
Applications of Mathematics

Hua Shui Zhan; Jun Ning Zhao
Some remarks on Prandtl system

Applications of Mathematics, Vol. 53 (2008), No. 2, 81–96

Persistent URL: http://dml.cz/dmlcz/134699

Terms of use:
© Institute of Mathematics AS CR, 2008

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/134699
http://dml.cz


53 (2008) APPLICATIONS OF MATHEMATICS No. 2, 81–96

SOME REMARKS ON PRANDTL SYSTEM*

Huashui Zhan, Junning Zhao, Xiamen

(Received January 2, 2006, in revised version April 5, 2006)

Abstract. The purpose of this paper is to correct some drawbacks in the proof of the well-
known Boundary Layer Theory in Oleinik’s book. The Prandtl system for a nonstationary
layer arising in an axially symmetric incopressible flow past a solid body is analyzed.
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1. Prandtl system

At the International Mathematical Congress held in Heidelberg in 1904, Prandtl, in

his lecture “Fluid motion with very small friction”, suggested a new theory, currently

called the theory of boundary layer. He showed that the flow about a solid body can

be divided into two regions: a very thin layer in the neighborhood of the body (the

boundary layer) where viscous friction plays an essential role, and the region outside

this layer where friction may be neglected (the outer flow). Thus, for fluids whose

viscosity is small, its influence is perceptible only in a very thin region adjacent to

the walls of the body in the flow: this region, according to Prandtl, is called the

boundary layer. This phenomenon is explained by the fact that the fluid sticks to

the surface of the solid body and, owing to friction, this adhesion inhibits the motion

of the fluid adjacent to the surface of the solid body. In this thin region the velocity

of the flow past a body at rest undergoes a sharp increase: from zero at the surface

to the values of the velocity in the outer flow, where the fluid may be regarded as

frictionless. Thus, for the Navier-Stokes system describing viscous flows, we observe

the phenomenon peculiar to many classes of partial differential equations with a

small parameter as a coefficient of the highest order derivatives.

*This paper was supported by NSF of China (10571144), NSF for youth of Fujian province
in China (2005J037) and NSF of Jimei University in China.
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Prandtl derived a system of equations for the first approximation of the flow

velocity in the boundary layer. This system served as a basis for the development

of the boundary layer theory, which has now become one of the fundamental parts

of fluid dynamics. There is a vast literature on theoretical and experimental aspects

of that theory. Mathematical methods have an important place in the theory of

boundary layer. Mathematical studies of the Prandtl system reveal the nature of

the equations governing the flow within the boundary layer and, thereby, provide

a description of the laws (in their qualitative and quantitative aspects) underlying

the motion of fluids with small viscosity. This approach requires an investigation

of such topics as the well-posedness of various boundary value problems and of

stability of their solutions with respect to perturbations of the given quantities.

Another group of problems deals with the qualitative behavior of the solutions and

their asymptotics. Finally, of great importance for applications are the methods for

approximate solution of the Prandtl system and subsequent evaluation of the rate of

convergence of the approximations to the exact solution.

Among lots of results in boundary theory, the classical and well-known results

were obtained by Oleinik, see her book [1]. Oleinik’s methods and results are very

beautiful. However, when reading [1] thoroughly, we find that there are some errors

in the proofs. Though perhaps these errors are not so essential, they nonetheless are

not simple errors such as misprints and they actually make reading [1] more difficult.

From the point of view of completeness of mathematics, we think it is necessary

to correct these errors. It took us much time to do the modification. We only

discuss the Prandtl system for a nonstationary layer arising in an axially symmetric

incompressible flow past a solid body. We would like to point out that there also

exist the same errors in the discussion of the other nonstationary Prandtl systems

in [1], and all these errors can be corrected as is shown in our paper. Our proofs

follow the outline in [1]; we will point the errors in the form of problems and then

give methods of how to solve these problems.

The Prandtl system for a nonstationary layer arising in an axially symmetric

incompressible flow past a solid body has the form

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

∂U

∂t
+ U

∂U

∂x
+ ν

∂2u

∂y2
,(1.1)

∂(ru)

∂x
+

∂(rv)

∂y
= 0(1.2)

in a domain D = {0 < t < T, 0 < x < X, 0 < y < ∞}, where ν is a positive

constant, U(t, x) and r(x) are given functions such that U(t, 0) = 0, U(t, x) > 0 for

x > 0, r(0) = 0, r(x) > 0 for x > 0.
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System (1.1)–(1.2) is considered together with the conditions

u(0, x, y) = u0(x, y), u(t, 0, y) = 0, u(t, x, 0) = 0, v(t, x, 0) = v0(x),(1.3)

u(t, x, y) → U(t, x) as y → ∞.(1.4)

Definition 1. A solution of problem (1.1)–(1.4) is a pair of functions u(t, x, y),

v(t, x, y) with the following properties: u(t, x, y) is continuous and bounded in D;

v(t, x, y) is continuous with respect to y in D and bounded for bounded y; the weak

derivatives ut, ux, uy, uyy, vy are bounded measurable functions; equations (1.1)–

(1.2) hold for u, v ∈ D, and conditions (1.3)–(1.4) are satisfied.

Introducing the Crocco variables

(1.5) τ = t, ξ = x, η =
u(t, x, y)

U(t, x)
,

we obtain the following equation for w(τ, ξ, η) = uy(t, x, y)/U(t, x):

(1.6) νw2wηη − wτ − ηUwξ + Awη + Bw = 0

in the domain Ω = {0 < τ < T, 0 < ξ < X, 0 < η < 1}, where

A = (η2 − 1)Ux + (η − 1)
Ut

U
, B =

ηrxU

r
− ηUx −

Ut

U
.

The initial and the boundary conditions for w have the form

(1.7) w|τ=0 =
u0y

U
≡ w0(ξ, η), w|η=1 = 0, (νwwη − v0w − C)|η=0 = 0,

where

C = Ux +
Ut

U
.

Solutions of problem (1.6)–(1.7) are understood in the weak sense.

Definition 2. A solution of problem (1.6)–(1.7) is a pair of functions w(τ, ξ, η)

with the following properties: w is continuous in Ω̄, the weak derivatives wτ , wξ,

wη are bounded measurable functions, wη is continuous with respect to η at η = 0

and its weak derivative wηη is such that wwηη is bounded in Ω̄; equation (1.6) holds

almost everywhere in Ω for w, and conditions (1.3)–(1.4) are satisfied.
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Using the line method, we are going to prove, under suitable assumptions on

the data, the existence and uniqueness of the solution for problem (1.6)–(1.7) and

derive from these results the corresponding existence and uniqueness theorems for

problem (1.1)–(1.4).

For any function f(τ, ξ, η), we can use the following notation:

fm,k(η) ≡ f(mh, kh, η), h = const > 0.

Instead of equation (1.6) and conditions (1.7), let us consider the system of ordi-

nary differential equations

ν(wm−1,k + h)2wm,k
ηη −

wm,k − wm−1,k

h
− ηUm,k wm,k − wm,k−1

h
(1.8)

+ Am,kwm,k
η + Bm,kwm,k = 0,

with the conditions

wm,k(1) = 0(1.9)

νwm−1,k(0)wm,k
η (0) − vm,k

0 wm−1,k(0) + Cm,k = 0,

w0,k = wh
0 (kh, η)

where m = 1, . . . , [T/h]; k = 0, 1, . . . , [X/h] and we take wh
0 ≡ w0(ξ, η) if w0 has

bounded derivatives w0ξ, w0η and w0ηη . If w0(ξ, η) is not so smooth, we take wh
0

for a certain smooth function (to be constructed below) which uniformly converges

to w0 in the domain 0 < ξ < X , 0 < η < 1 as h → 0.

Finding a solution of (1.8)–(1.9) amounts to consecutively solving linear second

order differential equations with given boundary conditions (1.9); first, for m = 1,

k = 0, 1, . . . , [X/h], then m = 2, k = 0, 1, . . . , [X/h], etc.

In what follows Ki, Mi, Ci stand for positive constants independent of h.

Lemma 3. Assume that A, B, C, v0 are bounded functions in Ω. Let wh
0 be con-

tinuous in η ∈ [0, 1] and such that K1(1−η) 6 wh
0 6 K2(1−η). Then problem (1.8)–

(1.9) for ordinary differential equations admits a unique solution for mh 6 T0 and

small enough h, where T0 > 0 is a constant which depends on the data of prob-

lem (1.1)–(1.4). The solution wh
0 of problem (1.8)–(1.9) satisfies the estimate

(1.10) V (mh, η) 6 wm,k(η) 6 V1(mh, η),

where V and V1 are continuous functions in Ω̄, positive for η < 1 and such that

V ≡ K3(1 − η), V1 ≡ K4(1 − η) in a neighborhood of η = 1.
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For m, k fixed, the linear second order equation (1.8) with the unknown func-

tion wm,k and boundary conditions (1.9) admits a solution wm,k, if wm−1,k(0) 6= 0

and wm−1,k(η) > 0, |Bm,k| < h−1. The existence of this solution follows from its

uniqueness which, in turn, can be established on the basis of the maximum principle

and the fact that this problem can be reduced, with help of the Green function, to

a Fredholm integral equation of the second kind.

Indeed, let Qm,k be the difference of two solutions wm,k of problem (1.8)–(1.9).

Then Qm,k can attain neither a positive maximum nor a negative minimum at η = 0,

since otherwise Qm,k
η (0) 6= 0 (see [2, Lemma 3.4]), whereas the boundary condi-

tion (1.9) implies that Qm,k
η (0) = 0. We also have Qm,k(1) = 0, and at the interior

points of [0,1] this difference can neither attain a positive maximum nor a negative

minimum, since max |Bm,k| < h−1. Consequently, under our assumptions, prob-

lem (1.7)–(1.9) cannot have more than one solution. Therefore, we shall a fortiori

establish solvability of problem (1.8)–(1.9) for m and j such that the solutions w of

problem (1.8)–(1.9) admit the following a priori estimate:

wm−1,k(η) > V ((m − 1)h, η).

In order to prove the a priori estimate (1.10) for τ = mh, it suffices to show that

there exist functions V and V1 with the properties specified in Lemma 3 and such

that

Lm(V ) ≡ ν(wm−1,k + h)2V m,k
ηη −

V m,k − V m−1,k

h
(1.11)

− ηUm,k V m,k − V m,k−1

h
+ Am,kV m,k

η + Bm,kV m,k > 0,

λm(V ) ≡ νwm−1,k(0)V m,k
η (0) − vm,k

0 wm−1,k(0) − Cm,k > 0,(1.12)

(1.13) Lm(V1) 6 0, λm(V1) < 0, k = 0, 1, . . . , [X/h],

under the assumption that

(1.14) V ((m − 1)h, η) 6 wm−1,k(η) 6 V1((m − 1)h, η).

Then inequality (1.10) can be proved by induction with respect to m. Indeed, con-

sider the function qm,k = V (mh, η) − wm,k, where wm,k is the solution of prob-

lem (1.8)–(1.9). We have

Lm(q) > 0, λm(V ) − λm(w) ≡ υwm−1,k(0)qm,k
η (0) > 0.
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Moreover, by assumption we have qm′,k 6 0 for m′ 6 m − 1 and qm,k = 0 for

η = 1. Let us show that qm,k 6 0. To this end, we introduce new functions by

qm,k = eαmhSm,k, where α > 0 is a constant to be chosen below. Then

Lm(q) = eαmh
[

ν(wm−1,k + h)2Sm,k
ηη − ηUm,k Sm,k − Sm,k−1

h
(1.15)

+ Am,kSm,k
η + Bm,kSm,k −

(1 − e−αh)Sm,k

h

− e−αh Sm,k − Sm−1,k

h

]

> 0,

(1.16) λm(V ) − λm(w) = eαmhυwm−1,k(0)Sm,k
η (0) > 0.

It follows that Sm,k 6 0. Indeed, Sm,k cannot assume the maximum positive value

at η = 0 since Sm,k
η (0) > 0. Moreover, Sm,k = 0 for η = 1. If Sm,k attains its

maximum positive value at an interior point of the interval 0 6 η 6 1, then at this

point, [1] claimed that

Sm,k
ηη 6 0, Sm,k

η = 0,
Sm,k − Sm−1,k

h
> 0,(1.17)

ηUm,k Sm,k − Sm,k−1

h
> 0,

[

Bm,k −
(1 − e−αh)

h

]

Sm,k < 0

provided that the constant α is large enough and h is sufficiently small, so that

1 − e−αh > 1
2 , and these relations are incompatible with (1.16).

P r o b l e m 4. Why (Sm,k − Sm,k−1)/h > 0 at the maximum point of Sm,k?

Actually only if Sm,k−1 6 0 or Sm,k − Sm,k−1 > 0, then (Sm,k − Sm,k−1)/h > 0.

But generally, we cannot deduce that Sm,k−1 6 0 or Sm,k − Sm,k−1 > 0.

So in order to show that Sm,k cannot attain its maximum value in the interior

of η ∈ [0, 1], beside discussing the case (1.17), at the maximum point of Sm,k,

(Sm,k − Sm,k−1)/h > 0, we also need to discuss the case of Sm,k−1 > 0, Sm,k −

Sm,k−1 6 0. Let us set

Sm,k
1 = e−βkhSm,k

where β is a constant chosen below. Then

eαmh
[

ν(wm−1,k + h)2eβkhSm,k
1ηη − ηUm,k eβkhSm,k

1 − eβ(k−1)hSm,k−1
1

h
(1.18)

+ Am,keβkhSm,k
1η + Bm,keβkhSm,k

1 −
(1 − e−αh)eβkhSm,k

1

h

− e−αheβkh Sm,k
1 − Sm−1,k

1

h

]

> 0.
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Clearly at the maximum point

−ηUm,k eβkhSm,k
1 − eβ(k−1)hSm,k−1

1

h
(1.19)

= −
ηUm,k

h
eβ(k−1)h(Sm,k

1 − Sm,k−1
1 ) +

ηUm,k

h
(eβ(k−1)h − eβkh)Sm,k

1

>
ηUm,k

h
(eβ(k−1)h − eβkh)Sm,k

1 ,

if we choose β a negative constant and −β is large enough. Now,

eβkh
(

Bm,k −
1 − e−αh

h
−

e−αh

h

)

+
ηUm,k

h
(eβ(k−1)h − eβkh)

= eβkh
[

Bm,k −
e−αh

h
+

ηUm,k

h
(e−βh − 1)

]

6 0,

if we choose α = α(β) a negative constant and −α is large enough. By (1.18), (1.19),

we know that this is also impossible. The above discussion means that Sm,k cannot

attain its maximum positive value at an interior point of the interval 0 6 η 6 1,

either (Sm,k − Sm,k−1)/h > 0 or Sm,k−1 > 0, Sm,k − Sm,k−1 6 0.

Therefore

qm,k = eαmhSm,k 6 0, V (mh, η) 6 wm,k.

In a similar way we can show that (1.13)–(1.14) implies wm,k 6 V1(mh, η). For

the construction of V , V1 one can refer to [1], we omit details here.

2. Oleinik’s line method

In what follows, we take as wh
0 (ξ, η) the function w0(ξ, η) if w0ηη(ξ, η) is bounded

in Ω; otherwise, we let wh
0 (ξ, η) be a function coinciding with w0 for η 6 1

2 , equal to

w0(ξ, η−h)−w0(ξ, 1−h) for 1
2 +h 6 η < 1 and defined on the interval 1

2 6 η 6 1
2 +h

in such a way that for 1
4 6 η 6 3

4 it has uniformly (in h) bounded derivatives which

are known to be bounded for w0.

Lemma 5. Assume that the conditions of Lemma 3 are fulfilled and the functions

A, B, C, v0, w0 have bounded first order derivatives, |w0ξ| 6 K5(1−η), w0(ξ, 1) = 0,

w0w0ηη is bounded in Ω, and the following compatibility condition is satisfied:

(2.1) νw0w0η − v0w0 + C = 0 for τ = 0, η = 0.

Then

(2.2) wm,k
η ,

wm,k − wm,k−1

h
,

wm,k − wm−1,k

h
, (1 − η + h)wm,k

ηη ,
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are bounded in Ω for mh 6 T1 and h 6 h0 uniformly with respect to h. The positive

constants T1 and h0 are determined by the data of problem (1.1)–(1.4); T1 6 T0.

P r o o f. Let us introduce a new unknown function Wm,k = wm,keαη in prob-

lem (1.8)–(1.9), where α is a positive constant which does not depend on h and will

be chosen later. We have

ν(wm−1,k + h)2Wm,k
ηη −

Wm,k − Wm−1,k

h
− ηUm,k Wm,k − Wm,k−1

h
(2.3)

+Ãm,kWm,k
n + B̃m,kWm,k = 0,

with the conditions

νWm−1,k(0)Wm,k
η (0) − αυWm−1,k(0)Wm,k(0) − vm,k

0 wm−1,k(0) + Cm,k = 0(2.4)

where

Ãm,k = Am,k − 2αν(wm−1,k + h)2, B̃m,k = Bm,k − αAm,k + α2υ(wm−1,k + h)2.

Consider the function Φm,k(η) defined for m > 1, k > 1 by

Φm,k(η) = (Wm,k
η )2 +

(Wm,k − Wm−1,k

h

)2

+
(Wm,k − Wm,k−1

h

)2

+ K6η + 1

and for m > 1, k = 0 by

(2.5) Φm,k(η) = (Wm,k
η )2 +

(Wm,k − Wm−1,k

h

)2

+ K6η + 1.

The constant K6 > 0 will be chosen below. Let us define the function Φm,k(η) with

m = 0. For this purpose, we introduce functions W−1,k by

(2.6)
W 0,k − W−1,k

h
= ν(w0,k + h)2 − ηU0,k W 0,k − W 0,k−1

h
+ Ã0,kW 0,k

η + B̃0,k,

where
Ã0,k = A0,k − 2αν(w0,ke−αη + h)2,

B̃0,k = B0,k − αA0,k + α2υ(w0,ke−αη + h)2.

Then we define the function Φ0,k for k > 1 and k = 0 by (2.4)–(2.5). By [1], we have

Claim 1.

(2.7) |Φ0,k| 6 K15,
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Claim 2. When mh 6 T0,

Φm,k
η (0) >

α

2
Φm,k(0) −

α

4
Φm−1,k(0),(2.8)

m = 2, 3, . . . , [T0/h], k = 0, 1, 2, . . . , [X/h],

Φ1,k
η (0) >

α

2
Φ1,k(0), k = 0, 1, 2, . . . , [X/h].(2.9)

We introduce functions

rm,k = h−1(Wm,k − Wm,k−1), ̺m,k = h−1(Wm,k − Wm−1,k).

Let us write down the differential equations which hold for Φm,k on the interval

0 6 η < 1. To this end, we differentiate equation (2.3) in η and multiply the result

by 2Wm,k
η ; then we subtract from equation (2.3) forWm,k equation (2.3) forWm−1,k

and multiply the result by 2̺m,k/h; from (2.3) forWm,k we subtract (2.3) forWm,k−1

and multiply the result by 2rm,k/h. Taking the sum of the three equations just

obtained we get the equation for Φm,k, m = 1, 2, 3, . . . , [T0/h], k = 0, 1, 2, . . . , [X/h].

In detail,

ν(wm−1,k + h)22Wm,k
η Wm,k

ηηη − 2Wm,k
η ̺m,k

η − 2Wm,k
η ηUm,krm,k

η(2.10)

+2Wm,k
η Ãm,kWm,k

ηη + 2B̃m,k(Wm,k
η )2 + 4υ(wm−1,k + h)wm−1,k

η Wm,k
η Wm,k

ηη

−ηUm,k2Wm,k
η rm,k + 2(Wm,k

η )2Ãm,k
η + 2Wm,k

η B̃m,k
η Wm,k = 0,

ν(wm−1,k + h)22̺m,k̺m,k
ηη − 2̺m,k ̺m,k − ̺m−1,k

h
(2.11)

−2̺m,kηUm,k rm,k − rm−1,k

h
+ 2̺m,kÃm,k̺m,k

η + 2(̺m,k)2B̃m,k

+
2̺m,k

h

(

υ[(wm−1,k + h)2 − (wm−2,k + h)2]Wm−1,k
ηη − ηrm−1,k(Um,k − Um−1,k)

)

+
2̺m,k

h

(

Wm−1,k
η (Ãm,k − Ãm−1,k) + Wm−1,k(B̃m,k

η − B̃m−1,k
η )

)

= 0,

ν(wm−1,k + h)22rm,krm,k
ηη − 2rm,k ̺m,k − ̺m,k−1

h
(2.12)

−2rm,kηUm,k rm,k − rm,k−1

h
+ 2rm,kÃm,krm,k

η + 2(rm,k)2B̃m,k

+
2rm,k

h

(

υ[(wm−1,k + h)2 − (wm−2,k + h)2]Wm−1,k
ηη − ηrm,k−1(Um,k − Um,k−1)

)

+
2rm,k

h

(

Wm−1,k
η (Ãm,k − Ãm,k−1) + Wm,k−1(B̃m,k

η − B̃m,k−1
η )

)

= 0;

Φm,k
η = 2Wm,k

η Wm,k
ηη + 2̺m,k̺m,k

η + 2rm,krm,k
η + K6,

Φm,k
ηη = 2(Wm,k

ηη )2 + 2Wm,k
η Wm,k

ηηη + 2(̺m,k
η )2 + 2̺m,k̺m,k

ηη + 2(rm,k
η )2 + 2rm,krm,k

ηη ,
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ν(wm−1,k + h)2Φm,k
ηη −

Φm,k − Φm−1,k

h
(2.13)

−ηUm,k Φm,k − Φm,k−1

h
+ Ãm,kΦm,k

n + B̃m,kΦm,k

= 2ν(wm−1,k + h)2[(Wm,k
ηη )2 + (̺m,k

η )2 + (rm,k
η )2] + 2Wm,k

η ̺m,k
η

+2ηUm,kWm,k
η rm,k

η − 2Ãm,kWm,k
η Wm,k

ηη

−2B̃m,k(Wm,k
η )2 − υam−1,k

η Wm,k
η Wm,k

ηη + 2ηUm,kWm,k
η rm,k

−2Ãm,k(Wm,k
η )2 − 2B̃m,kWm,k

η wm,k

+
2̺m,k(̺m,k − ̺m−1,k)

h
+

2ηUm,k

h
̺m,k(rm,k − rm−1,k)

−2̺m,k̺m,k
η Ãm,k − 2(̺m,k)2B̃m,k

−
2υ

h
̺m,k(am−1,k − am−2,k)Wm−1,k

ηη +
2

h
̺m,kηrm−1,k(Um,k − Um−1,k)

−
2

h
̺m,k(Ãm,k − Ãm−1,k)Wm−1,k

η

−
2

h
̺m,k(B̃m,k − B̃m−1,k)wm−1,k +

2rm,k

h
(̺m,k − ̺m,k−1)

+
2ηUm,k

h
rm,k(rm,k − rm,k−1) − 2rm,kÃm,krm,k−1

η − 2B̃m,k(rm,k)2

−
2rm,k

h

(

(am−1,k − am−1,k−1)Wm,k−1
ηη − ηrm,k−1(Um,k − Um,k−1)

)

−
2rm,k

h
Wm,k−1

η (Ãm,k − Ãm,k−1) −
2rm,k

h
Wm,k−1(B̃m,k − B̃m,k−1)

−
1

h
[(Wm,k

η )2 − (Wm−1,k
η )2 + (̺m,k)2 − (̺m−1,k)2 + (rm,k)2 − (rm−1,k)2]

−
ηUm,k

h
[(Wm,k

η )2 − (Wm,k−1
η )2 + (̺m,k)2 − (̺m,k−1)2 + (rm,k)2 − (rm,k−1)2]

+Ãm,k[2Wm,k
η Wm,k

ηη + 2̺m,k̺m,k
η + 2rm,krm,k

η + K6]

+B̃m,k[(Wm,k
η )2 + (̺m,k)2 + (rm,k)2],

where am,k stands for (wm,k + h)2.

We find equations for Φm,k(η) with k = 0, m > 1 by taking the sum of only the

first and the second of these equations. In order to derive the equation for Φm,k(η)

with m = 1, we utilize the relation (2.6) which determines the values of W−1,k. By

the above discussion, [1] declared: For Φm,k(η) with k > 1, m > 1,

ν(wm−1,k + h)2Φm,k
ηη −

Φm,k − Φm−1,k

h
− ηUm,k Φm,k − Φm,k−1

h
(2.14)

+ Ãm,kΦm,k
n + B̃m,kΦm,k + Nm,k

1 − Nm,k
2 = 0,
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where Nm,k
2 is the sum of nonnegative terms:

Nm,k
2 = 2υam−1,k(Wm,k

ηη )2 +
1

h
(̺m,k

η )2 +
ηUm,k

h
(rm,k

η )2(2.15)

+ 2νam−1,k(̺m,k
η )2 +

1

h
(̺m,k − ̺m−1,k)2

+
ηUm,k

h
(rm,k − rm−1,k)2 + 2υam−1,k(rm,k

η )2

+
1

h
(̺m,k − ̺m,k−1)2 +

ηUm,k

h
(rm,k − rm,k−1)2,

and Nm,k
1 is a linear function whose coefficients are uniformly bounded in h and can

be expressed in terms of the following quantities:

am−1,k
η Wm,k

ηη Wm,k
η , Wm,k

η rm,k, Wm,k
η Wm−1,k

η ,

(Wm,k
η )2, Wm,k

η , (Wm,k
η )2Wm−1,k

η , ̺m,krm−1,k,

1

h
(am−1,k − am−2,k)̺m,kWm−1,k

ηη , Wm−1,k
η ̺m,k̺m−1,k,

Wm−1,k
η ̺m,k, ̺m,k̺m−1,k, ̺m,k,

1

h
Wm,k−1

ηη rm,k(am−1,k − am−1,k−1), rm,krm,k−1, Wm−1,k
η rm,krm−1,k,

rm,krm−1,k, rm,k, Wm,k−1
η rm,k.

P r o b l e m 6. It is impossible to derive (̺m,k
η )2/h+ ηUm,k(rm,k

η )2/h from (2.15).

Taking into account the calculations of (2.10)–(2.14), we believe that (2.15) should

be modified to the expression

Nm,k
2 = 2νam−1,k(Wm,k

ηη )2 +
1

h
(wm,k

η )2 +
ηUm,k

h
(wm,k

η )2(2.16)

+ 2νam−1,k(̺m,k
η )2 +

1

h
(̺m,k − ̺m−1,k)2

+
ηUm,k

h
(rm,k − rm−1,k)2 + 2νam−1,k(rm,k

η )2

+
1

h
(̺m,k − ̺m,k−1)2 +

ηUm,k

h
(rm,k − rm,k−1)2.

Using the inequality

2ab 6 εa2 +
b2

ε
, ε > 0
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to estimate the terms that make up Nm,k
1 , we obtain from (2.14) (for details one can

refer to [1])

ν(wm−1,k + h)2Φm,k
ηη −

Φm,k − Φm−1,k

h
− ηUm,k Φm,k − Φm,k−1

h
(2.17)

+Ãm,kΦm,k
n + 2B̃m,kΦm,k + C̃m,kΦm,k > 0,

where C̃m,k depends on

wm−1,k
η , ̺m−1,k, rm−1,k, (wm−1,k + wm−2,k + 2h)wm−1,k

ηη ,

(wm−1,k + wm−1,k−1 + 2h)wm,k−1
ηη , rm,k−1, wm,k−1

η .

It is easy to see that for k = 1 the coefficient C̃m,k does not depend on rm−1,k,

since Um,0 = 0. The inequality (2.17) for Φm,k with k = 0 is obtained in exactly the

same manner as for k > 1. Obviously, in this case the coefficient C̃m,k depends only

on

wm−1,k
η , ̺m−1,k, (wm−1,k + wm−2,k + 2h)wm−1,k

ηη .

Now consider the functions

Y m,k(η) = (rm,k)2 + (̺m,k)2 + f(η) for k > 1, m > 0;(2.18)

Y m,k(η) = (̺m,k)2 + f(η) for k = 0, m > 0,(2.19)

where f(η) = κ(βη)κ2
1(η) (for details, one can refer to [1, p. 157 and p. 163]), β is

a positive constant. Just as we have proved inequalities (2.8), (2.9), (2.17), we are

able to prove the inequalities

Y m,k
η (0) >

α

2
Y m,k(0) −

α

4
Y m−1,k(0), m > 1, k > m,(2.20)

Y m,k
η (0) >

α

2
Y m,k(0), m = 1,

ν(wm−1,k + h)2Y m,k
ηη −

Y m,k − Y m−1,k

h
− ηUm,k Y m,k − Y m,k−1

h
+ Ãm,kY m,k

n

+2B̃m,kY m,k + Qm,k
1 Y m,k + Qm,k

2 + Q3 > 0,

where Qm,k
1 > 0. For the definitions of Q1, Q2, Q3, one can refer to [1] for details.

Let us show by induction that

(2.21) Y m,k
6 M2(1 − η + h)2, Φm,k

6 M1.

For mh 6 T1 and some T1 6 T0, the constants T1 and Mi are independent of h. To

show this, assume that for m < m′ the inequalities (2.21) hold with constants M1,
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M2 specified below. Let us show that if mh 6 T1 the same inequalities are valid for

m = m′. Note that under the induction assumptions, we can claim that for m < m′

or m = m′, k < k′, the following inequalities hold:

|Wm−1,k
ηη (wm−1,k + wm−2,k + 2h)|

6 K25(1 − η + h)|Wm−1,k
ηη |

6 K26υ(wm−2,k + h)|Wm−1,k
ηη |

= K26|̺
m−1,k + ηUm,krm−1,k − Ãm−1,kWm−1,k

η

− B̃m−1,kWm−1,k|(wm−2,k + h)−1 6 K27.

In exactly the same manner we find that

|Wm,k−1
ηη (wm−1,k + wm−1,k−1 + 2h)| 6 K28.

The constants K27 and K28 depend on M1 and M2. Therefore, if the inequali-

ties (2.21) hold for m < m′ and for m = m′, k < k′, then it can be seen that

in (2.17) and (2.20) we have

|C̃m,k| 6 K29(M1, M2),(2.22)

|Qm,k
1 | 6 K30(M1, M2),

|Qm,k
2 | 6 K31(1 − η + h)2.

Let us pass to new functions in (2.17) and (2.10) by

(2.23) Φm,k = Φ̃m,keγmh, Y m,k = Ỹ m,keγmh.

The constant γ(M1, M2) will be chosen later. For 1 6 m 6 m′ and m = m′, we have

νam−1,kΦ̃m,k
ηη − e−γh Φ̃m,k − Φ̃m−1,k

h
− ηUm,k Φ̃m,k − Φ̃m,k−1

h
(2.24)

+ Ãm,kΦ̃m,k
n + (2B̃m,k + C̃m,k − γe−γh′

)Φ̃m,k > 0

for 0 < h′ < h, and also

νam−1,kỸ m,k
ηη − e−γh Ỹ m,k − Ỹ m−1,k

h
− ηUm,k Ỹ m,k − Ỹ m,k−1

h
(2.25)

+ Ãm,kỸ m,k
η + (2B̃m,k + Qm,k

1 − γe−γh′

)Ỹ m,k

+ K32(M1, M2)(1 − η + h)2 > 0.
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Let us choose γ(M1, M2) such that for small enough h the following inequalities are

valid:

(2.26) 2B̃m,k + C̃m,k − γe−γh′

< 0, 2B̃m,k + C̃m,k − γe−γh′

< −K33(M1, M2),

where

K33 =
2K32

M2
+ K34, K34(1 − η + h)2 > |2νam−1,k − 2Ãm,k(1 − η + h)|.

Consider the point at which Φ̃m,k, for 0 < η < 1, m < m′ or m = m′, k 6 k′, attains

its largest value. In view of (2.24), (2.25), [1] declares: this point cannot belong to

the interval 0 < η < 1 for m > 1. But this is not trivial, the essential point lies in

P r o b l e m 7. Why at the maximum point of Φ̃m,k, (Φ̃m,k − Φ̃m,k−1)/h > 0?

Actually only if Φ̃m,k−1 6 0 or Φ̃m,k − Φ̃m,k−1 > 0, then (Φ̃m,k − Φ̃m,k−1)/h > 0.

But generally, we cannot deduce that Φ̃m,k−1 6 0 or Φ̃m,k − Φ̃m,k−1 > 0.

However, this problem can also be solved by the method used to solve Problem 1.4,

we omit details here. So applying the maximum principle, one has the conclusion

that Φm,k 6 M1.

Now, consider the functions Xm,k = Ỹ m,k − 2−1M2(1 − η + h)2. It follows

from (2.25) and (2.26) that

νam−1,kXm,k
ηη − e−γh Xm,k − Xm−1,k

h
− ηUm,k Xm,k − Xm,k−1

h
(2.27)

+ Ãm,kXm,k
η + (2B̃m,k + Qm,k

1 − γe−γh′

)Xm,k

> − K32(M1, M2)(1 − η + h)2

−
M2

2
[2am−1,k − 2Ãm,k(1 − η + h)

+ (2B̃m,k + Qm,k
1 − γe−γh′

)(1 − η + h)2]

> − K32(M1, M2)(1 − η + h)2

−
M2

2
[K34 − K35](1 − η + h)2 > 0,

if m < m′ or m = m′, k 6 k′. Let us show that Xm,k 6 0 for such m and k. If

Xm,k(η) assumes positive values, then there is a point η at which, for m < m′ or

m = m′, k 6 k′, the function Xm,k(η) attains its largest positive value. [1] declares:

this point cannot belong to the interval 0 < η < 1 for m > 1 because of (2.26). But

this is not trivial, the essential point also lies in

P r o b l e m 8. Why at the maximum point of Xm,k, (Xm,k − Xm,k−1)/h > 0?

Actually only if Xm,k−1 6 0 or Xm,k − Xm,k−1 > 0, then (Xm,k − Xm,k−1)/h > 0.

But generally, we cannot deduce that Xm,k−1 6 0 or Xm,k − Xm,k−1 > 0.
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However, this problem can also be solved by the method used to solve Problem 1.4,

we omit details here, too.

After solving this problem, one is able to prove that (1−η+h)wm,k
ηη are uniformly

bounded in Ω. Lemma 5 is proved. �

3. Oleinik’s results

After the above modifications of proofs we can get the results of [1]. For the

completeness of the paper, we quote here the last results which were obtained by

Oleinik in [1].

Theorem 9. Under the assumptions of Lemma 1.3 and Lemma 2.1, prob-

lem (1.6)–(1.7) in Ω with T = T1 admits a solution w with the following properties:

w is continuous in Ω;

(3.1) C1(1 − η) 6 w 6 C2(1 − η), Ci = const > 0, i = 1, 2;

w has bounded weak derivatives wη, wτ , wξ;

(3.2) |wξ| 6 C3(1 − η), |wτ | 6 C4(1 − η) Ci = const > 0, i = 3, 4;

the derivative wη is continuous in η < 1; conditions (1.6) hold for w; the weak deriva-

tive wηη exists and wwηη is bounded in Ω; equation (1.5) holds almost everywhere

in Ω. The solution w of problem with these properties is unique.

Theorem 10. Assume that Ux, Ut/U , Urx/r, v0 are bounded functions having

bounded derivatives with respect to t, x ∈ D; u0(x, y) → U(0, x) as y → ∞, u0 = 0

for y = 0; u0/U , u0y/U are continuous in D; u0y > 0 for y > 0, x > 0,

K1(U(0, x) − u0(x, y)) 6 u0y(x, y) 6 K2(U(0, x) − u0(x, y))

with positive constants K1 and K2. Assume also that there exist bounded deriva-

tives u0y, u0yy, u0yyy, u0x, u0xy and the ratios

u0yy

u0y

,
u0yyy − u2

0yy

u2
0y

are bounded for 0 6 x 6 X , 0 6 y < ∞. Let the following compatibility condition

be satisfied:

(3.3) v0(0, x)u0y(x, 0) = −px(0, x) + υu0yy(x, 0),
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and let
∣

∣

∣

u0yx − u0xu0yy

u0y

+ Ux

u0u0yy − u2
0y

Uu0y

∣

∣

∣
6 K5(U − u0(x, y)).

Then problem (1.1)–(1.4) in D has a unique solution u, v with the following proper-

ties: u/U , uy/U are continuous and bounded in D; uy/U > 0 for y > 0; uy/U → 0

as y → ∞; u = 0 for y = 0; v is continuous in y and bounded for bounded y; the

weak derivatives ut, ux, uyt, uyx, uyy, uyyy, vy are bounded measurable functions

in D; the equations of system (1.1) hold almost everywhere in D; the functions ut,

ux, vy, uyy are continuous with respect to y; moreover,

(3.4)
uyy

uy

,
uyyy − u2

yy

u2
y

are bounded and the following inequalities hold:

C1(U(t, x) − u(t, x, y)) 6 uy(t, x, y) 6 C2(U(t, x) − u(t, x, y)),(3.5)

exp(−C2y) 6 1 −
u(t, x, y)

U(t, x)
6 exp(−C1y),(3.6)

∣

∣

∣

uytuy − utuyy

uy

+ Ut

uyyu − u2
y

uyU

∣

∣

∣
6 C3(U − u),(3.7)

∣

∣

∣

uyxuy − uxuyy

uy

+ Ux

uyyu − u2
y

uyU

∣

∣

∣
6 C4(U − u).(3.8)

References

[1] O.A. Oleinik, V.N. Samokhin: Mathematical Models in Boundary Layer Theory. Chap-
man & Hall/CRC, Boca Raton-London-New York-Washington, 1999, pp. 154–173. zbl

[2] D. Gilbarg, N. Trudinger: Elliptic Partial Differential Equations on Second Order.
Springer, Berlin, 1983. zbl

Authors’ addresses: Huashui Zhan, School of Sciences, Jimei University, Xiamen,
361021, P.R. China, e-mail: huahsui@263.net, huashuizhan@163.com; Juning Zhao, School
of Mathematics, Xiamen University, Xiamen, 361005, P.R. China.

96


		webmaster@dml.cz
	2020-07-02T12:10:20+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




