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Abstract. We show stability and consistency of the linear semi-implicit complementary
volume numerical scheme for solving the regularized, in the sense of Evans and Spruck,
mean curvature flow equation in the level set formulation. The numerical method is based
on the finite volume methodology using the so-called complementary volumes to a finite
element triangulation. The scheme gives the solution in an efficient and unconditionally
stable way.
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1. INTRODUCTION

The curvature driven level set equation [30]

(1) wp — |VulV - (‘g—”u‘) —0

as well as its nontrivial generalizations are used in applications as the motion of
interfaces (free boundaries) in thermomechanics (solidification, crystal growth) and
computational fluid dynamics (free surface flows, multi-phase flows of immiscible
fluids, thin films), smoothing and segmentation of images and surface reconstructions
in the image processing, computer vision and computer graphics (see e.g. [32], [29],
[2], [1], [6], [19], [31], [15], [17]), and in many further situations related to the motion
of implicit curves or surfaces. On the other hand, the convergence of numerical
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schemes to the unique viscosity solution [9], [14], [7] of equation (1) is often an
open problem; it is an exception to find an analysis of convergence of the methods
used for solving the curvature driven flows in the level set formulation. The level
set equation (1) represents the so-called Eulerian approach to curve and surface
evolutions. It moves level sets (curves in 2D, surfaces in 3D) of the function u in the
normal direction with a velocity proportional to the (mean) curvature. The curves
and surfaces are represented implicitly and thus the formulation automatically allows
topological changes in the interface which yields robustness of the method.

In [10] Deckelnick and Dziuk prove convergence of their finite element numerical
scheme to the solution of the mean curvature flow of graphs which can be further
adjusted, using the Evans and Spruck regularization [14], to the situation of mo-
tion of level sets by the mean curvature [11]. Convergence of a particular finite
difference scheme has been proved by Oberman in [28] using the technique of Bar-
les and Souganidis [3]. More results are available for schemes based on other than
level set formulation. The convergent schemes for the so-called direct (paramet-
ric, Lagrangean) approach to curvature driven flows were suggested and studied
e.g. in [13], [21]; for further Lagrangean methods we refer e.g. to [12], [25], [26].
Other than the level set, but also Eulerian, approach is represented by the phase
field method where the convergence of numerical approximation to the solution of
the so-called Allen-Cahn equation (modelling diffused interface evolution) is studied,
see e.g. [27], [4].

In this paper we prove consistency and stability of the semi-implicit fully discrete
complementary volume scheme. Our semi-implicit scheme leads to the solution of
linear systems in every discrete time step (for other semi-implicit approaches for
solving nonlinear diffusion see e.g. [18], [22], [16], [17]), so it is much more efficient
than a fully implicit nonlinear scheme [33], and it is unconditionally stable without
any restriction on time step in contrast to many other explicit schemes [30], [32],
[29], [31]. Consistency and stability are two properties in the theory of Barles and
Souganidis [3] which are used to show convergence of a numerical scheme to solutions
of fully nonlinear second order partial differential equations and we discuss them in
this paper. Monotonicity is the third question regarding our scheme that still remains
open.

The derivation of our numerical method for solving equation (1) is based on the
finite volume methodology (see e.g. [20], [22]). We construct the so-called comple-
mentary volumes (co-volumes) to a finite element triangulation [33], [16]. Integrating
equation (1) in the co-volume gives the weak (integral) formulation of the problem
from which the computational scheme naturally follows. One of our main motivations
for solving the curvature driven level set equation and its generalizations comes from

image processing applications [15], [16], [17], [23], [24], [8]. The co-volume scheme has
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been applied to smoothing and segmentation of 2D and 3D medical images in [24],
[8] and is based on the original semi-implicit method studied in [16]. While in [8] it
has been shown experimentally on non-trivial examples of exact solutions that the
method converges to the true solution, in this paper we show theoretically its con-
sistency and stability. In the proofs we restrict ourselves to 2D situation and only to
the type of grids which we use in image processing applications, cf. the next section,
mainly in order to avoid too technical details.

In Section 2 we present in detail our numerical scheme and in Section 3 we prove its
properties. For numerical experiments we refer to [16], [24], [23], [8] where co-volume
schemes have been applied to problems of interface motion and image smoothing and

segmentation.

2. SEMI-IMPLICIT CO-VOLUME SCHEME

The unknown function u(t, z) in (1) is defined in Q7 = I xQ, Q C R? is a bounded
Lipschitz domain, I = [0, 7] is a time interval, and the equation is usually accompa-
nied with zero Dirichlet (e.g. in image segmentation) or zero Neumann (e.g. in image
smoothing) boundary conditions and by an initial condition

(2) u(0,z) = u’().

To construct the numerical scheme we choose a uniform discrete time step 7 = T/N
and replace the time derivative in (1) by the backward difference. The nonlinear
terms of the equation are taken from the previous time step while the linear ones
are considered on the current time level, which means semi-implicitness of the time
discretization.

Semi-implicit in time discretization. Let 7 be a given time step and u° a given
initial level set function. Then, forn = 1,..., N, we look for a function u", a solution
of the equation

n—1

1 u™ —u Vu®
®) Vur—1 71 *V'(\vun—l\)

Let us introduce now the fully discrete scheme. In the image processing appli-
cations, a digital image is given on a structure of pixels with rectangular shape in
general (rectangles with solid lines in Fig. 1). Since in every discrete time step of the
method (3) we have to evaluate the gradient of the level set function at the previous
step [Vu"~!|, we put a triangulation (dashed lines in Fig. 1) onto the computational
domain and then take a piecewise linear approximation of the level set function on
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Figure 1. The co-volumes (pixels, solid lines), the triangulation for the co-volume method
(dashed lines), and the degree of freedom (DF) nodes (round points).

this triangulation. Such an approach gives a constant value of the gradient per
triangle, allowing simple, fast and clear construction of the fully-discrete system of

equations.

As can be seen in Fig. 1, in our method the centers of pixels are connected by a
new rectangular mesh and every new rectangle is splitted into four triangles. The
centers of pixels will be called the degree of freedom (DF) nodes. By this procedure
we also get further nodes (at crossings of solid lines in Fig. 1) which, however, will
not represent degrees of freedom. We will call them the non-degree of freedom (NDF)
nodes. Let a function u be given by discrete values in the DF nodes. Then in the
additional NDF nodes we take the average value of the neighboring DF nodal values.
By using the so defined values in the NDF nodes, a piecewise linear approximation uy
of u on the triangulation can be built. Let us note that the computational domain 2
is given by the union of all triangles contained in the triangulation 7 given by the
previous construction. It means €2 is equal to the union of all inner pixels and a
half-strip of the boundary pixels, cf. Fig. 1. For 7; we construct a complementary
(dual) mesh. We modify the basic approach given in [33], [16] in such a way that
our co-volume mesh consists of cells p associated only with the DF nodes p of 75,
say p=1,..., M. Since there will be a one-to-one correspondence between the co-
volumes and the DF nodes, without any confusion we can use the same notation for
them.

For each DF node p of 7, let N(p) denote the set of all DF nodes ¢ connected
to the node p by an edge. We denote cardinality of this set by NN,. The edge
connecting p and ¢ will be denoted by o0, and its length by h,,. Then every co-
volume p is bounded by the lines (co-edges) ey, that bisect and are perpendicular
to the edges 0,4, ¢ € N(p). By this construction, the co-volume mesh corresponds
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exactly to the pixel structure of the image inside the computational domain 2. We
denote by &, the set of triangles having o,, as an edge. In the situation depicted in
Fig. 1, every &4 consists of two triangles. For each T' € &4 let cT be the length of
the portion of e, that isin T', i.e., c;!;q = m(epqeNT'), where m is the measure in R4,
Let N, be the set of triangles that have the DF node p as a vertex. Let u; be a
piecewise linear function on the triangulation 7. We will denote the constant value

of [Vup| on T € T;, by |Vur| and define the regularized gradients by

(4) |Vur|: = /€2 + |Vur|?.

We will use the notation u, = up(x,) where x, is the coordinate of a (DF or NDF)
node of the triangulation 73, and also Uy = Up,+(Tp, tn) Where uyp, , is our piecewise
linear in space and time approximation of the solution to the regularized level set

equation. Let uf) be the piecewise linear interpolation of the initial function u°

on
the triangulation 7.
With this notation we are ready to derive the co-volume spatial discretization.

As is usual in finite volume methods [20], we integrate (3) over every co-volume p,

p=1,..., M, and then using the divergence theorem we get an integral formulation
of (3)
(5) / 1 u® — un—l Z / u™ ds
|Vur—1] T \Vu” 1 81/
P 4€N (p)

where v is a unit outer normal to the boundary of p. Now the exact “fluxes” on the
right-hand side and the “capacity function” 1/|Vu™~!| on the left-hand side will be
approximated numerically using the piecewise linear reconstruction of ™! on the
triangulation 7. In such a way, for the approximation of the right-hand side of (5)

we get

1 ur —ul
(6) Z ( Iq;q ‘V n— 1> qh £ .

gEN(p) “TEEL, pa
For the left-hand side of (5) we use
m(T Np 1 ul—ult
(7) m(p) Y fn())vnl —
TEN, p ‘ Up ‘

where m(p) is the measure in R? of the co-volume p. In general, we assume for every
pair p, q

hghpqgﬁﬁ <h0

| =
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and define

) dpy = ) g

However, we restrict our considerations to uniform rectangular co-volumes with size
length h, as plotted in Fig. 1. Then, e.g.,

9) m(p) = h*, m(epg) = hpg = h,  dpg =1, sz;q = %m(epq)-
We denote four neighbouring DF nodes of z,, by 4, (east), x4, (north), z,, (west),
Zq, (south), and the corners of the co-volume p by z,, (top right), z,, (top left),
zr, (bottom left), x,, (bottom right). The middle point of the edge e, is denoted
by m,;, 1 =1,...,4.

Taking into account the e-regularization (4) we can now define coefficients, namely

(10) a1 1 1 ( 1 1 >
rq n—1 ’
[Vupg ‘e |V Tl e |V T2 €
1 1 1
(11) byl —— = — —
‘VU ‘5 Np qu(p ‘VU ‘5

where TI}W T2 € &pq. For example, for the triangle with vertices z, z4,, ,, we have

no1y (g —up)?  (2(ur, — um,))?
(12) |v“Tp1q1 e = \/ B2 + B2 +e?
Now our computational method can be written as follows.

Fully-discrete semi-implicit co-volume scheme. Let ug, p=1,...,M be
given discrete initial values of the segmentation function. Then for n =1,..., N we
look for uy, p=1,..., M satisfying

(13) by~ T Z a,, q —uy) = b;flm(p)uzfl.
q€N(p)

Remark 2.1. The co-volume algorithms [33], [16] studied previously for the
level-set-like problems have used either “left oriented” or “right oriented” triangula-
tions and no NDF nodes (see Fig. 2). However, then the level set curve or surface
evolution is influenced by the grid effect. Of course this effect is satisfactory weak-
ened by refining the grid (e.g. in interface motion computations, cf. [16]). In image
processing we work with fixed given pixel/voxel structure, and we do not refine this
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structure, so we want to remove such “non-symmetry” of the method. This can be
done by averaging the two, “left” and “right” solutions, or implicitly by taking the
combination of triangulations as plotted in Fig. 1. Of course, usage of such a “sym-
metric” triangulation can be accompanied also by the linear finite element method
of Deckelnick and Dziuk [10], [11], considering also the NDF nodes as degrees of
freedom. But this would increase the number of unknowns in systems to be solved
by factor two, which can be critical in case of image processing applications, usually
with a huge number of pixels/voxels given. Without any construction of a triangu-
lation, we could also use a bi-linear representation of the level set function on finite
elements corresponding to the rectangular grid formed by the centers of pixels and
build a tensor-product finite element method. But then we would face a problem of
non-constant gradients in the evaluation of nonlinearities. The same problem would
arise when considering the complementary volume method given by the dual grid
corresponding to pixels and by a bi-linear representation of the function on the rect-
angular grid formed by centers of pixels. Again, such technique would require the
evaluation and integration of the absolute value of the gradient of bi-linear functions
on the co-volume sides. From the above points of view, our method gives the small-
est possible number of unknowns and the simplest (piecewise constant) nonlinear

coefficients evaluation.
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Figure 2. By dashed lines we plot the “left oriented” triangulation (left) and the “right
oriented” triangulation (right). The “symmetric” triangulation corresponding to
our method is plotted in Fig. 1.

Such a “symmetric” primal-dual grid can be built also in three dimensions. The
construction of a co-volume mesh in 3D has to use the 3D tetrahedral finite element
grid to which it is complementary. For this goal we use the following approach simi-
lar to the so called centered-cubic-lattice method known from computer graphics [5].
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N

Figure 3. Neighbouring pyramids which are joined together (left); joining these pyramids
and then splitting them into four parts give a tetrahedron of the 3D grid (middle);
the intersection of the tetrahedron with the bottom face of the co-volume (right).

First, every cubic voxel is splitted into 6 pyramids with their vertex given by the
voxel center and their base surfaces given by the voxel boundary faces. The neigh-
bouring pyramids of neighbouring voxels are joined together to form an octahedron
which is then splitted into 4 tetrahedrons using diagonals of the voxel boundary
face—see Fig. 3. In this way we get a 3D tetrahedral grid. Two nodes of every
tetrahedron correspond to the centers of the neighbouring voxels and the other two
nodes correspond to the voxel boundary vertices; every tetrahedron intersects the
common face of neighbouring voxels. Now again only the centers of voxels represent
DF nodes, the additional nodes of tetrahedrons are NDF nodes which are used only
in piecewise linear representation of the level set function. Using such co-volumes
one obtains a computational scheme with the same structure as (13) but the averages
in definitions (10), (11) are taken over all tetrahedrons crossing the faces and the

entire co-volume, respectively.

3. CONSISTENCY AND STABILITY OF THE NUMERICAL SCHEME

We first give the necessary notation and definitions. Let us assume that ¢ > 0
is fixed. The Evans and Spruck regularization of the curvature driven level set
equation (1) can be written in the form

Vu® Vu

(14) up — trace((I T TV

)D%) =0 in IxQ
where D?u denotes the symmetric matrix of the second order spatial derivatives of u.

GX,p) = trace((I - ﬂj;) : X)7

If we denote
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where (X, p) € 8¢ x R? and S9 is the space of d x d symmetric matrices, then G is
an elliptic operator [9]. We denote by B(Q), Q = I x €, the set of all uniformly
bounded functions in a domain @. In [14], existence of the unique smooth solution
is proved.

Let us consider the equation

(15) F(D*u,Du,u) =0 in Q

where in the spatially two dimensional case we define

Ut Ut Utz Uty 0 00 1
Du=1{ u; |, D*u={ uw Ups Ugy | » I=(0 1 0], I={0
Uy Uty Upy Uyy 0 0 1 0
and F: 8% x R? x R — R is given by
- - (Z-D I-D
I~Du—trace((I— ( E)®( u))D2u) in Q,
|Z - Dul?

F(D?u, Du,u) = { u(0,z) —u’(z) in Q,

@oru on I x 9N
ov

where v is an outer unit normal to 0f2. It is now clear from the properties of G above
that I possesses the elliptic property, that means, for all (p,u) € R? x R and for all
M, N € 8¢ we have

F(M,p,u) < F(N,p,u) provided M > N.
Let us have an approximation scheme of the form
(16) S0, Y, uf(Y),uf) =0 in Q

where S: RT x Q x R x B(Q) — R is locally uniformly bounded.

Definition 3.1. The approximation scheme S given by (16) has the monotonicity
property if for all 0 > 0, Y € Q, ¢ € R and u,v € B(Q) the inequality u > v implies

(17) S(Q’KC? u) g S(Q? Y7 C? U)'

Definition 3.2. The approximation scheme S given by (16) has the stability
property if for all ¢ > 0 there exists a solution

(18) u? € B(Q)
of (16) with a bound independent of p.
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Definition 3.3. The approximation scheme S given by (16) has the consistency
property if for all ® € C*°(Q) and for all X € @ we have

(19) by 5@ YY) +£,P+¢)

= F(D*®(X), D®(X), d(X)).
oo B ( (X), D®(X), ®(X))

We recall the following important statement:

Theorem 3.1 ([3]). Let the approximation scheme S given by (16) have the
stability, monotonicity and consistency properties. Then, as ¢ — 0, the solution of
the scheme converges locally uniformly to the unique continuous solution of (15).

Our aim is to transform the numerical scheme (13) to the form (16) and then
prove the stability and consistency properties. The numerical scheme (13) can be
written in the form (16) provided ¢ = 7, Y = (t,, 1), u?(Y) = uy, u® = up, ; where
up,r(z,y) is a piecewise linear in space and time (i.e. on the triangulation 75 and
among discrete time steps) approximation of solution, and

n n n— T n— n n
(20) S(o, (tn, @p), upt s tn,7) = uly —up ™' + m Z apg (uy = ug)dpg =0
p a€N(p)
where ug = ug(xp) for all p=1,..., M. Let us note that the time step 7 is usually

coupled with the spatial step h, e.g., by the relation 7 ~ h? which is natural in
solving parabolic PDEs.

The zero Neumann boundary conditions are realized using the mirror image ex-
tension of the solution values outside the image domain, i.e., adding one outer strip
of pixels (co-volumes) ¢ along the boundary pixels p, cf. Fig. 1, and prescribing

n
q

an(ulk — ul)dpq are simply not present in the summation term of the scheme (13)

or in its equivalent form (20), which is also equivalent to prescribing aj - L=0ifpis

ug = u, for these additional pixel values. The result is that the boundary terms

a boundary co-volume and ¢ is an additional one.

Since we assume that the computational domain (2 is given by the union of all
triangles in 7}, cf. Fig. 1, the DF nodes of boundary pixels lie on 92 and we prescribe
zero values to them in case of the Dirichlet boundary condition. The only change in
the scheme is that the system contains less number of unknowns (only DF nodes of
inner pixels) and that a?!(u? — u”)dp, in the summation term contain the known

pq \"p q
value ug = 0 if ¢ is a boundary pixel.
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Theorem 3.2. There exists a unique solution u} = (uf,...,u%,) of the sche-
me (13) for any value of the regularization parameter € > 0 and for any time step
n=1,...,N. Moreover, for the fully discrete numerical solution uy , the estimate

(21) @) < lualle. @)

holds, which gives the stability property of the scheme.

n—1
Pqg
q € N(p), of the system (13) are symmetric and nonpositive. The positive term b7~

Proof. It follows from definition (10) that the off-diagonal elements —7a

given by (11) affects only the diagonal which is equal to b7~ 'm(p)+7 > ajydpg.
q€N(p)
Thus, the matrix of the system (13) is a symmetric and diagonally dominant

M-matrix which implies that it always has a unique solution. Let us write (13) in
the form (20)

T -1 -1
(22) Uy + W D ap gy —ul)dpg = up
P 4€N(p)
and let max u) = max(uy,...,u};) be achieved at the point p.

In the case of the zero Neumann boundary condition, no matter whether p is an
inner or a boundary point, the whole second term on the left-hand side of (22) is

n—1
p

prove a similar relation for the minima and together we have

nonnegative and thus u;’ <u < max(ull_l7 o 71L7W_1). In the same way we can

(23) minu, < minu), < maxu

< maxug, n < N,

0 n n
p P P
which implies the estimate (21).

In the case of the zero Dirichlet boundary condition, first let p be a boundary
DF node in which the maximum of the discrete solution is attained at the nth time
step (this maximum is of course equal to 0). It is clear that it is less than or equal to
the maximum at the previous time step n— 1, which can be either positive (if realized
in an inner node) or zero (if realized in a boundary node). Secondly, if p is an inner
node, similarly to the considerations for the Neumann boundary condition above,
we have that the whole second term on the left-hand side of (22) is nonnegative and
thus uy < u;‘_l which is less or equal to the maximum at the time step n — 1. Then
we get recursively the estimate (21) again. O
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Theorem 3.3. For any fixed € > 0 our numerical scheme possesses the consis-
tency property.

Proof. Let X = (t,z) and ® € C™(Q). There exists a time step n €
{0,1,...N} such that ¢ € (t,—1,t,) and a co-volume p € {1,... M} such that z € p.
We denote Y = (t,,, ), and @} := ®(t,,7p). In order to get consistency, in our
case it is sufficient to prove the existence of positive integers ki, ko such that

5(0,Y,2(Y), ®)

; — P(D*®(X), DB(X), (X)) < C(|®]|s)(™ + h*2)

where by ||®||;, we denote the norm of the functional space C*(Q) and C(||®||3) is
a constant which can depend on a C3(Q) norm of the smooth function ®. For our
scheme it can be written in the form

(I)z ,@Z*l 1 n—1 n
(24) - = D> ap (@) — dp) — 04(X)
T bp m(p) gEN(p)
Vo(X)
+ |VO(X)[.V - =i
IVe(X)le

C(l@fls)(r* + h*2).

We will prove inequality (24) by subsequently estimating the differences of particular
terms on the left-hand side. Since ® € C*°(Q) it is clear that

n n—1
q)p — (I)p

T

=, (67 xp)

where £ € (t,_1,t,). Because |¢ — t| < 7 and |z — x,| < v/2h we have

n n—1
(I)p — (I)p

T

= @u(X)| < |@1(&3p) — Dult 2)] < C(IP]2) (7 + ).

The second term in (24) can be rewritten in the form
_ % —%
Il = ) Z / ds.
qGN (Ohe

Let us omit, for a moment, the upper time index for ®, and let us use on each
edge ep, for the difference term (&, — ®,,)/h the Taylor expansion in a way similar to
that used to derive the usual central difference approximation. Let x, = (215, Z2p)
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and x4, = (14,,%2q,) for i =1,...,4. Let s = (s1, s2) be a point on the boundary of

the co-volume p. Then

(25)  for a point s € e,q, we have s = (xlp =, Tap + t%) te(—1,1),
(26)  for a point s € e,q, we have s (x LEzp g), te(-1,1),
(27)  for a point s € e,q, we have s (xlp — =, Zop + tg), te(-1,1),
(28)  for a point s € e,q, we have s = (mlp +t 2)7 te(-1,1).

Then for e,q, and epq, we have

)

(29) q (I)P _ 8<I>(s)

h )

and for epq, and ep,, similarly

+ Q(I)wy(s) ) Sgn(mlq - mlp)($2q — s2) + O(h2)

b, - 0P
o) PP 0% o) santam, — an) (g — )+ OR)

Involving these relations in term I7 and using

S )
D) T w

which holds for any function w € B(Q) on a uniform rectangular grid due to (10)-

(11), we obtain

II= — b”1 Z/

q13

2y (8) - sgn(z1g — 71p)

X (z2q — 52)) ds

b”1 Z/

ey(8) - sgn(zeq — 22p) (214 — 51)) ds

C(l1@lls)h

q 2,4
- ey 2 T
qEN (»)"”°
Z al” 12<I> (s) - sgn(z1qg — T1p)(z2g — s2)ds
q 1,37 ¢p

nl
b q24

=m+m+m+wwm-

53 / 0520 (5) 521 — 1)z — 52) s + (1@l )
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Using parametrizations (25)—(28) we can rearrange term Il (term I3 can be esti-
mated analogously) on the edge e,q, into the form

2h /1 ol ( + h +th)( th> dt
—_—— a zy | T -, =) —t=
ng—lm(p) o, y\*lp 2 2p 2 2

and on the edge ¢4, similarly

2h o h IR
—_ ap P, (m — = +t—) (t— dt.
260 m(p) /,1 pas Fry (TP T g0 T2p Ty 2)

We can collect these two terms together, and using the fact that ® € C*(Q) we
have

2 1
11| < hi/ ta"~! — a"=1)d,, (mlp + 2 +tﬁ) dt
2b$71m(p) _1 Paq1 pgs 2 2

h? vt h h
* ity ot (e 5o +15)

h h
— (I)zy (xlp — 571’2;, + t§>) dt‘

%50’ — Ggs Oy’
S @l = + Cll12ls) gparh.

Putting all together we obtain

anfl +an71
(32) L] + [I13] < C(||‘P||2)h%
p
n—1 n—1 n—1 n—1
+ C(”q)HB) |anI1 ~ Opgs | + ‘anQ ~ Opgs
byt

The first term on the right-hand side can be estimated using (31) and we obtain an

O(h) term. In the second term we estimate the difference a2,! —a’-! (further part

can be treated analogously). We have

I 11 e R R
2 ‘v(pT11|€ ‘v(pT12|€ |V(I)T31|€ |V(I)T32|€

where T1y = T, , Tia = T, are two triangles corresponding to the points ,, 24,
and T3, = Ty, , Tsy = Ty, are two triangles corresponding to the points ,, zg,.

We can put together terms with 777 and 751 (analogously it can be done for terms
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with T2 and T32) and then use our approximation of the gradient, cf. (12), to get

1 1 |V(I)Tu|2 - |V¢T31|2

Vo7, e [VOr,le VO, ||V, (VP | + [V, |c)
_ (P(zq,) — ‘I)(xp))Q — (P(zgs) — ‘I)(xp))Q
h2|vq>T11 |E‘V(DT31 ‘8(‘V(DT11 |5 + |V¢T31 |5)
2(®(zr,) = O(2m,)))* = (2P(2r,) = P(2my)))*
hQ‘Vben ‘s|v(DT31 |€(‘V<I)T11 ‘s + ‘V(DTM ‘s)

Because of the properties of & we have

(34) w =9, (5)7 —tl P o D, (7])7

2(®(xr,) = P(zm,)) _

where ¢ lies on the abscissa with end points z), z4,, 1 lies on the abscissa with end
points x,, x4, ¢ lies on the abscissa with end points x,,,, ., and 6 lies on the
abscissa with end points xn,,, ©r,. Employing these facts and again the smoothness
properties of ® we obtain

1 1
Vor,le [V,
[(@2(8) = P2 (1)(Pa (&) + P ()] + |(Py(C) = Py (0))(Py () + Py (6))]
|V(I)T11 |€|V(I)T31 ‘s(‘vq)Tu |€ + |V(I)T31 |€)
V2(|@2h( VP, | + [V, |)
h |V(I)T11 |€‘V(DT31 ‘s(‘vq)Tu |€ + |V(I)T31 |€)
Cl®lls)h
A |V(I)T11 |E‘V®T31 ‘a .

<

If we estimate also the difference for terms with Th2 and 732 in (33) and similarly
-1

the term |a? ! — al'!| in (32) we finally arrive at

(1o + [IIs] < C([|]|3)h +

TR S
b;)l_l ‘V(DTH‘E|V(I)T31|E |V¢T12|E‘V(DT32‘E

1 1
+ + )
|V¢T21|E|V¢T41 ‘8 ‘V(DTM‘S‘V(DT42|E

< o)y + LU
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Now, term II; can be written as

S)
IL = — ) Z / ds

qEN (p)
1 0D (ty, s )
= n— 1 Z
b qGNp) ep |V(I) n—1,S )| 81/
1 0D (ty, s)

ds =111 +III>.

bn by 'm(p) e% )/e q ‘V‘b(tn—hsﬂe) ov ° D
(p

An approach similar to the above can also be used to estimate term I71,. We again
for a moment omit the time variable in the function ® and estimate the terms along
the opposite sides of the co-volume p boundary. Then for the edge e, we have

1 1 1 ( 1 1 ) n 1 ( 1 1 )
a - == — = — ,
P VO(s)le  2\[Ver,le  [VO(s)le 2\|VOr,|.  [V&(s)le
and now we rearrange the first term containing 77, as follows:

1 1 _ |V¢T11‘2 - |v¢(8)‘2

|V(I)(5)‘6 |V(I)T11|€ ‘V(DT11|E|V(I)(5)‘6(|V(I)T11‘s + ‘V‘I)(SNE)
_ (Pg, —Pp)/1)* — (Ra(s))* + (2(Pr, — Pin)/7)? — (Dy(5))?
|V¢T11 |E|v¢(8)‘8(‘V®T11 ‘8 + ‘V(D(SNE)
_ ((Rg, = Pp/)h — P(s)) (g, — Pp/) 1 + Pu(s))
‘V(DTH ‘5|V@(5)‘5(|V@T11 ‘s + ‘V‘I)(SNE)
2(Pr, = Py )/h = Py (5))2(Pry — Pimy)/h + Py(5))
|V¢T11 |E‘V(D(s)|5(‘v(bT11 ‘8 + ‘V(D(SNE)

We apply again the Taylor expansion using the parametrization (25) and get

Lo = g (s) = 20, ()2 + O?),
2(®%ry — Pmi)

)
h
h 2

— @, (s) = Byy(s) (1—2t)+0(h2)

and the same can be done also for the second term containing 775. Now we introduce
some notation to simplify integrals in term I1I,. For both triangles T3,, i = 1,2 we
define

n1i(s) = (2<I>my(s)tﬁ + O(h2)> (w n @m(s)),

mii(s) = (éyy(s)g(l ~20)+ 0(h?)) (M”T_‘Dml) +0y(5)),

pli(s) = ‘V(DTM|E|vq>(8)‘8(|vq>Tu‘8 + ‘V(D(SNE)
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Using this notation, the parametrization (25) and the fact that 0P(s)/0v = P, (s),
we get that the integral along e, in term I15 is equal to

(35) = Z / 5) L plj(r ;L“( mua(s) + () g,

112

For the edge e,q, we similarly obtain (denoting the variable on this edge by z)

S 1 .

Y TNRG) 2\ Ve, - VeE)/ | 2\[Vern,l: Vo))

1 . 1 _ (Pp — Pgs)/h — Pu(2))((Pp — Pgy) /1 + Pu(2))
|VCI>(Z)‘E ‘V(PTSI ‘8 |V¢T31|E‘V®(Z)|E(|V¢T31 ‘8 + ‘V(P(Z”E)

(2(Pry — Py ) /b — Py(2))(2(Pry — Pmy)/h+ Py(2))
‘V(PTSI ‘E‘V(P(Z”E(‘V(PTM |E + |v¢(’z)‘8)

and using again

2((I)T2 B (bms)

we can define

nai(z) = (2<I)my(z)tg+0(h2)>((pp e )+<1> (2)
min(2) = (2, ()0 (1 20) + o)) (2P Pma) g o).

p3i(z) = |V(I)T3i

€|V(I)(Z)‘€(|V(I)T31

e+ VO(2)]e).

Now we get (notice that 0®(z)/0v = —®,(z)) that the integral along e,q, in
term 111, is equal to

(36) _h Z/ @x(z)wdt.

2 =127 -1 p3i(2)
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We can put together terms in (35) and (36) to obtain

h ! mii(s) + nii(s) m3i(2) + ngi(2)

2 i—ZLQ/l Pole) p1i(s) = ®ole) p3i(2) &
S [ (s — @, ()il £ ails)
3 i_szlucbgc( )= 0. (2)

5 / L () Maile) £ i) — Omi(2) +n(2)

2 Py | p3i(2)

h 1 1 1
L33 [ Bl omi(s) + o) (s - )

=1IVi +1IVo +1V3.

In term I'V; we can see that

mi; (S) —+ nh-(s)
p1i(s)

cllells)h _ _ C2[3)h

37 < < .
37) Non Ve < Vor, |-

Since € is fixed in our model and numerical scheme we get

1 1
Wil < COh (5,7 + 98,
111€ 12 1€

where C' depends on €. This dependence will not be explicitly stated in further

estimates.

Term I'V5 can be estimated similarly. First we have

|mii(s) —msi(2)]
<| (éyy(s)g(l ~20) + O(n?)) (M +0y(s))

h D)

(@020 002) (2 Pm) g )]

122



and analogously we can proceed with the term |ny; — ns;|. Then we get

IVa| < C(|®]5 hBZ/ ‘(\V‘PT&J#IW(z)\E)

i=1,2 p3i(2)

cpelon Y [ 124
1P312

i=1,2

1 1
< O)|@)3)h?
C” ”3) (‘V(PT31|E * ‘V(I)T32|E>

C(||<I>||3)h3( 1 1 )
€ ‘V(PTSI ‘8 ‘V(stz ‘8

1 1
<o(|® h3( + .
(H H3) |V(I)T31|€ |V(I)T32|€)

For term IV3 we get due to (37)

V3] < Z / |m“()+;ff<(§>)p5?(>) Pl
2 |p31() pu(s)\
C(1@s hz / B TRl

Now we first estimate

p3i(2) — p1i(s)]
= HV(PTSL‘?‘V(P(Z”E + |V¢T31‘E‘V®(Z)|g - (|V¢T11|§‘V(b(s)|5

+ \V‘I’Th \V‘I’( )2
Hv(pTSz ‘v(ple Hv(p( )|€ + ‘v(ple Hv(p( ) | |
+ ‘v(pTSi a“v(p( )| |V(I) ‘ + ‘V(D | HV(I)Tsz ‘v(pTli 6’

ClI@l)h[[Ve(s)le + [VOr, || + C(|@]3)h(IVP1, 2 + [VO(2)[2).

Using this estimate we obtain

g, (s H\v«b |- + [Vor, ||
I (||®]3)h* el gt
Vsl < lli2ls) Z/ P (VD) IV, |

D, ( b, |2 P
H(I)H h3 Z/ | |v T31‘ +‘V ( )| )dt
i=1,2 p31 |V(I)( )‘ |V(I)T1i €
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1 1
(||®[|5)h* / | +
cliell) Z 1 p3i(z |V(I)T11|E |v¢(3)‘8>

1|<I> B, ()] V1, . + [VB(2)].)?
cliels hgz/ P ()VEE)] Vor, |-

i=1,2 si(

Lo, ( P P 2
H(I)H h3 Z / | |v T31‘5 + ‘V ( )|E) dt
i=1,2 p3Z ‘V(P( )| |V(I)T1i €

< C(l®lls)h* /1 [22(2) | CUI2]s)h"

£ im127/-1 p3i(2) €

< Z/ |VOry,|e + |VO(2)le dt
i=1,2 1 ‘v(pTB'L ‘V(P( )| ‘v(pTli €

H(DH h3 Z / ‘V(I)Tsl‘a + ‘V(I)(Z”E) dt

dt

Py’ 1 |V<I)T31 |V<I)( )‘ |V(I)T1i €
C(||<D||3)h4( NP D (. 0 S
52 ‘V(bTm ‘8 ‘V(DTsz ‘5 52 ‘V(DTH ‘E ‘V(lez |E
Col (L 1 )
£ |V(I)T11|s |V(I)T12|€
1 1 1 1
COBI R i + C(||@|)3)h? + :
(H ||3) (‘v(pTu‘& ‘v(an‘&) (H H3) <‘v(pT11|€ |V(I)T12|€)

If we use all these estimates for all edges in II]; and use the relation (31) be-

tween bg_l and ap,” I we finally obtain
[I11] < C([|@[ls)h + C(]|@]13)h*

In term I11; we can use Green’s theorem to obtain

1 / Vo(t,,w)
I1h=--—/[V|(—=—————)dw
1 bg_lm(p) P (|V<I>(tn_1,w)\8)

- [t (S

_ L/pv@(tnhw)lsv' (Mﬂv))g) dw

m(p) VO (tn_1,w
1 1 VO(t,,w)
- W/(b— = IVt w)e) V- (g, o) 4
- V09T (i, )~V
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where £ is some point in the co-volume p from the mean value theorem. First we
estimate the difference (again we omit for a moment the variable ¢,,_1)

1
bpt

1/|[Ve(w)| — by~
bp~ - 1/|Ve(w)le

(38) — [Ve(w)l| =

We can use (10) and (11) in the numerator of (38) and get

# _ bn—l
Vo(w)le P
1 1( 1 1 1 1 )
= — — _ + _ .
n-1 n—1
Ny qe%;p) 2 (|v<1>(w)\s Ve, \8) (|V<I>(w)\g vy ‘8)

From all terms in the sum we present the estimation of only one (concerning the

triangle 77, = qul) The other terms can be treated in an analogous way. We

use (12) and (34) to obtain

’ ‘ [Vor [2—[Ve(w)?
‘v(pTu‘e ‘V(D |V(I)T11| ‘V(D )| (|V(I)T11|€+|V(I)(w)‘€)

_\(( - )/h) (@ ()2 + (2(Br, — Pin,)/B)° — (@ (w)
|V¢T11| ‘V(I)(w)|5(|v¢Tu|s |V<I)( 8)

)|
_ ’(‘Dx(é) — P (w)) (P2 (€) + Po(w)) + (Py(C) — Py (w))(Py (O) + (w))‘
VO, o[V (w)[e (VP [ + [VO(w)|c) '

Now using the properties of ® and the inequality a + b < v/2v/a2 + b2 + €2 holding
for all a > 0, b > 0, we conclude

o2l
Vo, Ve

‘ 1 1
Ver, | [VO(w)le

Employing this type of estimates in (38) we have

1

39 —
( ) b$71

— [Ve(@)le| < C(|@]l3)h-

Now, the term V7 can be rearranged to

1 1 AD(t,, w)
Vie - — [ (—— — |VO(t,_ 1, w|. )| —— ) g
) /p(b;;l IV&(tn-1,0l) g, oy

1 1 1
[ (— = |V®(tn_1, VO(tn,w) V(——— ) d
m(p)/p(bg—l Ve (ta—s “"5) (n; w) (\W(tn_l,wn) v
= Viz + Vis.
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The estimation of the term Vs is straightforward; due to the properties of ® and
the inequality (39) we get

o |

Viz| < C([[@]]2) = < C([|@]]2)-

For the term Vi3 we use

1 1
v( ) - (b 1w
R A Z T A
where for the two dimensional problem if Z = (¢,,—1, w) then

(0u(2)00a(Z) + By (2) 01y (2)
*2)= <¢I<Z><bmy<Z> T @y<Z>¢yy<Z>)

with the property
(40) (¥ (2)| < C(|2]]2)[VE(Z2)].

Now for Vi3, again taking into account the estimate (39) and the properties of ®, we

have
Vis] < C(I@]l2)h— /th I ea
nyW) | TS 9
13 ) VO (tn_1,w )I2
1 1
c(ll® VO(tn,w) £ |VO(tn-1,w)|| sz d
(10l 92000 £ 1900000 |
T 1

@)k ( 5 + =) < O+ C(|@]l, [ ®)hT

Finally, we couple together the term V5 and the last term on the left-hand side of
the inequality (24) and define

= —|V®(ty_1,8)[.V - ( Vo(tn, ) V(I)(XL)

wat, o)tV (e

where X = (¢, ), the points z and £ belong to the co-volume p and ¢t € (t,,—1,t,).

Since
Vo(X) Vo(X) ¥(X)
VO(X)|.V =) =AP(X) — ———— =
VLY (agor) = 22 - “vag
where the vector ¥ is defined as above, we obtain
VO(tn, &) - ¥(tn-1,¢) Vo(X) - ¥(X)
VI < |-AP(t,,E) + +AP(X)— —————=
- R 2 TR R P9
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Because |t —t,| < 7 and |z — £| < v/2h, we immediately have

[AD(X) — AD(tn, )| < C(|@[3)(7 + h).

We rearrange the remaining terms to

VO(tn, ) Wty 1,6) | VX)Wl 1,6) | VE(X) - W(X)  VH(X) W(X)
Vot 1,6 Vo L OR VOt LR V(X))

Using the properties of ®, ¥ and (40) we have

VO(tn,§) - ¥(tn1,§) VX)) - ¥(tn 1,8 _ CULI)(h+T)[VE(En 1,8
|v¢(tn—17§)|g ‘V(b(tn—lvg)‘g h ‘V(b(tn—lvg)‘g
< CI@ ) (h + 7).

Now denoting W = (t,—1,£) we can use

(e (W) — ¥ (X))
_ (I)w(W)(I)M(W) + q’y(W)q)wy(W) - q)w(X)(I)M(X) - (I)y(X)(I)wy X)
a q)w(W)q)wy(W) + q’y(W)q)yy(W) - <I>$(X)<I>$y(X) - (I)y(X)(I)yy(X)
< C(|(I)w(W)(I)M(W) + q’y(W)(I)wy(W) - (I)w(X)(I)ww(X) - (I)y(X)q)wy(X)‘
+ ‘q)x(W)q)wy(W) + (I)y(W)(I)yy(W) - q)w(X)(I)wy(X) - (I)y(X)q)yy(X)D
< O(|®5)(h + 7).
Then we have
VO(X) W(tn-1,6)  VO(X) - (X)
IVO(tn-1,8)[2 [VO(tn-1,8)[2
C2ls)(h + ) VO(X)|
h ‘V‘P(tn,l’{)@

IVO(X) £ |VO(t_1,8)|
[VO(t,—1,8)[2

T2 T
<ol (MHE+ 2T,

<C(lI®fs)(h+7)
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Finally, using (40) we successively get

VO(X) ¥(X) V(X)- @(X)’

IVO(tn—1,8)[2 [Ve(X))[2

VO(X)]> =~ [Ve(tr—1,§

IVO(X) 2V (tn-1,8)[2
)

< C(|@]l2)(h + )| V(X))

< [Ve(X)- \II(X)|’ |

1 1
g (IV‘P(X)IsIVQ(tnu{:“)I? " IV‘P(X)IEIV‘I’(tnmS)Is)

VO(X) £ V(1 1.6)| |
“(”‘b”z)(“”( ST |v<1><tn17s>|s>

(h+7)2 h+7
< ol (P25 22Ty < ol @+ )2 + (4 7))
which completes the proof. 0
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