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Abstract. We show stability and consistency of the linear semi-implicit complementary
volume numerical scheme for solving the regularized, in the sense of Evans and Spruck,
mean curvature flow equation in the level set formulation. The numerical method is based
on the finite volume methodology using the so-called complementary volumes to a finite
element triangulation. The scheme gives the solution in an efficient and unconditionally
stable way.
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1. Introduction

The curvature driven level set equation [30]

(1) ut − |∇u|∇ ·
( ∇u

|∇u|
)

= 0

as well as its nontrivial generalizations are used in applications as the motion of

interfaces (free boundaries) in thermomechanics (solidification, crystal growth) and

computational fluid dynamics (free surface flows, multi-phase flows of immiscible

fluids, thin films), smoothing and segmentation of images and surface reconstructions

in the image processing, computer vision and computer graphics (see e.g. [32], [29],

[2], [1], [6], [19], [31], [15], [17]), and in many further situations related to the motion

of implicit curves or surfaces. On the other hand, the convergence of numerical
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schemes to the unique viscosity solution [9], [14], [7] of equation (1) is often an

open problem; it is an exception to find an analysis of convergence of the methods

used for solving the curvature driven flows in the level set formulation. The level

set equation (1) represents the so-called Eulerian approach to curve and surface

evolutions. It moves level sets (curves in 2D, surfaces in 3D) of the function u in the

normal direction with a velocity proportional to the (mean) curvature. The curves

and surfaces are represented implicitly and thus the formulation automatically allows

topological changes in the interface which yields robustness of the method.

In [10] Deckelnick and Dziuk prove convergence of their finite element numerical

scheme to the solution of the mean curvature flow of graphs which can be further

adjusted, using the Evans and Spruck regularization [14], to the situation of mo-

tion of level sets by the mean curvature [11]. Convergence of a particular finite

difference scheme has been proved by Oberman in [28] using the technique of Bar-

les and Souganidis [3]. More results are available for schemes based on other than

level set formulation. The convergent schemes for the so-called direct (paramet-

ric, Lagrangean) approach to curvature driven flows were suggested and studied

e.g. in [13], [21]; for further Lagrangean methods we refer e.g. to [12], [25], [26].

Other than the level set, but also Eulerian, approach is represented by the phase

field method where the convergence of numerical approximation to the solution of

the so-called Allen-Cahn equation (modelling diffused interface evolution) is studied,

see e.g. [27], [4].

In this paper we prove consistency and stability of the semi-implicit fully discrete

complementary volume scheme. Our semi-implicit scheme leads to the solution of

linear systems in every discrete time step (for other semi-implicit approaches for

solving nonlinear diffusion see e.g. [18], [22], [16], [17]), so it is much more efficient

than a fully implicit nonlinear scheme [33], and it is unconditionally stable without

any restriction on time step in contrast to many other explicit schemes [30], [32],

[29], [31]. Consistency and stability are two properties in the theory of Barles and

Souganidis [3] which are used to show convergence of a numerical scheme to solutions

of fully nonlinear second order partial differential equations and we discuss them in

this paper. Monotonicity is the third question regarding our scheme that still remains

open.

The derivation of our numerical method for solving equation (1) is based on the

finite volume methodology (see e.g. [20], [22]). We construct the so-called comple-

mentary volumes (co-volumes) to a finite element triangulation [33], [16]. Integrating

equation (1) in the co-volume gives the weak (integral) formulation of the problem

from which the computational scheme naturally follows. One of our main motivations

for solving the curvature driven level set equation and its generalizations comes from

image processing applications [15], [16], [17], [23], [24], [8]. The co-volume scheme has
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been applied to smoothing and segmentation of 2D and 3D medical images in [24],

[8] and is based on the original semi-implicit method studied in [16]. While in [8] it

has been shown experimentally on non-trivial examples of exact solutions that the

method converges to the true solution, in this paper we show theoretically its con-

sistency and stability. In the proofs we restrict ourselves to 2D situation and only to

the type of grids which we use in image processing applications, cf. the next section,

mainly in order to avoid too technical details.

In Section 2 we present in detail our numerical scheme and in Section 3 we prove its

properties. For numerical experiments we refer to [16], [24], [23], [8] where co-volume

schemes have been applied to problems of interface motion and image smoothing and

segmentation.

2. Semi-implicit co-volume scheme

The unknown function u(t, x) in (1) is defined in QT = I×Ω, Ω ⊂ Rd is a bounded

Lipschitz domain, I = [0, T ] is a time interval, and the equation is usually accompa-

nied with zero Dirichlet (e.g. in image segmentation) or zero Neumann (e.g. in image

smoothing) boundary conditions and by an initial condition

(2) u(0, x) = u0(x).

To construct the numerical scheme we choose a uniform discrete time step τ = T/N

and replace the time derivative in (1) by the backward difference. The nonlinear

terms of the equation are taken from the previous time step while the linear ones

are considered on the current time level, which means semi-implicitness of the time

discretization.

Semi-implicit in time discretization. Let τ be a given time step and u0 a given

initial level set function. Then, for n = 1, . . . , N , we look for a function un, a solution

of the equation

(3)
1

|∇un−1|
un − un−1

τ
= ∇ ·

( ∇un

|∇un−1|
)

.

Let us introduce now the fully discrete scheme. In the image processing appli-

cations, a digital image is given on a structure of pixels with rectangular shape in

general (rectangles with solid lines in Fig. 1). Since in every discrete time step of the

method (3) we have to evaluate the gradient of the level set function at the previous

step |∇un−1|, we put a triangulation (dashed lines in Fig. 1) onto the computational
domain and then take a piecewise linear approximation of the level set function on
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Figure 1. The co-volumes (pixels, solid lines), the triangulation for the co-volume method
(dashed lines), and the degree of freedom (DF) nodes (round points).

this triangulation. Such an approach gives a constant value of the gradient per

triangle, allowing simple, fast and clear construction of the fully-discrete system of

equations.

As can be seen in Fig. 1, in our method the centers of pixels are connected by a

new rectangular mesh and every new rectangle is splitted into four triangles. The

centers of pixels will be called the degree of freedom (DF) nodes. By this procedure

we also get further nodes (at crossings of solid lines in Fig. 1) which, however, will

not represent degrees of freedom. We will call them the non-degree of freedom (NDF)

nodes. Let a function u be given by discrete values in the DF nodes. Then in the

additional NDF nodes we take the average value of the neighboring DF nodal values.

By using the so defined values in the NDF nodes, a piecewise linear approximation uh

of u on the triangulation can be built. Let us note that the computational domain Ω

is given by the union of all triangles contained in the triangulation Th given by the

previous construction. It means Ω is equal to the union of all inner pixels and a

half-strip of the boundary pixels, cf. Fig. 1. For Th we construct a complementary

(dual) mesh. We modify the basic approach given in [33], [16] in such a way that

our co-volume mesh consists of cells p associated only with the DF nodes p of Th,

say p = 1, . . . , M . Since there will be a one-to-one correspondence between the co-

volumes and the DF nodes, without any confusion we can use the same notation for

them.

For each DF node p of Th, let N(p) denote the set of all DF nodes q connected

to the node p by an edge. We denote cardinality of this set by Np. The edge

connecting p and q will be denoted by σpq and its length by hpq. Then every co-

volume p is bounded by the lines (co-edges) epq that bisect and are perpendicular

to the edges σpq, q ∈ N(p). By this construction, the co-volume mesh corresponds
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exactly to the pixel structure of the image inside the computational domain Ω. We

denote by Epq the set of triangles having σpq as an edge. In the situation depicted in

Fig. 1, every Epq consists of two triangles. For each T ∈ Epq let cT
pq be the length of

the portion of epq that is in T , i.e., cT
pq = m(epq∩T ), wherem is the measure in Rd−1 .

Let Np be the set of triangles that have the DF node p as a vertex. Let uh be a

piecewise linear function on the triangulation Th. We will denote the constant value

of |∇uh| on T ∈ Th by |∇uT | and define the regularized gradients by

(4) |∇uT |ε =
√

ε2 + |∇uT |2.

We will use the notation up = uh(xp) where xp is the coordinate of a (DF or NDF)

node of the triangulation Th, and also un
p = uh,τ(xp, tn) where uh,τ is our piecewise

linear in space and time approximation of the solution to the regularized level set

equation. Let u0
h be the piecewise linear interpolation of the initial function u0 on

the triangulation Th.

With this notation we are ready to derive the co-volume spatial discretization.

As is usual in finite volume methods [20], we integrate (3) over every co-volume p,

p = 1, . . . , M , and then using the divergence theorem we get an integral formulation

of (3)

(5)

∫

p

1

|∇un−1|
un − un−1

τ
dx =

∑

q∈N(p)

∫

epq

1

|∇un−1|
∂un

∂ν
ds

where ν is a unit outer normal to the boundary of p. Now the exact “fluxes” on the

right-hand side and the “capacity function” 1/|∇un−1| on the left-hand side will be
approximated numerically using the piecewise linear reconstruction of un−1 on the

triangulation Th. In such a way, for the approximation of the right-hand side of (5)

we get

(6)
∑

q∈N(p)

(

∑

T∈Epq

cT
pq

1

|∇un−1
T |

)

un
q − un

p

hpq

.

For the left-hand side of (5) we use

(7) m(p)
∑

T∈Np

m(T ∩ p)

m(p)

1

|∇un−1
T |

un
p − un−1

p

τ

where m(p) is the measure in Rd of the co-volume p. In general, we assume for every

pair p, q

h 6 hpq 6 h̄,
h̄

h
6 h0
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and define

(8) dpq :=
m(epq)

hpq

6 d0.

However, we restrict our considerations to uniform rectangular co-volumes with size

length h, as plotted in Fig. 1. Then, e.g.,

(9) m(p) = h2, m(epq) = hpq = h, dpq = 1, cT
pq =

1

2
m(epq).

We denote four neighbouring DF nodes of xp by xq1
(east), xq2

(north), xq3
(west),

xq4
(south), and the corners of the co-volume p by xr1

(top right), xr2
(top left),

xr3
(bottom left), xr4

(bottom right). The middle point of the edge epqi
is denoted

by xmi
, i = 1, . . . , 4.

Taking into account the ε-regularization (4) we can now define coefficients, namely

an−1
pq =

1

|∇un−1
pq |ε

:=
1

2

(

1

|∇un−1
T 1

pq
|ε

+
1

|∇un−1
T 2

pq
|ε

)

,(10)

bn−1
p :=

1

|∇un−1
p |ε

=
1

Np

∑

q∈N(p)

1

|∇un−1
pq |ε

(11)

where T 1
pq, T

2
pq ∈ Epq. For example, for the triangle with vertices xp, xq1

, xr1
we have

(12) |∇un−1
T 1

pq1

|ε =

√

(uq1
− up)2

h2
+

(2(ur1
− um1

))2

h2
+ ε2.

Now our computational method can be written as follows.

Fully-discrete semi-implicit co-volume scheme. Let u0
p, p = 1, . . . , M be

given discrete initial values of the segmentation function. Then for n = 1, . . . , N we

look for un
p , p = 1, . . . , M satisfying

(13) bn−1
p m(p)un

p + τ
∑

q∈N(p)

an−1
pq dpq(u

n
p − un

q ) = bn−1
p m(p)un−1

p .

R em a r k 2.1. The co-volume algorithms [33], [16] studied previously for the

level-set-like problems have used either “left oriented” or “right oriented” triangula-

tions and no NDF nodes (see Fig. 2). However, then the level set curve or surface

evolution is influenced by the grid effect. Of course this effect is satisfactory weak-

ened by refining the grid (e.g. in interface motion computations, cf. [16]). In image

processing we work with fixed given pixel/voxel structure, and we do not refine this
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structure, so we want to remove such “non-symmetry” of the method. This can be

done by averaging the two, “left” and “right” solutions, or implicitly by taking the

combination of triangulations as plotted in Fig. 1. Of course, usage of such a “sym-

metric” triangulation can be accompanied also by the linear finite element method

of Deckelnick and Dziuk [10], [11], considering also the NDF nodes as degrees of

freedom. But this would increase the number of unknowns in systems to be solved

by factor two, which can be critical in case of image processing applications, usually

with a huge number of pixels/voxels given. Without any construction of a triangu-

lation, we could also use a bi-linear representation of the level set function on finite

elements corresponding to the rectangular grid formed by the centers of pixels and

build a tensor-product finite element method. But then we would face a problem of

non-constant gradients in the evaluation of nonlinearities. The same problem would

arise when considering the complementary volume method given by the dual grid

corresponding to pixels and by a bi-linear representation of the function on the rect-

angular grid formed by centers of pixels. Again, such technique would require the

evaluation and integration of the absolute value of the gradient of bi-linear functions

on the co-volume sides. From the above points of view, our method gives the small-

est possible number of unknowns and the simplest (piecewise constant) nonlinear

coefficients evaluation.

Figure 2. By dashed lines we plot the “left oriented” triangulation (left) and the “right
oriented” triangulation (right). The “symmetric” triangulation corresponding to
our method is plotted in Fig. 1.

Such a “symmetric” primal-dual grid can be built also in three dimensions. The

construction of a co-volume mesh in 3D has to use the 3D tetrahedral finite element

grid to which it is complementary. For this goal we use the following approach simi-

lar to the so called centered-cubic-lattice method known from computer graphics [5].
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Figure 3. Neighbouring pyramids which are joined together (left); joining these pyramids
and then splitting them into four parts give a tetrahedron of the 3D grid (middle);
the intersection of the tetrahedron with the bottom face of the co-volume (right).

First, every cubic voxel is splitted into 6 pyramids with their vertex given by the

voxel center and their base surfaces given by the voxel boundary faces. The neigh-

bouring pyramids of neighbouring voxels are joined together to form an octahedron

which is then splitted into 4 tetrahedrons using diagonals of the voxel boundary

face—see Fig. 3. In this way we get a 3D tetrahedral grid. Two nodes of every

tetrahedron correspond to the centers of the neighbouring voxels and the other two

nodes correspond to the voxel boundary vertices; every tetrahedron intersects the

common face of neighbouring voxels. Now again only the centers of voxels represent

DF nodes, the additional nodes of tetrahedrons are NDF nodes which are used only

in piecewise linear representation of the level set function. Using such co-volumes

one obtains a computational scheme with the same structure as (13) but the averages

in definitions (10), (11) are taken over all tetrahedrons crossing the faces and the

entire co-volume, respectively.

3. Consistency and stability of the numerical scheme

We first give the necessary notation and definitions. Let us assume that ε > 0

is fixed. The Evans and Spruck regularization of the curvature driven level set

equation (1) can be written in the form

(14) ut − trace
((

I − ∇u ⊗∇u

|∇u|2ε

)

D2u
)

= 0 in I × Ω

where D2u denotes the symmetric matrix of the second order spatial derivatives of u.

If we denote

G(X, p) = trace
((

I − p ⊗ p

|p|2ε

)

·X
)

,
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where (X, p) ∈ S
d × Rd and S

d is the space of d × d symmetric matrices, then G is

an elliptic operator [9]. We denote by B(Q), Q = I × Ω̄, the set of all uniformly

bounded functions in a domain Q. In [14], existence of the unique smooth solution

is proved.

Let us consider the equation

(15) F (D2u, Du, u) = 0 in Q

where in the spatially two dimensional case we define

Du =





ut

ux

uy



 , D2u =





utt utx uty

utx uxx uxy

uty uxy uyy



 , I =





0 0 0

0 1 0

0 0 1



 , I =





1

0

0





and F : S
d × Rd × R → R is given by

F (D2u, Du, u) =























I · Du − trace
((

I − (I · Du) ⊗ (I · Du)

|I · Du|2ε

)

D2u
)

in Q,

u(0, x) − u0(x) in Ω,

∂u

∂ν
or u on I × ∂Ω

where ν is an outer unit normal to ∂Ω. It is now clear from the properties of G above

that F possesses the elliptic property, that means, for all (p, u) ∈ Rd × R and for all
M,N ∈ S

d we have

F (M, p, u) 6 F (N, p, u) provided M > N.

Let us have an approximation scheme of the form

(16) S(̺, Y, u̺(Y ), u̺) = 0 in Q

where S : R+ × Q × R × B(Q) → R is locally uniformly bounded.
Definition 3.1. The approximation scheme S given by (16) has themonotonicity

property if for all ̺ > 0, Y ∈ Q, ζ ∈ R and u, v ∈ B(Q) the inequality u > v implies

(17) S(̺, Y, ζ, u) 6 S(̺, Y, ζ, v).

Definition 3.2. The approximation scheme S given by (16) has the stability

property if for all ̺ > 0 there exists a solution

(18) u̺ ∈ B(Q)

of (16) with a bound independent of ̺.
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Definition 3.3. The approximation scheme S given by (16) has the consistency

property if for all Φ ∈ C∞(Q) and for all X ∈ Q we have

(19) lim
̺→0, Y →X, ξ→0

S(̺, Y, Φ(Y ) + ξ, Φ + ξ)

̺
= F (D2Φ(X), DΦ(X), Φ(X)).

We recall the following important statement:

Theorem 3.1 ([3]). Let the approximation scheme S given by (16) have the

stability, monotonicity and consistency properties. Then, as ̺ → 0, the solution of

the scheme converges locally uniformly to the unique continuous solution of (15).

Our aim is to transform the numerical scheme (13) to the form (16) and then

prove the stability and consistency properties. The numerical scheme (13) can be

written in the form (16) provided ̺ = τ , Y = (tn, xp), u
̺(Y ) = un

p , u
̺ = uh,τ where

uh,τ (x, y) is a piecewise linear in space and time (i.e. on the triangulation Th and

among discrete time steps) approximation of solution, and

(20) S(̺, (tn, xp), u
n
p , uh,τ ) = un

p − un−1
p +

τ

bn−1
p m(p)

∑

q∈N(p)

an−1
pq (un

p − un
q )dpq = 0

where u0
p = u0(xp) for all p = 1, . . . , M . Let us note that the time step τ is usually

coupled with the spatial step h, e.g., by the relation τ ≈ h2 which is natural in

solving parabolic PDEs.

The zero Neumann boundary conditions are realized using the mirror image ex-

tension of the solution values outside the image domain, i.e., adding one outer strip

of pixels (co-volumes) q along the boundary pixels p, cf. Fig. 1, and prescribing

un
q = un

p for these additional pixel values. The result is that the boundary terms

an−1
pq (un

p − un
q )dpq are simply not present in the summation term of the scheme (13)

or in its equivalent form (20), which is also equivalent to prescribing an−1
pq = 0 if p is

a boundary co-volume and q is an additional one.

Since we assume that the computational domain Ω is given by the union of all

triangles in Th, cf. Fig. 1, the DF nodes of boundary pixels lie on ∂Ω and we prescribe

zero values to them in case of the Dirichlet boundary condition. The only change in

the scheme is that the system contains less number of unknowns (only DF nodes of

inner pixels) and that an−1
pq (un

p − un
q )dpq in the summation term contain the known

value un
q = 0 if q is a boundary pixel.
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Theorem 3.2. There exists a unique solution un
h = (un

1 , . . . , un
M ) of the sche-

me (13) for any value of the regularization parameter ε > 0 and for any time step

n = 1, . . . , N . Moreover, for the fully discrete numerical solution uh,τ the estimate

(21) ‖uh,τ‖L∞(Q) 6 ‖u0
h‖L∞(Ω̄)

holds, which gives the stability property of the scheme.

P r o o f. It follows from definition (10) that the off-diagonal elements −τan−1
pq ,

q ∈ N(p), of the system (13) are symmetric and nonpositive. The positive term bn−1
p

given by (11) affects only the diagonal which is equal to bn−1
p m(p)+τ

∑

q∈N(p)

an−1
pq dpq.

Thus, the matrix of the system (13) is a symmetric and diagonally dominant

M-matrix which implies that it always has a unique solution. Let us write (13) in

the form (20)

(22) un
p +

τ

bn−1
p m(p)

∑

q∈N(p)

an−1
pq (un

p − un
q )dpq = un−1

p

and let max un
h = max(un

1 , . . . , un
M ) be achieved at the point p.

In the case of the zero Neumann boundary condition, no matter whether p is an

inner or a boundary point, the whole second term on the left-hand side of (22) is

nonnegative and thus un
p 6 un−1

p 6 max(un−1
1 , . . . , un−1

M ). In the same way we can

prove a similar relation for the minima and together we have

(23) min u0
p 6 min un

p 6 maxun
p 6 maxu0

p, n 6 N,

which implies the estimate (21).

In the case of the zero Dirichlet boundary condition, first let p be a boundary

DF node in which the maximum of the discrete solution is attained at the nth time

step (this maximum is of course equal to 0). It is clear that it is less than or equal to

the maximum at the previous time step n−1, which can be either positive (if realized

in an inner node) or zero (if realized in a boundary node). Secondly, if p is an inner

node, similarly to the considerations for the Neumann boundary condition above,

we have that the whole second term on the left-hand side of (22) is nonnegative and

thus un
p 6 un−1

p which is less or equal to the maximum at the time step n− 1. Then

we get recursively the estimate (21) again. �
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Theorem 3.3. For any fixed ε > 0 our numerical scheme possesses the consis-

tency property.

P r o o f. Let X = (t, x) and Φ ∈ C∞(Q). There exists a time step n ∈
{0, 1, . . .N} such that t ∈ 〈tn−1, tn〉 and a co-volume p ∈ {1, . . .M} such that x ∈ p.

We denote Y = (tn, xp), and Φn
p := Φ(tn, xp). In order to get consistency, in our

case it is sufficient to prove the existence of positive integers k1, k2 such that

∣

∣

∣

S(̺, Y, Φ(Y ), Φ)

̺
− F (D2Φ(X), DΦ(X), Φ(X))

∣

∣

∣ 6 C(‖Φ‖3)(τ
k1 + hk2)

where by ‖Φ‖k we denote the norm of the functional space Ck(Q) and C(‖Φ‖3) is

a constant which can depend on a C3(Q) norm of the smooth function Φ. For our

scheme it can be written in the form

∣

∣

∣

∣

Φn
p − Φn−1

p

τ
− 1

bn−1
p m(p)

∑

q∈N(p)

an−1
pq (Φn

q − Φn
p ) − Φt(X)(24)

+ |∇Φ(X)|ε∇ · ∇Φ(X)

|∇Φ(X)|ε

∣

∣

∣

∣

6 C(‖Φ‖3)(τ
k1 + hk2).

We will prove inequality (24) by subsequently estimating the differences of particular

terms on the left-hand side. Since Φ ∈ C∞(Q) it is clear that

Φn
p − Φn−1

p

τ
= Φt(ξ, xp)

where ξ ∈ 〈tn−1, tn〉. Because |ξ − t| 6 τ and |x − xp| 6
√

2h we have

∣

∣

∣

Φn
p − Φn−1

p

τ
− Φt(X)

∣

∣

∣ 6 |Φt(ξ, xp) − Φt(t, x)| 6 C(‖Φ‖2)(τ + h).

The second term in (24) can be rewritten in the form

II = − 1

bn−1
p m(p)

∑

q∈N(p)

∫

epq

an−1
pq

Φn
q − Φn

p

h
ds.

Let us omit, for a moment, the upper time index for Φ, and let us use on each

edge epq for the difference term (Φq −Φp)/h the Taylor expansion in a way similar to

that used to derive the usual central difference approximation. Let xp = (x1p, x2p)
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and xqi
= (x1qi

, x2qi
) for i = 1, . . . , 4. Let s = (s1, s2) be a point on the boundary of

the co-volume p. Then

for a point s ∈ epq1
we have s =

(

x1p +
h

2
, x2p + t

h

2

)

, t ∈ 〈−1, 1〉 ,(25)

for a point s ∈ epq2
we have s =

(

x1p + t
h

2
, x2p +

h

2

)

, t ∈ 〈−1, 1〉 ,(26)

for a point s ∈ epq3
we have s =

(

x1p − h

2
, x2p + t

h

2

)

, t ∈ 〈−1, 1〉 ,(27)

for a point s ∈ epq4
we have s =

(

x1p + t
h

2
, x2p − h

2

)

, t ∈ 〈−1, 1〉 .(28)

Then for epq1
and epq3

we have

(29)
Φq − Φp

h
=

∂Φ(s)

∂ν
+ 2Φxy(s) · sgn(x1q − x1p)(x2q − s2) + O(h2)

and for epq2
and epq4

similarly

(30)
Φq − Φp

h
=

∂Φ(s)

∂ν
+ 2Φxy(s) · sgn(x2q − x2p)(x1q − s1) + O(h2).

Involving these relations in term II and using

(31)

∑

q∈N(p)

an−1
pq (w)

bn−1
p (w)

= 4

which holds for any function w ∈ B(Q) on a uniform rectangular grid due to (10)–

(11), we obtain

II = − 1

bn−1
p m(p)

∑

q=1,3

∫

epq

an−1
pq

(∂Φ(s)

∂ν
+ 2Φxy(s) · sgn(x1q − x1p)

× (x2q − s2)
)

ds

− 1

bn−1
p m(p)

∑

q=2,4

∫

epq

an−1
pq

(∂Φ(s)

∂ν
+ 2Φxy(s) · sgn(x2q − x2p)(x1q − s1)

)

ds

+ C(‖Φ‖3)h

= − 1

bn−1
p m(p)

∑

q∈N(p)

∫

epq

an−1
pq

∂Φ(s)

∂ν
ds

− 1

bn−1
p m(p)

∑

q=1,3

∫

epq

an−1
pq 2Φxy(s) · sgn(x1q − x1p)(x2q − s2) ds

− 1

bn−1
p m(p)

∑

q=2,4

∫

epq

an−1
pq 2Φxy(s) · sgn(x1q − x1p)(x2q − s2) ds + C(‖Φ‖3)h

= II1 + II2 + II3 + C(‖Φ‖3)h.
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Using parametrizations (25)–(28) we can rearrange term II2 (term II3 can be esti-

mated analogously) on the edge epq1
into the form

− 2h

2bn−1
p m(p)

∫ 1

−1

an−1
pq1

Φxy

(

x1p +
h

2
, x2p + t

h

2

)(

−t
h

2

)

dt

and on the edge epq3
similarly

− 2h

2bn−1
p m(p)

∫ 1

−1

an−1
pq3

Φxy

(

x1p − h

2
, x2p + t

h

2

)(

t
h

2

)

dt.

We can collect these two terms together, and using the fact that Φ ∈ C∞(Q) we

have

|II2| 6

∣

∣

∣

∣

h2

2bn−1
p m(p)

∫ 1

−1

t(an−1
pq1

− an−1
pq3

)Φxy

(

x1p +
h

2
, x2p + t

h

2

)

dt

+
h2

2bn−1
p m(p)

∫ 1

−1

tan−1
pq3

(

Φxy

(

x1p +
h

2
, x2p + t

h

2

)

− Φxy

(

x1p − h

2
, x2p + t

h

2

))

dt

∣

∣

∣

∣

6 ‖Φ‖2

|an−1
pq1

− an−1
pq3

|
2bn−1

p

+ C(‖Φ‖3)
an−1

pq3

2bn−1
p

h.

Putting all together we obtain

|II2| + |II3| 6 C(‖Φ‖2)h
an−1

pq3
+ an−1

pq4

bn−1
p

(32)

+ C(‖Φ‖3)
|an−1

pq1
− an−1

pq3
| + |an−1

pq2
− an−1

pq4
|

bn−1
p

.

The first term on the right-hand side can be estimated using (31) and we obtain an

O(h) term. In the second term we estimate the difference an−1
pq1

− an−1
pq3
(further part

can be treated analogously). We have

(33) |an−1
pq1

− an−1
pq3

| =
1

2

∣

∣

∣

1

|∇ΦT11
|ε

+
1

|∇ΦT12
|ε

− 1

|∇ΦT31
|ε

− 1

|∇ΦT32
|ε

∣

∣

∣

where T11 = T 1
pq1
, T12 = T 2

pq1
are two triangles corresponding to the points xp, xq1

and T31 = T 1
pq3
, T32 = T 2

pq3
are two triangles corresponding to the points xp, xq3

.

We can put together terms with T11 and T31 (analogously it can be done for terms
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with T12 and T32) and then use our approximation of the gradient, cf. (12), to get

1

|∇ΦT11
|ε

− 1

|∇ΦT31
|ε

=
|∇ΦT11

|2 − |∇ΦT31
|2

|∇ΦT11
|ε|∇ΦT31

|ε(|∇ΦT11
|ε + |∇ΦT31

|ε)

=
(Φ(xq1

) − Φ(xp))
2 − (Φ(xq3

) − Φ(xp))
2

h2|∇ΦT11
|ε|∇ΦT31

|ε(|∇ΦT11
|ε + |∇ΦT31

|ε)

+
(2(Φ(xr1

) − Φ(xm1
)))2 − (2(Φ(xr2

) − Φ(xm3
)))2

h2|∇ΦT11
|ε|∇ΦT31

|ε(|∇ΦT11
|ε + |∇ΦT31

|ε)
.

Because of the properties of Φ we have

Φ(xq1
) − Φ(xp)

h
= Φx(ξ),

Φ(xq3
) − Φ(xp)

h
= Φx(η),(34)

2(Φ(xr1
) − Φ(xm1

))

h
= Φy(ζ),

2(Φ(xr2
) − Φ(xm3

))

h
= Φy(θ)

where ξ lies on the abscissa with end points xp, xq1
, η lies on the abscissa with end

points xp, xq3
, ζ lies on the abscissa with end points xm1

, xr1
and θ lies on the

abscissa with end points xm3
, xr2
. Employing these facts and again the smoothness

properties of Φ we obtain

∣

∣

∣

1

|∇ΦT11
|ε

− 1

|∇ΦT31
|ε

∣

∣

∣

6
|(Φx(ξ) − Φx(η))(Φx(ξ) + Φx(η))| + |(Φy(ζ) − Φy(θ))(Φy(ζ) + Φy(θ))|

|∇ΦT11
|ε|∇ΦT31

|ε(|∇ΦT11
|ε + |∇ΦT31

|ε)

6

√
2‖Φ‖2h(|∇ΦT11

| + |∇ΦT31
|)

|∇ΦT11
|ε|∇ΦT31

|ε(|∇ΦT11
|ε + |∇ΦT31

|ε)

6
C(‖Φ‖3)h

|∇ΦT11
|ε|∇ΦT31

|ε
.

If we estimate also the difference for terms with T12 and T32 in (33) and similarly

the term
∣

∣an−1
pq2

− an−1
pq4

∣

∣ in (32) we finally arrive at

|II2| + |II3| 6 C(‖Φ‖3)h +
C(‖Φ‖3)h

bn−1
p

( 1

|∇ΦT11
|ε|∇ΦT31

|ε
+

1

|∇ΦT12
|ε|∇ΦT32

|ε
+

1

|∇ΦT21
|ε|∇ΦT41

|ε
+

1

|∇ΦT22
|ε|∇ΦT42

|ε

)

6 C(‖Φ‖3)h +
C(‖Φ‖3)h

ε
.
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Now, term II1 can be written as

II1 = − 1

bn−1
p m(p)

∑

q∈N(p)

∫

epq

an−1
pq

∂Φ(tn, s)

∂ν
ds

= − 1

bn−1
p m(p)

∑

q∈N(p)

∫

epq

1

|∇Φ(tn−1, s)|ε
∂Φ(tn, s)

∂ν
ds

− 1

bn−1
p m(p)

∑

q∈N(p)

∫

epq

(

an−1
pq − 1

|∇Φ(tn−1, s)|ε

)∂Φ(tn, s)

∂ν
ds = III1 + III2.

An approach similar to the above can also be used to estimate term III2. We again

for a moment omit the time variable in the function Φ and estimate the terms along

the opposite sides of the co-volume p boundary. Then for the edge epq1
we have

an−1
pq1

− 1

|∇Φ(s)|ε
=

1

2

( 1

|∇ΦT11
|ε

− 1

|∇Φ(s)|ε

)

+
1

2

( 1

|∇ΦT12
|ε

− 1

|∇Φ(s)|ε

)

,

and now we rearrange the first term containing T11 as follows:

1

|∇Φ(s)|ε
− 1

|∇ΦT11
|ε

=
|∇ΦT11

|2 − |∇Φ(s)|2
|∇ΦT11

|ε|∇Φ(s)|ε(|∇ΦT11
|ε + |∇Φ(s)|ε)

=
((Φq1

− Φp)/h)2 − (Φx(s))2 + (2(Φr1
− Φm1

)/h)2 − (Φy(s))2

|∇ΦT11
|ε|∇Φ(s)|ε(|∇ΦT11

|ε + |∇Φ(s)|ε)

=
((Φq1

− Φp/)h − Φx(s))((Φq1
− Φp/)h + Φx(s))

|∇ΦT11
|ε|∇Φ(s)|ε(|∇ΦT11

|ε + |∇Φ(s)|ε)

+
(2(Φr1

− Φm1
)/h − Φy(s))(2(Φr1

− Φm1
)/h + Φy(s))

|∇ΦT11
|ε|∇Φ(s)|ε(|∇ΦT11

|ε + |∇Φ(s)|ε)
.

We apply again the Taylor expansion using the parametrization (25) and get

Φq1
− Φp

h
− Φx(s) = 2Φxy(s)t

h

2
+ O(h2),

2(Φr1
− Φm1

)

h
− Φy(s) = Φyy(s)

h

2
(1 − 2t) + O(h2),

and the same can be done also for the second term containing T12. Now we introduce

some notation to simplify integrals in term III2. For both triangles T1i, i = 1, 2 we

define

n1i(s) =
(

2Φxy(s)t
h

2
+ O(h2)

)(Φq1
− Φp

h
+ Φx(s)

)

,

m1i(s) =
(

Φyy(s)
h

2
(1 − 2t) + O(h2)

)(2(Φr1
− Φm1

)

h
+ Φy(s)

)

,

p1i(s) = |∇ΦT1i
|ε|∇Φ(s)|ε(|∇ΦT1i

|ε + |∇Φ(s)|ε).
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Using this notation, the parametrization (25) and the fact that ∂Φ(s)/∂ν = Φx(s),

we get that the integral along epq1
in term III2 is equal to

(35)
h

2

∑

i=1,2

∫ 1

−1

Φx(s)
m1i(s) + n1i(s)

p1i(s)
dt.

For the edge epq3
we similarly obtain (denoting the variable on this edge by z)

an−1
pq3

− 1

|∇Φ(z)|ε
=

1

2

( 1

|∇ΦT31
|ε

− 1

|∇Φ(z)|ε

)

+
1

2

( 1

|∇ΦT32
|ε

− 1

|∇Φ(z)|ε

)

,

1

|∇Φ(z)|ε
− 1

|∇ΦT31
|ε

=
((Φp − Φq3

)/h − Φx(z))((Φp − Φq3
)/h + Φx(z))

|∇ΦT31
|ε|∇Φ(z)|ε(|∇ΦT31

|ε + |∇Φ(z)|ε)

+
(2(Φr2

− Φm3
)/h − Φy(z))(2(Φr2

− Φm3
)/h + Φy(z))

|∇ΦT31
|ε|∇Φ(z)|ε(|∇ΦT31

|ε + |∇Φ(z)|ε)

and using again

Φp − Φq3

h
− Φx(z) = 2Φxy(z)t

h

2
+ O(h2),

2(Φr2
− Φm3

)

h
− Φy(z) = Φyy(z)

h

2
(1 − 2t) + O(h2),

we can define

n3i(z) =
(

2Φxy(z)t
h

2
+ O(h2)

)(Φp − Φq3

h

)

+ Φx(z),

m3i(z) =
(

Φyy(z)
h

2
(1 − 2t) + O(h2)

)(2(Φr2
− Φm3

)

h
+ Φy(z)

)

,

p3i(z) = |∇ΦT3i
|ε|∇Φ(z)|ε(|∇ΦT3i

|ε + |∇Φ(z)|ε).

Now we get (notice that ∂Φ(z)/∂ν = −Φx(z)) that the integral along epq3
in

term III2 is equal to

(36) −h

2

∑

i=1,2

∫ 1

−1

Φx(z)
n3i(z) + m3i(z)

p3i(z)
dt.
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We can put together terms in (35) and (36) to obtain

h

2

∑

i=1,2

∫ 1

−1

Φx(s)
m1i(s) + n1i(s)

p1i(s)
− Φx(z)

m3i(z) + n3i(z)

p3i(z)
dt

=
h

2

∑

i=1,2

∫ 1

−1

((Φx(s) − Φx(z))
m1i(s) + n1i(s)

p1i(s)

+
h

2

∑

i=1,2

∫ 1

−1

Φx(z)
m1i(s) + n1i(s) − (m3i(z) + n3i(z))

p3i(z)
dt

+
h

2

∑

i=1,2

∫ 1

−1

Φx(z)((m1i(s) + n1i(s))
( 1

p1i(s)
− 1

p3i(z)

)

dt

= IV1 + IV2 + IV3.

In term IV1 we can see that

(37)
∣

∣

∣

m1i(s) + n1i(s)

p1i(s)

∣

∣

∣ 6
C(‖Φ‖3)h

|∇ΦT1i
|ε|∇Φ(s)|ε

6
C(‖Φ‖3)h

ε|∇ΦT1i
|ε

.

Since ε is fixed in our model and numerical scheme we get

|IV1| 6 C(‖Φ‖3)h
3
( 1

|∇ΦT11
|ε

+
1

|∇ΦT12
|ε

)

where C depends on ε. This dependence will not be explicitly stated in further

estimates.

Term IV2 can be estimated similarly. First we have

|m1i(s) − m3i(z)|

6

∣

∣

∣

(

Φyy(s)
h

2
(1 − 2t) + O(h2)

)(2(Φr1
− Φm1

)

h
+ Φy(s)

)

−
(

Φyy(z)
h

2
(1 − 2t) + O(h2)

)(2(Φr2
− Φm3

)

h
+ Φy(z)

)∣

∣

∣

6

∣

∣

∣(Φyy(z) − Φyy(s))
h

2
(1 − 2t) + O(h2)

∣

∣

∣

∣

∣

∣

2(Φr2
− Φm3

)

h
+ Φy(z)

∣

∣

∣

+
∣

∣

∣Φyy(s)
h

2
(1 − 2t) + O(h2)

∣

∣

∣

×
∣

∣

∣

(2(Φr2
− Φm3

)

h
+ Φy(z)

)

−
(2(Φr1

− Φm1
)

h
+ Φy(s)

)∣

∣

∣
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and analogously we can proceed with the term |n1i − n3i|. Then we get

|IV2| 6 C(‖Φ‖3)h
3

∑

i=1,2

∫ 1

−1

|Φx(z)|
( |∇ΦT3i

|ε + |∇Φ(z)|ε
p3i(z)

)

+ C(‖Φ‖2)h
3

∑

i=1,2

∫ 1

−1

|Φx(z)|
p3i(z)

6 C‖Φ‖3)h
3
( 1

|∇ΦT31
|ε

+
1

|∇ΦT32
|ε

)

+
C(‖Φ‖3)h

3

ε

( 1

|∇ΦT31
|ε

+
1

|∇ΦT32
|ε

)

6 C(‖Φ‖3)h
3
( 1

|∇ΦT31
|ε

+
1

|∇ΦT32
|ε

)

.

For term IV3 we get due to (37)

|IV3| 6
h

2

∑

i=1,2

∫ 1

−1

|Φx(z)| |(m1i(s) + n1i(s)||p3i(z) − p1i(s)|
p1i(s)p3i(z)

dt

6 C(‖Φ‖3)h
2

∑

i=1,2

∫ 1

−1

|Φx(z)| |p3i(z) − p1i(s)|
p3i(z)|∇Φ(s)|ε|∇ΦT1i

|ε
dt.

Now we first estimate

|p3i(z) − p1i(s)|
=

∣

∣|∇ΦT3i
|2ε|∇Φ(z)|ε + |∇ΦT3i

|ε|∇Φ(z)|2ε − (|∇ΦT1i
|2ε|∇Φ(s)|ε

+ |∇ΦT1i
|ε|∇Φ(s)|2ε)

∣

∣

6
∣

∣|∇ΦT3i
|2ε − |∇ΦT1i

|2ε
∣

∣|∇Φ(s)|ε + |∇ΦT1i
|ε

∣

∣|∇Φ(s)|2ε − |∇Φ(z)|2ε
∣

∣

+ |∇ΦT3i
|2ε

∣

∣|∇Φ(z)|ε − |∇Φ(s)|ε
∣

∣ + |∇Φ(z)|2ε
∣

∣|∇ΦT3i
|ε − |∇ΦT1i

|ε
∣

∣

6 C(‖Φ‖3)h
∣

∣|∇Φ(s)|ε + |∇ΦT1i
|ε

∣

∣ + C(‖Φ‖3)h(|∇ΦT3i
|2ε + |∇Φ(z)|2ε).

Using this estimate we obtain

|IV3| 6 C(‖Φ‖3)h
4

∑

i=1,2

∫ 1

−1

|Φx(z)|
∣

∣|∇Φ(s)|ε + |∇ΦT1i
|ε

∣

∣

p3i(z)|∇Φ(s)|ε|∇ΦT1i
|ε

dt

+ C(‖Φ‖3)h
3

∑

i=1,2

∫ 1

−1

|Φx(z)|(|∇ΦT3i
|2ε + |∇Φ(z)|2ε)

p3i(z)|∇Φ(s)|ε|∇ΦT1i
|ε

dt
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6 C(‖Φ‖3)h
4

∑

i=1,2

∫ 1

−1

|Φx(z)|
p3i(z)

( 1

|∇ΦT1i
|ε

+
1

|∇Φ(s)|ε

)

+ C(‖Φ‖3)h
3

∑

i=1,2

∫ 1

−1

|Φx(z) − Φx(s)|(|∇ΦT3i
|ε + |∇Φ(z)|ε)2

p3i(z)|∇Φ(s)|ε|∇ΦT1i
|ε

dt

+ C(‖Φ‖3)h
3

∑

i=1,2

∫ 1

−1

|Φx(s)|(|∇ΦT3i
|ε + |∇Φ(z)|ε)2

p3i(z)|∇Φ(s)|ε|∇ΦT1i
|ε

dt

6
C(‖Φ‖3)h

4

ε

∑

i=1,2

∫ 1

−1

|Φx(z)|
p3i(z)

+
C(‖Φ‖3)h

4

ε

×
∑

i=1,2

∫ 1

−1

|∇ΦT3i
|ε + |∇Φ(z)|ε

|∇ΦT3i
|ε|∇Φ(z)|ε|∇ΦT1i

|ε
dt

+ C(‖Φ‖3)h
3

∑

i=1,2

∫ 1

−1

(|∇ΦT3i
|ε + |∇Φ(z)|ε)

|∇ΦT3i
|ε|∇Φ(z)|ε|∇ΦT1i

|ε
dt

6
C(‖Φ‖3)h

4

ε2

( 1

|∇ΦT31
|ε

+
1

|∇ΦT32
|ε

)

+
C(‖Φ‖3)h

4

ε2

( 1

|∇ΦT11
|ε

+
1

|∇ΦT12
|ε

)

+
C(‖Φ‖3)h

3

ε

( 1

|∇ΦT11
|ε

+
1

|∇ΦT12
|ε

)

6 C(‖Φ‖3)h
4
( 1

|∇ΦT11
|ε

+
1

|∇ΦT12
|ε

)

+ C(‖Φ‖3)h
3
( 1

|∇ΦT11
|ε

+
1

|∇ΦT12
|ε

)

.

If we use all these estimates for all edges in III2 and use the relation (31) be-

tween bn−1
p and an−1

pq we finally obtain

|III2| 6 C(‖Φ‖3)h + C(‖Φ‖3)h
2.

In term III1 we can use Green’s theorem to obtain

III1 = − 1

bn−1
p m(p)

∫

p

∇
( ∇Φ(tn, w)

|∇Φ(tn−1, w)|ε

)

dw

= − 1

m(p)

∫

p

( 1

bn−1
p

− |∇Φ(tn−1, w)|ε
)

∇ ·
( ∇Φ(tn, w)

|∇Φ(tn−1, w)|ε

)

dw

− 1

m(p)

∫

p

|∇Φ(tn−1, w)|ε∇ ·
( ∇Φ(tn, w)

|∇Φ(tn−1, w)|ε

)

dw

= − 1

m(p)

∫

p

( 1

bn−1
p

− |∇Φ(tn−1, w)|ε
)

∇ ·
( ∇Φ(tn, w)

|∇Φ(tn−1, w)|ε

)

dw

− |∇Φ(tn−1, ξ)|ε∇ ·
( ∇Φ(tn, ξ)

|∇Φ(tn−1, ξ)|ε

)

= V1 + V2
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where ξ is some point in the co-volume p from the mean value theorem. First we

estimate the difference (again we omit for a moment the variable tn−1)

(38)
∣

∣

∣

1

bn−1
p

− |∇Φ(w)|ε
∣

∣

∣ =

∣

∣

∣

∣

∣

1/|∇Φ(w)|ε − bn−1
p

bn−1
p · 1/|∇Φ(w)|ε

∣

∣

∣

∣

∣

.

We can use (10) and (11) in the numerator of (38) and get

1

|∇Φ(w)|ε
− bn−1

p

=
1

Np

∑

q∈N(p)

1

2

(

( 1

|∇Φ(w)|ε
− 1

|∇Φn−1
T 1

pq
|ε

)

+
( 1

|∇Φ(w)|ε
− 1

|∇Φn−1
T 2

pq
|ε

)

)

.

From all terms in the sum we present the estimation of only one (concerning the

triangle T11 = T 1
pq1
). The other terms can be treated in an analogous way. We

use (12) and (34) to obtain

∣

∣

∣

∣

1

|∇ΦT11
|ε

− 1

|∇Φ(w)|ε

∣

∣

∣

∣

=

∣

∣

∣

∣

|∇ΦT 1
pq1

|2 − |∇Φ(w)|2

|∇ΦT11
|ε|∇Φ(w)|ε(|∇ΦT11

|ε + |∇Φ(w)|ε)

∣

∣

∣

∣

=

∣

∣

∣

∣

((Φq1
− Φp)/h)2 − (Φx(w))2 +

(

2(Φr1
− Φm1

)/h
)2 − (Φy(w))2

|∇ΦT11
|ε|∇Φ(w)|ε(|∇ΦT11

|ε + |∇Φ(w)|ε)

∣

∣

∣

∣

=

∣

∣

∣

∣

(Φx(ξ) − Φx(w))(Φx(ξ) + Φx(w)) + (Φy(ζ) − Φy(w))(Φy(ζ) + Φy(w))

|∇ΦT11
|ε|∇Φ(w)|ε(|∇ΦT11

|ε + |∇Φ(w)|ε)

∣

∣

∣

∣

.

Now using the properties of Φ and the inequality a + b 6
√

2
√

a2 + b2 + ε2 holding

for all a > 0, b > 0, we conclude

∣

∣

∣

∣

1

|∇ΦT11
|ε

− 1

|∇Φ(w)|ε

∣

∣

∣

∣

6
C(‖Φ‖3)h

|∇ΦT11
|ε|∇Φ(w)|ε

.

Employing this type of estimates in (38) we have

(39)
∣

∣

∣

1

bn−1
p

− |∇Φ(y)|ε
∣

∣

∣ 6 C(‖Φ‖3)h.

Now, the term V1 can be rearranged to

V1 = − 1

m(p)

∫

p

( 1

bn−1
p

− |∇Φ(tn−1, w|ε
) ∆Φ(tn, w)

|∇Φ(tn−1, w)|ε
dw

− 1

m(p)

∫

p

( 1

bn−1
p

− |∇Φ(tn−1, w|ε
)

∇Φ(tn, w) · ∇
( 1

|∇Φ(tn−1, w)|ε

)

dw

= V12 + V13.
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The estimation of the term V12 is straightforward; due to the properties of Φ and

the inequality (39) we get

|V12| 6 C(‖Φ‖2)
h

ε
6 C(‖Φ‖2)h.

For the term V13 we use

∇
( 1

|∇Φ(tn−1, w)|ε

)

= − 1

|∇Φ(tn−1, w)|3ε
Ψ(tn−1, w)

where for the two dimensional problem if Z = (tn−1, w) then

Ψ(Z) =

(

Φx(Z)Φxx(Z) + Φy(Z)Φxy(Z)

Φx(Z)Φxy(Z) + Φy(Z)Φyy(Z)

)

with the property

(40) |Ψ(Z)| 6 C(‖Φ‖2)|∇Φ(Z)|.

Now for V13, again taking into account the estimate (39) and the properties of Φ, we

have

|V13| 6 C(‖Φ‖2)h
1

m(p)

∫

p

|∇Φ(tn, w)| 1

|∇Φ(tn−1, w)|2ε
dw

6 C(‖Φ‖2)h
1

m(p)

∫

p

∣

∣∇Φ(tn, w) ± |∇Φ(tn−1, w)|
∣

∣

1

|∇Φ(tn−1, w)|2ε
dw

6 C(‖Φ‖2)h
( τ

ε2
+

1

ε

)

6 C(‖Φ‖2)h + C(‖Φ‖2, ‖Φ‖1)hτ.

Finally, we couple together the term V2 and the last term on the left-hand side of

the inequality (24) and define

V I = −|∇Φ(tn−1, ξ)|ε∇ ·
( ∇Φ(tn, ξ)

|∇Φ(tn−1, ξ)|ε

)

+ |∇Φ(X)|ε∇ ·
( ∇Φ(X)

|∇Φ(X)|ε

)

where X = (t, x), the points x and ξ belong to the co-volume p and t ∈ 〈tn−1, tn〉.
Since

|∇Φ(X)|ε∇ ·
( ∇Φ(X)

|∇Φ(X)|ε

)

= ∆Φ(X) − ∇Φ(X) · Ψ(X)

|∇Φ(X)|2ε
where the vector Ψ is defined as above, we obtain

|V I| 6

∣

∣

∣−∆Φ(tn, ξ) +
∇Φ(tn, ξ) ·Ψ(tn−1, ξ)

|∇Φ(tn−1, ξ)|2ε
+ ∆Φ(X) − ∇Φ(X) ·Ψ(X)

|∇Φ(X)|2ε

∣

∣

∣.
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Because |t − tn| 6 τ and |x − ξ| 6
√

2h, we immediately have

|∆Φ(X) − ∆Φ(tn, ξ)| 6 C(‖Φ‖3)(τ + h).

We rearrange the remaining terms to

∇Φ(tn, ξ) · Ψ(tn−1, ξ)

|∇Φ(tn−1, ξ)|2ε
± ∇Φ(X) ·Ψ(tn−1, ξ)

|∇Φ(tn−1, ξ)|2ε
± ∇Φ(X) · Ψ(X)

|∇Φ(tn−1, ξ)|2ε
− ∇Φ(X) ·Ψ(X)

|∇Φ(X))|2ε
.

Using the properties of Φ, Ψ and (40) we have

∣

∣

∣

∇Φ(tn, ξ) ·Ψ(tn−1, ξ)

|∇Φ(tn−1, ξ)|2ε
− ∇Φ(X) · Ψ(tn−1, ξ)

|∇Φ(tn−1, ξ)|2ε

∣

∣

∣ 6
C(‖Φ‖3)(h + τ)|∇Φ(tn−1, ξ)|

|∇Φ(tn−1, ξ)|2ε
6 C(‖Φ‖3)(h + τ).

Now denoting W = (tn−1, ξ) we can use

|Ψ(W ) − Ψ(X)|

=

∣

∣

∣

∣

Φx(W )Φxx(W ) + Φy(W )Φxy(W ) − Φx(X)Φxx(X) − Φy(X)Φxy(X)

Φx(W )Φxy(W ) + Φy(W )Φyy(W ) − Φx(X)Φxy(X) − Φy(X)Φyy(X)

∣

∣

∣

∣

6 C(|Φx(W )Φxx(W ) + Φy(W )Φxy(W ) − Φx(X)Φxx(X) − Φy(X)Φxy(X)|
+ |Φx(W )Φxy(W ) + Φy(W )Φyy(W ) − Φx(X)Φxy(X) − Φy(X)Φyy(X)|)

6 C(‖Φ‖3)(h + τ).

Then we have

∣

∣

∣

∣

∇Φ(X) ·Ψ(tn−1, ξ)

|∇Φ(tn−1, ξ)|2ε
− ∇Φ(X) · Ψ(X)

|∇Φ(tn−1, ξ)|2ε

∣

∣

∣

∣

6
C(‖Φ‖3)(h + τ)|∇Φ(X)|

|∇Φ(tn−1, ξ)|2ε
6 C(‖Φ‖3)(h + τ)

|∇Φ(X) ± |∇Φ(tn−1, ξ)|
|∇Φ(tn−1, ξ)|2ε

6 C(‖Φ‖3)
( (h + τ)2

ε2
+

h + τ

ε

)

.
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Finally, using (40) we successively get

∣

∣

∣

∇Φ(X) ·Ψ(X)

|∇Φ(tn−1, ξ)|2ε
− ∇Φ(X) · Ψ(X)

|∇Φ(X))|2ε

∣

∣

∣

6 |∇Φ(X) ·Ψ(X)|
∣

∣

∣

∣

|∇Φ(X)|2 − |∇Φ(tn−1, ξ)|2
|∇Φ(X)|2ε|∇Φ(tn−1, ξ)|2ε

∣

∣

∣

∣

6 C(‖Φ‖2)(h + τ)|∇Φ(X)|2

×
(

1

|∇Φ(X)|ε|∇Φ(tn−1, ξ)|2ε
+

1

|∇Φ(X)|2ε|∇Φ(tn−1, ξ)|ε

)

6 C(‖Φ‖2)(h + τ)

( |∇Φ(X) ±∇Φ(tn−1, ξ)|
|∇Φ(tn−1, ξ)|2ε

+
1

|∇Φ(tn−1, ξ)|ε

)

6 C(‖Φ‖3)
( (h + τ)2

ε2
+

h + τ

ε

)

6 C(‖Φ‖3)((h + τ)2 + (h + τ)),

which completes the proof. �
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