,p 6 CH2‖u‖2,p ∀u ∈W 2,p(Ω), 1 6 p 6 ∞.

Then, like that seen in the last section, it is assumed that the rectangular par-

tition Th,k has been obtained from T2h,2k with mesh size 2H by subdividing each

element of T2h,2k into four small congruent rectangles. Set ê :=
4
⋃

i=1

ei with ei ∈ Th,k.

And thus, the two interpolation operatorsΠ1
2h,2k and P

1
2h,2k of degree at most 1 in x

and y on ê, respectively, are defined as follows:

Π
1
2h,2kσ|ê ∈ Q2,1(ê) ×Q1,2(ê), P 1

2h,2ku|ê ∈ Q1,1(ê),
∫

si

(σ − Π
1
2h,2kσ) · n ds = 0, i = 1, 2, . . . , 12,

∫

ei

(u − P 1
2h,2ku) = 0, i = 1, 2, 3, 4,

where si (i = 1, 2, . . . , 12) are the twelve edges of the four small elements ei (i =

1, 2, 3, 4). We can also check that Π1
2h,2k and P

1
2h,2k defined above possess the prop-

erties indicated in (4.1).
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In addition, we also need a pair of mixed finite element projection operators Rh,k×

Sh,k : W × V0 →Wh,k × V0,h,k defined by

((Rh,ku)t − ut, wh,k) − (∇ · (Sh,kσ − σ), wh,k) − (c(Rh,ku− u), wh,k) = 0,

wh,k ∈ Wh,k,

(α(Sh,kσ − σ) +M ∗ (Sh,kσ − σ),vh,k) + (∇ · vh,k, Rh,ku− u) = 0,

vh,k ∈ V0,h,k,

Rh,ku(0) = P 0
h,ku(0).

Then, (Rh,ku,Sh,kσ) is the solution of (2.3) if (u,σ) is the solution of (2.1).

First of all, we discuss the interpolation defect correction method in the L2-norm.

To this purpose, let us recall the following lemma from [16].

Lemma 4.1. Assume that (u,σ) and (uh,k,σh,k) are the exact solution of (2.1)

and its mixed finite element solution, respectively, with the chosen initial value

uh,k(0) = P 0
h,ku0. Then, in the sense of L

2-norm we have under the conditions

that (u,σ), c, α and M are sufficiently smooth that

P 3
4h,4kuh,k − u = H2ξ +O(H4),(4.2)

Π
3
4h,4kσh,k − σ = H2η +O(H4),(4.3)

where (ξ,η) ∈W × V0 is the variational solution of (3.7).

Theorem 4.1. Suppose that the conditions of Lemma 4.1 are fulfilled. Then,

we have

‖u∗h,k − u‖0 + ‖σ∗

h,k − σ‖0 6 CH4,

where

u∗h,k := P 3
4h,4kuh,k + P 1

2h,2kuh,k − P 1
2h,2kRh,kP

3
4h,4kuh,k,

σ∗

h,k := Π
3
4h,4kσh,k + Π

1
2h,2kσh,k − Π

1
2h,2kSh,kΠ

3
4h,4kσh,k.

P r o o f. Multiplying (4.2) by the operator (I − P 1
2h,2kRh,k), where I is the

identity operator, results in

(I − P 1
2h,2kRh,k)(P 3

4h,4kuh,k − u)

= H2(I − P 1
2h,2kRh,k)ξ +O(H4)

= H2(ξ − P 1
2h,2kξ) +H2(P 1

2h,2kξ − P 1
2h,2kξh,k) +O(H4)

= H2P 1
2h,2k(P 0

h,kξ − ξh,k) +O(H4),
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since

‖ξ − P 1
2h,2kξ‖0 6 CH2‖ξ‖2 and P 1

2h,2kP
0
h,k = P 1

2h,2k

according to the properties of the operator P 1
2h,2k described in (4.1). Furthermore,

it follows from Theorem 3.2 and the inequality

‖P 1
2h,2k(P 0

h,kξ − ξh,k)‖0 6 C‖P 0
h,kξ − ξh,k‖0

that

(I − P 1
2h,2kRh,k)(P 3

4h,4kuh,k − u) = O(H4),

and the left-hand side is nothing but

(I − P 1
2h,2kRh,k)(P 3

4h,4kuh,k − u) = u∗h,k − u.

Similarly, we can gain in terms of (4.3) that

‖σ∗

h,k − σ‖0 = O(H4).

�

In the same way we can also obtain from Theorems 3.3 and 3.4 the following result.

Theorem 4.2. We have under the conditions of Theorem 3.1 that

‖ûh,k − u‖∞ 6 CH4|logH |1/2,

‖σ̂h,k − σ‖∞ 6 CH3,

where

ûh,k := P 3
4h,4kuh,k + P 1

2h,2kuh,k − P 1
2h,2kRh,kP

3
4h,4kuh,k,

σ̂h,k := Π
2
3h,3kσh,k + σh,k − Sh,kΠ

2
3h,3kσh,k.

Analogously to Section 3 we can utilize the superconvergent approximation pro-

vided in Theorems 4.1 and 4.2 to establish a posteriori error estimators for the mixed

finite element solution of problem (2.1). In fact, we have
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Theorem 4.3. If the conditions of Theorem 4.1 are satisfied, then

‖u− uh,k‖0 = ‖u∗h,k − uh,k‖0 +O(H4),

‖σ − σh,k‖0 = ‖σ∗

h,k − σh,k‖0 +O(H4).

Furthermore, if there exist positive constants C1, C2 and sufficiently small ε1, ε2 ∈

(0, 1) such that

‖u− uh,k‖0 > C1H
4−ε1 ,

‖σ − σh,k‖0 > C2H
4−ε2 ,

we then have

lim
H→0

‖u− uh,k‖0

‖u∗h,k − uh,k‖0

= 1,

lim
H→0

‖σ − σh,k‖0

‖σ∗

h,k − σh,k‖0

= 1.

Theorem 4.4. We have under the conditions of Theorem 4.2 that

‖u− uh,k‖∞ = ‖ûh,k − uh,k‖∞ +O(H4|logH |1/2),

‖σ − σh,k‖∞ = ‖σ̂h,k − σh,k‖∞ +O(H3).

In addition, if there exist positive constants C1, C2 and sufficiently small ε1, ε2 ∈

(0, 1) such that

‖u− uh,k‖∞ > C1H
4−ε1 |logH |1/2,

‖σ − σh,k‖∞ > C2H
3−ε2 ,

then

lim
H→0

‖u− uh,k‖∞
‖ûh,k − uh,k‖∞

= 1,

lim
H→0

‖σ − σh,k‖∞
‖σ̂h,k − σh,k‖∞

= 1.
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