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K Y B E R N E T I K A — V O L U M E 34 ( 1 9 9 8 ) , N U M B E R 4, P A G E S 4 8 5 - 4 9 4 

ABOUT THE MAXIMUM INFORMATION 
AND MAXIMUM LIKELIHOOD PRINCIPLES 
IN NEURAL NETWORKS1 

I G O R V A J D A A N D J I Ř Í G R I M 

Neural networks with radial basis functions are considered, and the Shannon information 
in their output concerning input. The role of information-preserving input transformations 
is discussed when the network is specified by the maximum information principle and by 
the maximum likelihood principle. A transformation is found which simplifies the input 
structure in the sense that it minimizes the entropy in the class of all information-preserving 
transformations. Such transformation need not be unique - under some assumptions it may 
be any minimal sufficient statistics. 

1. I N T R O D U C T I O N 

In this paper the attention is restricted to the important class of so-called radial 
basis function neural networks, which are intensively studied in the recent literature. 
These networks were introduced by Bromhead and Lowe (4). Other contributions 
can be found in Specht [25], Moody and Darken [19], Lowe [18], Casdagli [5], Poggio 
and Girosi [23], Xu et al [33], Streit and Luginbuhl [27], Watanabe and Fukumizu 
[31], Ukrainec and Haykin [29] and others. A systematic treatment can be found in 
Chap. 7 of Haykin [11] and Chap. 30 of Devroye et al [8]. 

A radial basis function network (RBF network) consists of several layers. The 
input layer is a collection of d real data sources 

x = (x1,x2,...,xd) e Md. 

The second hidden layer consists of M units. The rath unit responds by 

ým(x) = — K ( — ] , 1 < ra < 
0"m \ Cm J 

м 

to the input x. Here K : Md —• M is a probability density on Md> symmetric about 

0 G Md and called a symmetrical kernel, i.e. 

K(y) = <f(\\y\\2) for a\\yeMd, <p : M-+ R, 

1 The present work has been supported by the Grant of the Academy of Sciences of the Czech 
Republic No. A2075703 and partially by the Complex Research Project of the Academy of Sciences 
of the Czech Republic No.Kl075601. 
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tm £ Md is a center of symmetry of <f>m, and <rm > 0 characterizes a dispersion of 
responses around this center. All hidden layer units are supposed to be activated by 
the identity function with a zero threshold, i.e., (<^i(a;),..., <J>M(X)) is the output of 
the hidden layer. The output layer consists of K linear units (neurons) responding 
by 

M 

pk =^2 ™km<l>m, 1 < & < K, (1.1) 
m = l 

to the output ( 0 i , . . . , <j>M) = (^i(-c), . . . , 0A/(#)) of previous layer. The network 
output y is either the vector ( p i , . . . ,PK) a deterministic- or stochastic one. 

The RBF networks are of a great practical interest because they can easily be re­
alized. Indeed, the rnth hidden unit can formally be decomposed into a simple linear 
network consisting of one layer of d nods with scalar inputs Xj, 1 < j < rf, and con­
stant weights l/crm, using the identity activation functions and thresholds tmj/y/o^. 
The output neuron has weights Wj coinciding with the outputs (XJ —tmj)/(Tm of the 
respective nods, and an activation function equal to the above considered <p with a 
zero threshold. 

Possible example of (p is the continuous sigmoidal function 

<p(r) _ / (2*) 
" 1 (2*) 

)-fe"'-/2 І f r > 0 , 
r) 2(1 + e r ! 2 ) otherwise, 

leading to the Gaussian symmetric kernel 

£(y) = (27r)-ie-liyll2l2. 

The hidden nonlinear layer can thus be replaced by two linear layers, so that the 
whole RBF network can be realized by a three-layer perceptron. 

Similar three-layer perceptron realization (see Streit and Luginbuhl [27]) applies 
also to the more complicated networks with anisotropic RBF's. These differ from 
the above considered isotropic RBF's by that the argument (a; — tm)<rm

l of /C() 
in the definition of <f)m(x) is replaced by (x — tm)Bm

l, i.e. that a regular d x d 
norm weighting matrix Bm stands at the place of "norm weighting scalar" <rm (cf. 
pp. 258-259 in Haykin [11]). Then 

1 

*W-І55-Лд:«-W)-
Thus, in particular, the Gaussian kernel leads to multivariate Gaussian probability 
densities with means tj and covariance matrices Sj = Bj Bj. 

Early information-theoretic analyses of perceptual system have been published 
soon after Shannon [26]. E.g. Attneave [2] analyzed visual perception on the basis 
of Shannon information, Uttley [30] suggested a network for adaptive pattern recog-
niton using the same information, and many other simillar thoughts may be found 
in various sources. 

More recently Linsker [16,17] proposed a learning method based on the princi­
ple of maximum information preservation (the infomax principle). This principle 
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consists in the maximization of the average mutual information between input and 
output x and y of the neural network. 

The concept of mutual information has been used also by other authors. Thus 
Plumbley and Fallside [22] formulated the maximum information preservation prin­
ciple of Linsker as a minimization of information loss. They assumed the presence 
of additive Gaussian noise and analyzed a single-layer network to perform the di­
mensionality reduction. The information loss of their scheme is upper-bounded by 
the entropy of the reconstruction error and, in this way, the information loss lim­
itation problem is related to the principal component analysis. Some implications 
of both information principles for neural network learning algorithms has been later 
analyzed in more details by Plumbley [21]. 

Atick and Redlich [1] have investigated the principle of minimum redundancy 
that applies to noisy channels. A linear matrix operator is optimized to minimize 
a specially introduced redundancy measure. Haykin [11] has shown that, despite 
the differences, the principle of minimum redundancy and the principle of maximum 
information preservation lead to similar results. 

Kay [14] considered a neural network with input vector divided into primary and 
contextual part. Again the relationship between the primary- and the contextual 
subvectors is measured by the average mutual information to analyze the underlying 
structural dependences. 

Becker and Hinton [3] have extended the idea of maximizing mutual information 
to unsupervised processing of the image of a natural scene. Specifically, their unsu­
pervised learning procedure maximizes the mutual information between higher-level 
outputs with adjacent receptive fields. Inspired by the work of Becker and Hinton 
[3], Ukrainec and Haykin [29] developed an information-theoretic model for the en­
hancement of radar images. For more details about information theoretic approaches 
to neural networks se chapter 11 in Haykin [11]. 

The RBF networks are usually optimized by a hybrid method (cf. Hertz et al [12]) 
which means that only the weights of the third layer are trained in a supervised way 
whereas the training of the hidden-layer components is unsupervised. This approach 
has a good reason since consistent estimation of all network parameters is a difficult 
problem. Unfortunately the global performance of the RBF neural networks strongly 
depends on the quality of RBF. In particular the information loss caused by improper 
RBF cannot be repaired by optimizing the weights of the third layer (cf. Grim [10]). 

For appropriately specified weights Wkm the responses pk(x) are becoming mix­
tures of probability densities <^i(ic),..., <J>M(P^) which can be viewed as approxima­
tions to given data generating probability densities /jk(-c), 1 < k < K. 

This opens the possibility to optimize the choice of RBF's by means of the max­
imum likelihood principle (ML principle). Of particular interest are iterative sta­
tistical schemes leading to maximum likelihood estimates of parameters of RBF's 
from given parametrized families. These schemes provide the possibility of iterative 
learning. 

Since the late sixtieth there is an iterative computational scheme called EM algo­
rithm (cf. Dempster et al [7]) which is widely applicable to estimation of mixtures. 
Design of RBF networks by means of EM algorithm has been studied e. g. by Jacobs 
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and Jordan [13], Xu and Jordan [32], Haykin [11], Palm [20], Streit and Luginbuhl 
[27] and Watanabe and Fukumizu [31]). 

For the sake of completness, let us mention that there exist also non-parametric 
statistical principles leading asymptotically to optimal RBF networks (see Devroye 
et al [9], in particular Chapter 30, and further references there in, and also Vajda 
and Grim [28]). 

In this paper we are interested in the infomaxand ML principles. A difficulty with 
their application arises when the dimensionality of the input grows. The complexity 
of application of both the gradient ascent on the input-output Shannon information 
in the case of infomax, and the EM agorithm in the case of ML, grows with the 
dimension d of the input space Md. By using the idea of statistical sufficiency, we 
characterize a class of transformations T of the input x which preserves the input-
output Shannon information I(x;y), i.e. satisfies the relation 

I(T(x);y) = I(x;y), 

and has an entropy H(T(x)) not greater than H(x) and also not greater then 
H(U(x)) for any transformation U with I(U(x);y) = I(x\y). Since the minimal 
entropy means a minimal source complexity (in the sense of numerical description, 
see Risannen [24]) the class of transformations T is an important instrument for 
reduction of complexity of RBF neural networks. 

2. THE RESULTS 

Let the weights Wkm of the above introduced RBF network be nonnegative, and 
let the network output Y be random in the sense that an output neuron Y = k is 
selected to be fired with conditional probability 

Pr(Y = k\x) = —^—=Pk(x), l<k<K. (2.1) 

Further let X be a random input distributed by a probability density f(x) on Md. 
Then 

p(x) = (Pl(x),...,pK(x)) (2.2) 

is the conditional distribution of Y given X = x and 

p = (pi,...,Pк) = p(x)f(x)dx 

is an unconditional distribution of Y. Thus 

K 

I(X;Y)= í 5 > ( æ ) Ь g ^ 
1«* [fťi Pk 

f(x)dx (2.3) 

is the Shannon input-output information. 
According to the infomax principle, the information (2.3) is to be maximized. 

Based on this principle, several iterative learning rules for centers tm of Gaussian 
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RBF s and for the weight matrices W = (wkm) performing a gradient ascent on the 
information have been proposed and succesively applied in the literature (see e.g. 
Haykin [11], pp. 459-460). 

Let us suppose that the information (2.3) is finite. Denote by E the expectation 
with respect to the distribution f(x) of X on Md, and consider the strictly concave 
function 

K 
hK(u) = hK(ux,...,uK) = -^uk\oguk 

fc=i 

in the domain u > 0 (with OlogO = 0). By (2.3) , 

I(X;Y) = H(Y) - H(Y\X) = hK(p) - EhK(p(X)). 

If T : Md —• T is a measurable mapping into a space with cr-algebra A then 

I(T(X);Y) = H(Y) - H(Y\T(X)) = hK(p) - EhK(Ep(X)\T~1A)). 

As well known, I(T(X);Y) < I(X;Y) so that 

EhK(E(p(X)\T~1A)) > EhK(p(X)). (2.4) 

Further, by Jensen's inequality for conditional expectations (cf. (A.16) on p. 208 of 
Liese and Vajda [15]), 

hK(E(p(X)\T~1A))>hK(p(X)) a.s. (2.5) 

and this relation holds with > replaced by = if and only if 

p(X) = E(p(X)\T~xA) a.s. (2.6) 

Thus 
I(T(X);Y) = I(X;Y) (2.7) 

implies that the equality in (2.4) takes place, so that (2.5) holds with the sign of 
equality and, consequently, (2.6) is satisfied. In other words, (2.7) implies T~lA-
measurability of the function p(x). It follows from here in particular that if To (a;) = 
p(x) is a mapping from Md into the simplex To C ffiK of stochastic If-vectors with 
the ^--algebra Ao of Borel subsets then 

TQ-UO C T'lA. (2.8) 

Let now E and T be defined as above and consider the strictly convex function 
xjj(u) = — logti in the domain u > 0, naturally extended to u = 0. If 

Exp(f(x)) < oo and Ef(x) < oo (2.9) 

then we define entropy of T(X) by the formula 

H(T(X)) = SVWIT-M)). 
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By the above mentioned Jensen's inequality it holds for every T 

H(T(X)) < H(X) = E^(f(X)). (2.10) 

and H(T(X)) > 1 — Ef(X) > —oo because ip(u) > 1 — u. By the same inequality 
the inclusion Bo C B implies 

i>(E(f\B0)) = rP(E(E(f\B)\B0)) < E(^(E(f\B))\B0) a.s., 

which in turn implies the monotonicity relation 

ExP(E(f\BQ)) < Ei>(E(f\B)). 

From here and (2.8) we obtain the following. 

Asser t ion 1. If a measurable mapping T satisfies (2.7) and the RBF network 
input X satisfies (2.9) then 

H(p(X))<H(T(X)). (2.11) 

If, morover, there exists a mapping To such that p(X) = To(T(X)) then the equality 
takes place in (2.11). 

The first statement follows from the fact that (2.7) implies that Bo — T$lAo 
is included in B = T~lA and, by the monotonicity mentioned above, H(p(X)) — 
EtP(E(f\B0)) at most equals H(T(X)) = E*P(E(f\B)). 

The second statement follows from the first one and from the following obvious 
generalization of (2.10): if T is as in (2.10) and T : T —> T is measurable then 

H(f(T(X))) < H(T(X)). 

Example 1. Let us consider isotropic Gaussian RBF's centered at tm £ Md with 
variances a2 > 0 and let the weight matrix W = (wkm) be stochastic. Then 

M 

Pk(x) = J2 w*m(27roi)exp ( - [n(x - tm)2 + (n - 1 ) 4 ] /(2am)) 
m = l 

where x and s^ are sample mean and variance specified explicitely below and 

1 K 

f(x) = -ftYlptW-
Jk=i 

By the first statement, the vector pk(x),\ < k < K achieves the minimal entropy 
among all random transforms T(X) preserving the information. Since the bivariate 
statistic 

T » = (I7(x),3J(«)) = (x,4) = f - f> , -±~rit(*i ~ *A 
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is sufficient for the family (pk(x) : 1 < k < K), it satisfies (2.7). Thus by the second 
statement, T*(X) = (X,S2) achieves the minimum entropy too. 

Any optimization, iterative adaptation etc. can thus be based on collections of 
bivariate data (.X", S2) instead of the d -variate data X. 

The model of Example 1 can be generalized as follows. Let p = (p\,... ,PK) 
be a stochastic If-vector, C = (ckm) a stochastic K x M matrix, and let the RBF 
network weights be defined by 

Wkm = PkCkm-

Then the formula 
M 

fk(x)= J2 Ckrn<f>m(x). (2 .12) 
m = l 

defines a family T = (fk : 1 < k < K) of probability densities on Md. In this case 

Pk(x) =Pkfk(x). 

Let the density of network input X be given by the formula 

K K 

f(x) = Y,Pk(x) = £>/*(*). (2.13) 
k=i k=i 

The conditional distribution of the network output Y given X = x then satisfies 
the relation 

/ x Pkfk(x) 

*'<*> = ~1W 
and the unconditional distribution is given by the A"-vector p. 

The distributions (p, T) define a Bayesian statistical experiment described by a 
random parameter 0 distributed by p and a random observation X conditionally 
distributed by (2.12) given 0 = k. The pair ( 0 , X ) has the same distribution as 
( X , 7 ) . Therefore 

7 ( X ; 0 ) = / ( X ; Y ) . 

If 0 is the input of channel C then the output is the random variable Z with 

K 
A Pr(Z = m) = Y^PkCkm = 9m. 

k=l 

All random variables under consideration form a Markov chain 0 —• Z —+ X —» Y. 
It follows from here (cf. Theorem 2.8.1 in Cover and Thomas [6]) 

7(0; X) < 7(0, Z\X) = I(Z\ X). (2.14) 

For network inputs conditionally distributed by mixtures (2.12) with anisotropic 
Gaussian RBF's <f>m(x), Grim [10] studied the ML estimator of weights ckm and 
parameters implicitely figuring in functions <j>m(x). He established the convergence 
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of EM algorithm leading to iterative specification of the network, based on indepen­
dent samples of data Xki, •. •, Xkn distributed by fk for 1 < k < K. In this context 
an important role plays the descriptive Bayesian experiment (q — (q\y..., qM), To = 
(<fim : 1 < m < M)), with the unknown parameter Z1 sample X distributed condi­
tionally under Z = m by <j)m and unconditionally by 

M 

Y^ <lrn<t>m(x) = / ( « ) , 
m=l 

where f(x) is given by (2.13) V In (2.14) , I(Z\X) is the upper bound on the 
information 7(0; X) concerning the inference parameter 0 . This shows that the 
quality of RBF's in the family To is limiting any further decision making, i.e. that 
a possible information loss caused by inaccurate components <f)m cannot be repaired 
by optimizing the weights Wkm. 

Preservation of the information I(Z;X) during manipulations with data, and at 
the same time, the need to simplify the data structure, underline the importance of 
the assertion that follows. In this from the formal point of view special version of 
Assertion 1 we consider the conditional distribution q(x) = (q\(x))..., gj\f(^)) of Z 
given X = x, given by 

/ v qm<f>m(x) 
qm(x) = / ( * ) 

Note that the relation 
I(Z;X) = I(Z;T(X)) (2.15) 

holds for every statitic T : Md —> T which is sufficient for To- Similarly it follows 
from (2.12) and (2.13) , and from the convexity of logarithmic function <p(u) and of 
quadratic function ip(u) = u2 figuring in (2.9), that X satisfies (2.9) if 

— / <^m(a;)log</>m(a?)da; < oo and / <j)m(x)2 dx < oo (2.16) 
Jmd JjRd 

for all 1 < m, m < M. 

Assertion 2. If a measurable mapping T satisfies (2.15) and the RBF's satisfy 
(2.16) then 

H(q(X)) < H(T(X)). (2.17) 

If, morover, there exists a mapping To such that q(X) = To(T(X)) then the equality 
takes place in (2.17). 

Example 2. Let To be a family of exponential densities 

<l>m(x) = h(x)cmexp I ^WmjTj(x) 

satisfying (2.16). Since the statistic r(x) = (TI(X), . . . , TJ(X)) is sufficient for To, it 
minimizes the entropy in the class of transformations T(x) satisfying (2.15). 

(Received December 18, 1997.) 
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