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NEURAL NETWORK REALIZATIONS 
OF BAYES DECISION RULES 
FOR EXPONENTIALLY DISTRIBUTED DATA1 

I G O R V A J D A , B E L O M I ' R L O N E K , V I K T O R N I K O L O V A N D A R N O Š T V E S E L Ý 

For general Bayes decision rules there are considered perceptron approximations based 
on sufficient statistics inputs. A particular attention is paid to Bayes discrimination and 
classification. In the case of exponentially distributed data with known model it is shown 
that a perceptron with one hidden layer is sufficient and the learning is restricted to synaptic 
weights of the output neuron. If only the dimension of the exponential model is known, 
then the number of hidden layers will increase by one and also the synaptic weights of 
neurons from both hidden layers have to be learned. 

1 . INTRODUCTION 

We consider random observations x distributed on Rn and suppose that real val
ued actions (decisions) are undertaken on the basis of these observations. Then the 
Bayes decision rule 6*(x) is a real-valued function defined on Rn. It is known (see 
e.g. Sec 6 in Miiller et al [12]) that every reasonable mapping Rn —• i?, and con
sequently every reasonable Bayes rule 6*(x), can be approximated by a perceptron 
with the input as, consisting of at most two hidden layers of neurons and one output 
neuron. The well-known learning by error back-propagation asymptotically leads to 
consistent estimates of unknown synaptic weights of all neurons under consideration. 

Unfortunately, if the dimension of the input x is very large then the extent of 
iterative learning steps needed to obtain weight estimates of desired precision is not 
practically achievable (cf. the learning procedures for perceptrons in Sec 6 of [12]). 
Very large dimensions of inputs are typical when observations are taken on random 
processes. 

One possibility to keep the dimensionality under control is to replace the observa
tions x = ( # i , . . . , xn) by their "sufficiently representative" features (j) = (<j>i,..., <f>k)-
It is known (cf. e.g. Devijver and Kittler [4], Berger [1], Bock [3], Vajda and Grim 
[15]) that if the features <f>(x) = (</>i(x),..., </>k(v)) G Rk defined for all x G Rn 

contain all relevant information about x then there exists a mapping 6 : Rk —» R 

1 Supported by the Grant Agency of the Czech Republic under grant 102/94/0320 and by the 
Grant Agency of the Academy of Sciences of the Czech Republic under grant 2075703. 
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one-one related to 6* in the sense 

6(<j>(x)) = 6*(x) for all * G IT. (1) 

This means that 6* can be approximated by a perceptron of the above considered 
type with the inputs <j>(x) G Rk. If k <C n then the new perceptron is essentially 
simpler than the original one. 

The last paragraph describes the main idea of present paper, outlined already 
in Vajda [14]. We consider decision problems for observations x with information-
preserving features <j)(x) of a dimension k < n. Perceptrons of the above considered 
type are then used to approximate the Bayes version 6 defined on the feature space 
Rk. 

We restrict ourselves to observations x exponentially distributed, with an un
known parameter 6 from a space 0 C Rm of known dimension m < n. Then the 
maximum likelihood estimator (MLE) 0(x) of 6 takes on values in Rm and contains 
all relevant information about observations x (it is the so called sufficient statistics, 
cf. e.g. Brown [2]). Thus if the MLE is known (which takes place if the exponential 
family is known) then one can take k = m and <t>(x) = 6(x). Practically all families 
used for stochastic modelling of independent observations are exponential (Bernoulli, 
Pascal, Poisson, Maxwell, Rayleigh, Pareto, Student, chi-square, F, etc.). Multino
mial, multivariate normal, and many other models of dependent observations used 
in biology, medicine, image and speech processing, telecomunications, stock mar
ket analysis etc., are exponential, including observations on all common models of 
random processes (see Kiichler and S0rensen [9]). 

Main attention of this paper is focused on the most simple type of decision prob
lem which is discrimination (classification), characterized by binary (M-ary) param
eter and decision spaces. We prove that the Bayes discrimination function 6*(x) 
coincides with the response of a neural network with input x, consisting of one 
hidden layer of m + 3 units with responses explicitely specified by the exponential 
model, and one output neuron. All m + 3 weights of the output neuron are unknown 
unless the distributions of discriminated observations are given a priori. If the expo
nential model itself is a priori unknown, then we show that the Bayes discrimination 
function can be approximated by a perceptron with input x) two hidden layers of 
neurons and one output neuron. The weights of all neurons can be learned by the 
error back-propagation. It is shown that this learning procedure is in some cases 
computationally feasible. Extensions to the Bayes classification are discussed too. 

2. BAYES RULES 

Let the probability distribution P of an observation x = (xi,... ,x n ) be from a 
family V = {Pg : 6 £ 0 } of probability distributions on Rn with densities {pg : 6 £ 
0 } with respect to a cr-finite measure \i (Lebesgue measure if the distributions are 
continuous, counting measure if the distributions has an at most countable support 
in of Rn). The parameter space 0 is supposed to be a subset of Rm. 

Let Abe a, set of possible actions, L(Q, a) a nonnegative loss function defined on 
0 x A, and 7r(0) a probability density on 0 with respect to a cr-finite measure v on 
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Rm. For every decision rule <5* : Rn —• A 

B(6*)= I f L(e,6*(x))pe(x)dti(x)*(0)dV(e) 
jRnJRm 

is the Bayes risk with respect to the prior distribution 7r. If for all x G Rn 

( L(9,6*(x))pe(x)n(6)dv(0)=M [ L(0,a)p0(x)*(0)dv(0) (2) 
JRm a^AjRm 

then 6* is the Bayes rule that minimizes the Bayes risk. 

The following result is not new (cf. e. g. Berger [1]). It is presented here, together 
with a simple proof, for later references. 

Assertion 1. If there exists a statistic </> : Rn —> Rk sufficient for the family V 
then the Bayes rule 6* : Rn —> A satisfies (1) for a Bayes version 6 : Rk —» A. 

P r o o f . Let <5* be a Bayes decision rule and </> : Rn —» Rk a mapping sufficient for 
the family V. By the factorization theorem of mathematical statistics, this means 
nothing but the existence of functions {g@ : 0 G 0 } defined on Rk and h defined on 
Rn such that 

PQ(X) = 9Q(<I>(X)) h(x) for all x G Rn. 

It follows from here and from (2) that 6(x) depends on x only through the value 
<f>(x), i.e. there exists 6 : Rk —» A satisfying (1). • 

In this paper we are interested in the problem under what assumptions about 
decision problems the Bayes rules «5*(x) can be realized as responses of perceptrons, 
and under what assumptions the unknown synaptic weights of these perceptrons can 
be learned in a "reasonable time". 

By a neural network with input x and one hidden layer we mean a triplet (M, 5, w) 
where M defined the number of hidden units, s = ( « I , . . . , S M ) is an i?M-valued 
function of the input defining responses of the hidden units 1 , . . . ,M, and w = 
(iv!, . . . , WM) G R M are synaptic weights of the output neuron of the perceptron. 
This means that the response of this neuron is <p(s • w) provided <p is the activating 
functions and • denotes the scalar product. E. g. for the sigmoidal activating function 
(pp(h) = (l + ePh)~l one has 

ipp(s-w) = (l + e^33 w) and lim <pp(s -w) = l(_OO)0)(« -w) for s-w^O. 

Obviously, the response of the whole network to the input x is 

<P(3(s(x)'w). (4) 

If s\(x)y... ,SM(X) are of the form tpp^x - v i ) , . . . ,¥,/3M(« -VM) for some activating 
functions <ppx,..., <ppM and weight vectors v i , . . . , VM, i. e. if the hidden units are 
neurons, then we call (M, 5, w) a, perceptron with one hidden layer. For simplicity we 
do not consider thresholds - they can be substituted by additional constant inputs. 
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A neural network (perceptron) with two hidden layers is a quintuple (J, M, <r, s, w) 
where (M, s, w) is an output network with one hidden layer at the input of which is 
the response a = (o r , . . . , aj) of J units of the previous layer to the input x itself. 
Thus the response of whole network to an input x is 

<p(s(*(x)) • w) 

(in the case of perceptron all units are neurons). The definition of a network or 
perceptron with an arbitrary number of hidden layers follows from here. 

The output neuron weights of an arbitrary network are free parameters the values 
of which are assumed to be specified by a learning procedure. Other similar parame
ters may be "hidden" in the units of the hidden layers. If the hidden unit is a neuron 
with input synaptic weights w G Rl then it contains i parameters which are to be 
specified by the learning. If there are no free parameters in the hidden layers then 
one can use the learning rules for simple perceptrons described e.g. in Sec. 5,2 of 
Muller et al [12], Otherwise one has to use the learning by error back-propagation 
(cf. Sec. 6.2 ibid). 

We shall combine Assertion 1 with another well known fact established by Funa-
hashi [5] and Hornik [8]. 

Assert ion 2. For every closed and bounded subset S C Rn, and every continuous 
function 6 : S —> R and positive £, there exists a perceptron (M, s,w) with input 
x G Rn and the linear response 

p(x) = s(x) - w (5) 

such that 
sup \6(x) - p(x)\ < e. (6) 
xes 

Remark 1. The hidden units of the perceptron considered in Assertion 2 are 
neurons with input synaptic weights V( G Rn for i = l , . . . , ib and appropriate 
parameters /% in the sigmoidal activation functions. 

Remark 2. As shown by Lapedes and Farber [10] (cf. also Sec. 6.4 of [12]), every 
"reasonable" function 6 : Rk —+ R can be approximated by a perceptron with at 
most two hidden layers of neurons (one layer if k = 1 and two layers otherwise). The 
"reasonable" means that 6 can be approximated e. g. by piecewise linear functions, 
or by basis-spline functions widely used in numerical analysis. An advantage of 
the method of [10,12] is that it is constructive, while the method of the authors 
of Assertion 2 guarantees the existence but says a little about the construction of 
desired perceptron. Sec. 25 in [12] describes a computer program PERFUNC for 
approximation of functions by the method of [10,12]. 

Remark 3. In practical applications one usually encounters observations x = 
(a?i,.. . , xn) with large sample sizes n. As follows from the iterative learning rules 
described in Sections 5,6 of [12], one cannot expect reasonably precise specification of 
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free perceptron parameters in a "reasonable time" if the number of these parameters 
grows with n. We speak about the learning in a "reasonable time" if the number of 
free perceptron parameters remains fixed for n increasing. 

By combining Assertion 1 with Assertion 2 or Remark 2 we obtain approxima
tions of Bayes decision rules 6* : Rn —» A by means of perceptrons (M,s,w) or 
(J, M, r,s,w) with inputs y £ Rk from the target spaces of sufficient statistic-
s (j)(x). If Assertion 2 or Remark 2 with k = 1 are applicable then a perceptron 
(M, s, w) with one hidden layer of neurons is sufficient. Otherwise one has to use two 
hidden layers. The unknown synaptic weights of these perceptrons can be learned 
in a "reasonable time" if the dimension of <\> is not increasing with n. 

Remark 4. The perceptrons (M, s,w) and (J, M, <r, s,w) with inputs y £ Rk 

approximate the function 6(y) figuring in (1). Approximations of the Bayes rule 
6*(x) are obtained by feeding these perceptrons with inputs <j>(x). This in fact leads 
to new perceptrons with inputs x £ Rn and two or three hidden layers respectively, 
where the first hidden layer consists of A: units with responses <j>i(x))..., <t>k(x). 
Since hidden layer contains no free parameters, learning of the new and original 
perceptrons coincide. 

Example 1. Let the dimension of </> be k = 1 and let us consider a function 6(y) of 
variable y £ R. Then the perceptron (M, &, w) with one hidden layer of neurons and 
input y for approximation of the function 6(y) has the form presented in Figure 1. 
The activation functions fj(h) in the hidden layer are arbitrary, e.g. they may be 
identical mappings fj(h) = h or they may belong to the family ofjsigmoidal functions 
considered in (3) for parameters fy from the extended real line R = [-00,00]. 

VM2 

si(y) = fi((viuv12) - (y,l)) 

sм(y) = fм((vмi,vM2) • (y,l)) 

p(y) = s(y)' w 

F i g . 1. P e r c e p t r o n (M, s, w) with one hidden layer of neurons. 

Example 2. Let the components xt of x be independently distributed by the 
Bernoulli Pe with P9(l) = 1 - Pe(0) = 0 for 9 £ (0,1) = 0 . It is known that 

Ф(X) - X)X i 

t = i 

is a binomially distributed sufficient statistics for the family {PQ : 0 £ (0,1)}. If we 
consider on (0,1) the beta prior density 

na — 1 /1 _ 0 \ 6 - l 
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and if we put A = (0,1) and consider the squared-error loss function L(6,a) = 
(6 — a)2 , then the Bayes rule is (see Berger [1] or p. 351 in Mood et al [11]) 

* » = ? t rz£ = WW) for ^ ) = ^ 7 X A -
n + a + b n + a + o 

Thus the neuron with input (y, 1), synaptic weights 

and linear response 

( w i , Vj) -= ( — • — , — • — ) 

\n + a + b n + a + bj 

s(y,l) = (vг,v2) • (y, 1) 

exactly imitates the Bayes version 6 (this neuron is a special case of perceptron of 
Figure 1 with M = 1, fi(h) = h and w1 = 1). The Bayes rule 6*(x) is realized by 
the perceptron (2,1, ((71.(72), s, 1) with two hidden layers, hidden responses 

n 

<ri(x) = <j)(x) = 5^Xi, <r2(x) = 1, and s(a1)<T2) = (vuv2) • (cri,<72), 
1 = 1 

and the output neuron response p(s) = 1 - s = s. This is the extension of the 
original perceptron (1,5,1) considered in Remark 4. Its scheme is presented in 
Figure 2. Note that both perceptrons under consideration are capable of adaptation 
to arbitrary parameters a, 6 of the prior distribution for all possible sample sizes n. 

aЛx) = T,XІ 

a2(x) = 1 

1 

*s(x) = = («, i « a ) ( с т i ( æ ) , <т2(x)) -

1 

- p(x) ---s(x) 

Fig. 2. Perceptron realizing the Bayes rule 6*. 

R e m a r k 5. Learning of the perceptrons (M, s,w) and (J, M, o", 5,ID) consists in 
the presentation of pairs (ylt 6(y1))i..., (yN) 6(yN)) for y{ = <f>(x{) corresponding 
to the observed data vectors asi,..., xN. The values 6(y) are arguments of minima 
of integrals 

I(a)= I L( ,a)g (y)ҡ( )åu( ) 

on the action space A (cf. (2) and proof of Assertion 1). If these arguments can be 
evaluated explicitly as functions of y on the whole domain Rk, as it is in Example 2, 
then the practical advantage of the perceptron realization of 6 or 6* is limited. E.g. 
in Example 2 this advantage is limited to the adaptivity of the resulting percep
tron to the prior distribution parameters a, 6 which may be apriori unknown. But 
these nonlinear regression parameters can be evaluated from the empirical evidence 



Neural Network Realizations ofBayes Decision Rules for Exponentially Distributed Data 503 

(K/I, ^(yi)), • • •, (yIv, ^(y/v)) directly, without the perceptron. Moreover, the direct 
statistical method is at least as efficient as the perceptron method. Thus the only 
argument which remains in this case in favour of the perceptron is that it represents 
a relatively simple automaton capable of adaptation in a nontrivial statistical en
vironment. If however the explicit form of 6(y) is unknown and the evaluation of 
argmin 7(a) is a difficult task, then there is a stronger argument in favour of the 
perceptrons under consideration. Namely, by being "learned", these perceptrons ex
trapolate the knowledge concentrated in the ensemble (yx, <5(yi)),..., (y^ , 6(yN)) 
on the whole domain of y by providing approximations p(y) and p(<f)(x)) to 6(y)~ 
and 6*(x) at all remaining points y G Rk — {yi, • • • ,yjv)- ^n similar situations 
perceptron applications proved to be useful in the past (cf. e.g. [12,13]). 

3. BAYES DISCRIMINATION 

In this section we consider a special variant of the statistical decision model of 
previous section, with the prior distribution concentrated on just two points 0\> 02 G 
G. By 7Ti, 7T2 we denote prior probabilities of these points and we shall assume that 
7Ti and 7T2 are positive with 7Ti + 7T2 = 1. The set of actions A consists of integers 1 
and 2 and the loss L(0i,j) is assumed to be zero if i = j and positive if i ^ j . This 
is the model of discrimination between observations x generated by the law pg and 
those generated by pg (for more details we refer to Hand [7]). 

Denote by 
Ai = L(0i,2) and X2 = L(02il) 

the losses of misdiscrimination. Then it follows from (2) that the Bayes discrimina
tion 6* : Rn —• {1, 2} is defined by the condition 

6*(x) = argmax0(i) for <f)(i) = A,- TtiPg.(x), i e { l , 2 } . 

It follows from here that the well known rule 

{ 1 f > X27r2pg (x) 

if Annp^O*) "2 (7) 
2 [ < X2n2pg2(x) 

represents the Bayes discrimination. 
Let us suppose that the observations are exponentially distributed. This means 

that the parameter space 0 is an open convex subset of _Rm, and that there exists 
a mapping T : Rn —• Rm such that 

pg(x) = exp(0 • T(x) - il>(0)) for all 0 G 6 , x G # " , (8) 

where • » 
rP(0) = In / exp(0 • T(x)) dfi(x). 

Let us assume that the family (8) is not overparametrized, i. e. that (0\—02)-T(x) 
is not /i-almost everywhere constant. This means that distributions (8) are for 
different parameters 0 different (the family is identifiable by the parameter 0). 
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Note that (8) is a standard form of exponential distributions. The more familiar 
form 

p0(x) = a(O)b(x)exp(c(e).T(x)) 

can be transformed into the standard form by the substitution c(6) —> 0 and by a 
modification of p (cf. [2]). 

Now we can formulate the main result of this section. 

Assert ion 3. If the data are exponentially distributed then the Bayes discrimina
tion (7) coincides with the response 

p(x) = l + l(_OOi0)(s(x)-w) (cf. (3)) 

of the perceptron (m + 2, s, w) defined by 

s(x) = (T(x),l,l)ERm+2 (cf. (9)) 

and 
to = (01 - 02, V-(02) - V-(0i), ^(AJTTJ) - ln(A27r2)) G Rm+2. 

P r o o f . By (7), 6*(x) = 1 if and only if 

i p0Sx) • i A l 7 r i ^ n In —LT—- + In > 0. 
P0Sx) A27T2 

(9) 

But according to (8) 

In P~^pr = (Si - 02) • T(x) + ^(02) - fP(0x). 
PGSX) 

Thus (9) holds if and only if s(x) and w considered in Assertion 3 satisfy the relation 
s(x) • w > 0, i.e. if and only if p(x) = 1. D 

The perceptron of Assertion 3 is the extension considered in Remark 4 of the 
simple perceptron of Figure 3. Inputs j / i , . . . , j / m of this perceptron are components 
T\(x))..., Tm(x) of the statistic T(x) which is sufficient for the exponential family 
(8). 

y - ™ \ • i + i(-<x>,o)(y • w) 

Fig. 3. Output neuron of (m -f 2, 5, w) in Assertion 3. 
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The statistic T describes the response of hidden layer of the perceptron considered 
in Assertion 3. If this statistics is known then the hidden layer contains no free 
parameters requiring to be learned. Such parameters may contain only the output 
neuron. If the parameters 0\ and 02 of distributions governing the discriminated 
observations are known, and also the losses Ai, A2 and prior probabilities TIT, ^2 sire 
known, then nothing remains to be learned at all. Otherwise some or all synaptic 
weights wi , . . . , wm+2 of the output neuron are to be specified by learning. But this 
learning is much easier than that the learning considered in previous section. This 
is due to the fact the perceptron here is simple, i.e. contains no hidden units. 

If the statistic T is unknown and only the dimension m of the exponential model 
is given, then one can approximate the components T((x) oiT(x) by responses pi(x) 
of perceptrons considered in Assertion 2 or Remark 2. This leads to the approxima
tion of the scalar product s(x) • w (and, consequently, of the Bayes discrimination 
6*(x)) by the perceptron of Figure 4. In this figure the boxes with p\(x),..., pm(x) 
are perceptrons of the type considered in Assertion 2 or Remark 2. Therefore the 
perceptron of Figure 3 has two or three hidden layers. Learning in such perceptrons 
is rather slow but possible (see [12]). 

Wm ^ ^ \ ^ ^ 
7* 1/ > Pm(x) 

Wm ^ ^ \ ^ ^ 

p(x)-(wu. •,Wm) + Wm+l + Wm+2 Pm(x) p(x)-(wu. •,Wm) + Wm+l + Wm+2 

w, 

ym+JL 

m+2 

F i g . 4 . Perceptron approximation to s(x) • w. 

Remark 6. In most applications the losses and prior probabilities are considered 
symmetric, i.e. Ai = A2 and 7fT = 7r2. In such situations the dimension of above 
considered perceptrons can be reduced by one, i. e. it suffices to consider (m+1,s , w) 
with s(x) = (T(x), 1) G Rm+1 and w = (Gx - 0 2, ^2) - ^(6>i)) G flm+1. 

4. EXAMPLE: CLASSIFICATION OF NORMAL DATA 

Let us consider the exponential family (8) with n = 1, m = 2 and with the Lebesgue 
measure p on R. Such a family is specified by two statistics T\(x) and T2(x). Then 
for 0 = (a,/?) 

ф(a,ß) = ln Íexp(aГi(x) + ^Г 2 (x))dx. 

Our attention will be restricted to the symmetric case Ai = A2 and TT\ = ir2. 
Consider the particular functions T\(x) = x and T2(x) = — x2. Then 0 = R x 

(0,00) and 

Ф(<*,ß)=2 Гß + ] a ß 
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for all (a,/?) G R x (0,oo). It is easy to verify that then (8) is the normal family 
with mean and variance 

« , 2 -
Џ = 2 ß and * =W 

Indeed, 

pa>p(x) = c0lT>(*)+',T-(*)-*(«.« = 
eax-ßx2-a2/4ß e _ ( r - p ) 2 / 2 a ' 

V2ҡa2 

In the present model, taking into account Remark 6, the perceptron of Figure 4 
reduces to that of Figure 5 where the boxes with p\(x) and p2(x) represent percep-
trons with the hidden layer of neurons considered in Remark 2. Thus the perceptron 
of Figure 5 contains two hidden layers of neurons. This perceptron approximates 
the Bayes discrimination 6*(x) which is for 

Pl(x) 

p(x) = pi(x) wг + p2(x) w2 + w3 

Fig. 5. Perceptron approximation of Bayes discrimination 6*(x). 
The response is 1 + l(_ o o > 0)(p(x)). 

0i = (c*i,/?i) and 0 2 = (a2,/?2) 

defined in accordance with Assertion 3 by 

6*(x) = 1 + 1(^00,0)^1^) Wl + T2(x) w2 + u,3), (10) 

for 
wi = ( a i - c * 2 ) , w2 = (/?i -/? 2 ) , w3 = tl>(a2j(32)- il)(ai,pi). (11) 

Let x be the above considered normal data for 

0i = (0, (20T)-1) and 0 2 = (0, (2<T2)"1) where 0 < <n < <r2 

i.e. for (fii,<rj) = (0,(j_) and (p2,<r2) = (0,cr|). It follows from (10) and (11) that 
the Bayes discrimination is 

6*(x) = l + l{_a0t<7o)(x)i 

where cr0 > 0 is solution of the equation po^x) = pe2(x), i.e. 

.2^2 w _ / ^ \2\ -/2 

(12) 

a° ~ { <rì-*ì ) 
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This discrimination function is approximated with the help of perceptron approx
imations pi(x) and p2(x) to statistics T\(x) = x and T2(x) = — x2 considered in 
Figure 5. According to Remark 2, we used two-layer perceptrons with 3 neurons in 
each layer and with the sigmoidal activation functions with j3 = 0.7 in these neurons 
and linear activation in the output neuron. Learning has been performed by using 
data (JCI, 6*(xi)), . . . , (XJV, 6*(XN)) where a?i,...,a?jv are independent realizations 
of random variable with the mixed density 

A 1 / \ 1 (e-*2!2*2
 e-x

2l2al\ 

*.) ^ - (*,«+*.<•>)=--- ( - - - + - - - j <«> 
and N = 2000. Data were simulated by using a pseudorandom generator. Distri
bution of a standard normal output from this generator is presented in Figure 6. 
Learning of weights of all 7 neurons in the network of Figure 5 was carried out by 
the standard error back-propagation algorithm described e. g. in Muller et al [12] 
with the constant learning rate e = 0.007. 

0.45 

Fig. 6. Histogram of 105 standard normal data with step 102, and the standard normal 
density. 

The experiments were done out for a\ = 1 and 14 different values of <r2,
 w-th the 

theoretical Bayes error p ^ a y e s varying between 0.5 and 0. For each pair (ai,a2)
 w e 

carried out 20 experiments with randomly selected initial weights. At the end of each 
experiment the learned network classified 98 000 data randomly selected according 
to density (12) and the error frequency P | e r c was calculated. In all experiments this 
error was reasonably close to the smallest theoretically achievable Bayes error 

^ayeS = \^-{n^)-F(^o))^F(aol<T2)^F(cTolcT2)] 



508 I. VAJDA, B. LONEK, V. NIKOLOV AND A. VESELÝ 

= ^ - F ^ O ) + F(<T0/CT2), 

where F(x) denotes the standard normal distribution function. The best 14 of the 
20 experiments are presented in Tab. 1. We see that the quality of classifiers obtained 
without using the knowledge of statistical models is excellent. 

Table 1. Performances of the best of 20 realized experiments. 

1 al <т2 <?o 
pbayes 

ГE 
ppeгc 

E 
pperc pBayes 

rE ~ rE 
1.5 1.21 0.4012 0.4024 0.0012 
2.0 1.36 0.3355 0.3358 0.0003 
2.5 1.47 0.2898 0.2913 0.0004 
3.0 1.57 0.2567 0.2560 0.0003 
3.5 1.65 0.2303 0.2293 0.0010 
4.0 1.72 0.2091 0.2086 0.0005 
4.5 1.78 0.1912 0.1907 0.0005 
5.0 1.83 0.1765 0.1756 0.0009 
5.5 1.88 0.1637 0.1626 0.0011 
6.0 1.92 0.1529 0.1516 0.0013 
6.5 1.96 0.1437 0.1425 0.0012 
7.0 1.99 0.1354 0.1342 0.0012 
7.5 2.02 0.1282 0.1270 0.0012 
8.0 2.05 0.1216 0.1202 0.0014 | 

We were also interested in whether, or to what extent, the responses p\(x) and 
p2(x) of the two-layered subnetworks approximate the desired functions T\(x) = x 
and T2(x) = x2. Of course, this approximation is irrelevant (and cannot be achieved 
by any empirical means) outside the effective domain of the distribution (13), where 
no or few data are realized. Also, since the network is learned as a whole, the 
approximation must be modulo linear transforms, i.e. arbitrary a* Ti(x) + bi may be 
realized. We verified that this evidently took place in great majority of experiments. 
Figures 7-10 present typical examples, two experiments for a2 = 2.5 and two for 
a2 = 4. Together with the overall network response p(x) and the responses p\(x) 
and p2(x) are presented best linear and quadratic approximations, achieving 

min / (ciiX + bi — pi(x))2 p(x)dx 
-i,bi€RJ_l 

and min / (aj + biX + CiX2 — p2(x))2 p(x)dx 
ai,bifCi~R J_i 

for p(x) defined by (13). The subdomain (—1,1) is slightly overemphasized in these 
calculations but, nevertheless, we see that one of the functions pi(x), p2(x) - n the 
effective domain is always closer to the quadratic and the other to the linear function. 
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Thus the network really "learned" the sufficient statistics. 

05 

H \ 1 1 1 1 1 1 — I 1 i— * - -4 I 1 \ 1 1 1 1 I 1 1 1 t 1 \ i \— 
O) O) O) ^O) 0 ) 0 > 0 ) 0 > 0 ) 0 > 0 > 0 > 0 > 0 ) 0 > 0 > 0 ) 0 > 0 > T - T - T - T - T - T - T - T - T - T - T - T - T - T - T - T -N iq n r\0> N i q n r - N i n n r f t s i q ^ n r O N t B i p q N ^ i q - O N t i O B O N 1 * 
co co co coNd < ^ c ^ c ^ c ^ T - > T - > T - > T ^ T - > ^ 9 p c ^ ^ d d d ó d T - T - T - riyťo co 

Fig. 7. The overall network response p(x) (dotted line), the responses pi(x), p2(x) of 
two-layer perceptrons and their L2-norm projections on linear and quadratic functions. 

The case &\ == 1 and &2 = 2.5. 

-2.5 1 

H 1 1 1 1 1 . 1 \ 1 1 1 1 \ 1-—I \—I 1 4 1-—I- H i 1 1 1 1 1 1 1 1 1 1 1 1— 
—- —- w» "1 TO OAO* 0 > 0 ) 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 > T - T - T - T - T - T - T - T - T - T - T - T - T - T - T - T - - — T - T - T -

r- m co T- o) r-~̂ n̂--<4--j-̂ j5> i-» i n n r o i N i n n r ^ N t - n o N t i o i o o N t i D c o o N t i D o 
7 7 7 n ri ri r. fl \\ * ' / i.' ' n rfi q ' ^ o ^ d d d d r ' r ' r r r N N N N N r t r i r i o r i 

Fig. 8. As in Figure 7, but a different experiment. 
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Fig. 9. The overall network response p{x) (dotted line), the responses pi{x), P2(x) of 
two-layer perceptrons and their L2-norm projections on linear and quadratic functions. 

The case <j\ = 1 and <J2 — 4. 

2.5 

н — i — i — i — i — i — i — i — i — I — I — I 1- — • 1 1 » - H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 J -

0 > 0 > 0 > 0 > T - T - T - T - T - T - T - T - T - T - T - T - T - T - T - T - T - T - T -

• ^ fl *.? n P ' N ^ ^ w p ^ ^ . < P < - . t - » C s ' ^ ' < o < o o < N ' r < q 
f? H* "•* J J X n n r3—n o ^ ^ ^ ^ ^ N N N N N r i o r i r i r i 

-0.5 

Fig. 10. As in Figure 9, but a diffeгent experiment. 
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5. EXAMPLE: CLASSIFICATION OF GEOMETRIC BROWNIAN MOTIONS 

Let W = (Wt : t > 0) be a Wiener process. Then a process X = (Xt : t > 0) 
satisfying the stochastic differential equation 

dXt = 0Xtdt + XtdWt, t>0, 

with Xo = 1 is called a geometric Brownian motion. In spite of that X does not 
have independent increments, the likelihood of the trajectory (Xt : 0 < t < T) is a 
function of the final state XT only, 

L[OtT](0) = exp^elogXT + y T J , 0 G fl. 

The process is thus exponentially distributed and the final state XT is a sufficient 
statistics. 

We shall consider two types of trajectories corresponding to 0 = 0Q and 0 = — 0O, 
and we shall put 

A = 0o-T. 

Using the results of Section 3 we see that the Bayes classifier is of the form 

6m(Xt:0<t<T) = l(o,oo)(wi XT + w2) 

for appropriate weights w\ and w2. We experimented with the values A = 0.1, A = 
0.5 and A = 1. The initial perceptron weights were (WIO,W2Q) = (0,0), we used the 
same source of random data as in Section 4, and we applied the classical perceptron 
learning rule (cf. Muller et al [12]) with the variable learning rate e(n) = (0.05)n. 
We checked after various numbers n of learning steps on 1000 new samples the 
frequency of error P^erc(n). 

We see from Figure 11 and Figure 12 that approximately 100 learning steps are 
sufficient to stabilize P | e r c for any 0,1 < A < 1. Similarly as in the previous section, 
it is easy to verify that P£ e r c is stabilized in the neighborhood of P | a y e s . 

6. BAYES CLASSIFICATION 

The general decision problem of Section 2 reduces to the classification problem by 
taking the prior distribution concentrated on a finite subset {0U.. . ,0 r } C O and 
by putting A = { 1 , . . . , r} (cf. Hand [7]). The nonzero losses are 

Xii^LiOi.Oi) fovi^j. 

We restrict ourselves to the most important case where all these losses coincide. 
If 7Ti,..., 7rr are prior probabilities of 0 i , . . . , 0r then it follows from (2) that the 

Bayes classification 6* : Rn —> { 1 , . . . , m} is defined by the condition 

6*(x) = argmax<£(i) for <j)(i) = *iP0.{*)> i G { l , . . . , r } . 
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Fig. 11. P£crc(n) versus number of learning steps n for A = 0.1 (upper line) and A = 0.5 
(lower line). 

0,35 

100 120 140 160 180 200 

Fig. 12. P£Crc(n) versus number of learning steps for A = 1. 

Let us consider for i ^ j the Bayes discriminations 6^(x) defined by (7) in the 
discrimination problems with the prior probabilities 7Ti/(7rt- + 7Tj) and itj/^i + TTJ) 
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and distributions PQ and PQ.. Put 

6*(x) = i if 6*j(x) = i forall j e { l , . . . , r } . 

It follows from (7) that this defines a mapping 6* : Rn —• { 1 , . . . , r} which is a Bayes 
classification in the classification problem under consideration. Thus we have proved 

Assertion 4. The Bayes classification 6*(x) under consideration can be evaluated 
by means of the Bayes discriminations 8*j(x) considered above. 

Assertion 4 implies that the perceptron realizations of Bayes classifications, or 
perceptron approximations to these classifications, can be obtained from the per
ceptron realizations or approximations considered in Section 3. Therefore we do not 
go into details. 

7. CONCLUSIONS 

In statistical models with known sufficient statistics of dimension not increasing 
with the sample size, we have found the possibility to approximate Bayes decision 
functions by a perceptron with at most three hidden layers, of complexity not in
creasing with the sample size. The need of learning is restricted to synaptic weights 
of neurons from two hidden layers plus one output neuron. 

In the particular discrimination problem with exponential distributions it is shown 
that the number of hidden layers can be reduced to one and the need of learning is 
restricted just to synaptic weights of the output neuron. 

If we know only the dimension of exponential distributions, then the Bayes classi
fication can be approximated by a perceptron with at most three hidden layers. The 
conclusions of the first paragraph about complexity and the necessity of learning 
remain valid for this perceptron. 

The results concerning discrimination can be extended to Bayes classification. 
A frequent objection against neural network solutions of statistical problems is 

that the statistical solutions are usually more efficient (see Ripley [13]). The efficien
cy argument is true, but the loss of efficiency is at least to some extent compensated 
by the algorithmic simplicity. Moreover, the applicability of neural nets beyond the 
scope of models satisfying the mathematical assumptions of statistical algorithms is 
demonstrated by a considerable neural network literature. The fact that the most 
efficient methods based on likelihood ratio (like e. g. the Bayes discrimination and 
classification considered in this paper) can be misleading if their assumptions are 
not strictly fulfilled has been proved by theoretical results and simulations in robust 
statistics (see e.g. Hampel et al [6]). 

(Received January 8, 1997.) 
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