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FUZZY LINEAR PROGRAMMING 
VIA SIMULATED ANNEALING 

RITA ALMEIDA RIBEIRO AND FERNANDO MOURA PIRES 

This paper shows how the simulated annealing (SA) algorithm provides a simple tool 
for solving fuzzy optimization problems. Often, the issue is not so much how to fuzzify 
or remove the conceptual imprecision, but which tools enable simple solutions for these 
intrinsically uncertain problems. A well-known linear programming example is used to 
discuss the suitability of the SA algorithm for solving fuzzy optimization problems. 

1. INTRODUCTION 

This paper shows how the simulated annealing (SA) algorithm provides an innate 
method for solving fuzzy optimization problems. Traditional optimization models 
have to be constructed crisp and unambiguous, characteristics achieved through re
duction and assumptions from the ill-structured reality. Fuzzy optimization has 
been focusing, first in solving models which reflect real life uncertainty, and second 
on transforming them into equivalent crisp problems to benefit from efficient existing 
solving algorithms. This second stage of removing the conceptual fuzziness of the 
problem also removes the real-life vagueness and fuzziness of the human reasoning 
process. As Zeleny's states "mans do not maximise functions, but search for recog
nisable patterns" [11]. It is important to have methods capable of directly handling 
all types of fuzzy optimal problems. 

Simulated annealing is a stochastic algorithm with a physical analogy of "melting" 
the system being optimised (a solid) using "high temperatures", and then proceed
ing by slowly lowering the temperature until the system "crystallises/freezes" and 
no more changes occur [7]. The melting process can be viewed as stretching the con
straints of an optimization problem which are a direct result of their fuzzification, 
and the crystallisation can be viewed as the search for the "best" solution. Simulated 
annealing is considered a good tool for solving crisp optimization problems that are 
NP-complete [7]. Here it is discussed its extension to fuzzy optimization problems. 

The focus of this paper is on fuzzy linear optimization problems and, specifically, 
on problems with a single objective. The first method for solving fuzzy linear pro
gramming problems was proposed by Zimmermann [12]. The author first, constructs 
a crisp model of the problem; second, obtains its crisp results using an existing solv-
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ing algorithm; third, uses the results obtained to fuzzify the problem by considering 
subjective constants of admissible violations for the goal aspiration level and for the 
constraints; fourth, defines an equivalent crisp problem using an auxiliary variable 
that represents the maximisation of the minimisation of the deviations (violations) 
on the constraints. Zimmermann used Bellman and Zadeh [1] interpretation that a 
fuzzy decision is a confluence of goals and constraints, denoted the max-min model 
because it considers that the best fuzzy decision is the union of the aggregated inter
sections of goal and constraints. Since this approach is well-known, Zimmermann's 
example [13] of deciding on the size and structure of a truck fleet is selected, in 
order to compare the two resulotion methods. This paper also emphasises that the 
generality and independence of the SA algorithm makes it well-suited for dealing 
with other forms of fuzziness found in optimization problems. 

The paper is organised in five sections. First this introduction, second a section 
introducing the main concepts involved in fuzzy linear programming optimization 
and third a section describes the simulated annealing (SA) algorithm as well as 
its modification for handling these type of problems. The fourth section discusses 
the comparison of results obtained with the max-min approach and with the SA 
algorithm and the fifth section presents the conclusions of this work and future 
developments. 

2. FUZZY OPTIMISATION 

Traditional optimization is associated with problems of maximising or minimising a 
utility function, subject to constraints representing limited resources. The aim is to 
maximise or minimise an objective function while satisfying the problem constraints. 
Essentially, traditional optimal concepts such as, 

m a x / ( x ) subject to x £ X 

are based on unique solutions and existence of complete information. An illustration 
of this problem is the linear programming model. 

Fuzzy optimization's main aim is to find the "best" solution (decision alternative) 
under incomplete information, i.e. imprecise information and/or vague resources 
limits. There are many forms of imprecision when dealing with fuzzy optimization. 
For instance, coefficient variables that are not known precisely (e, g. production time 
of about 2 hours to make a shirt) or constraints satisfaction levels that have imprecise 
limits (e.g. total available production time should be around 200 hours). The 
current challenge is to enable the construction of models using everyday imprecise 
and vague language that can be translated into a fuzzy quantitative method which 
can be solved as defined. 

The concepts of fuzzy goal and fuzzy constraints were first introduced by Bellman 
and Zadeh [1]. The authors state that a fuzzy decision can be viewed as the intersec
tion of fuzzy goal(s) and the problem constraints - since they are all defined as fuzzy 
sets in the space of alternatives. The "optimal" decision is the point at which the 
intersection of fuzzy goal(s) and constraints take the maximum membership value. 
This method is usually called the max-min approach. A systematic description and 
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classification of problem types, methods and approaches proposed in the literature 
can be seen in [8]. 

In general the fuzzification of the linear programming model includes six forms 
of imprecision as depicted in Table 1 (more subtle distinctions are made in [8]). 

This paper discusses the first three cases of imprecision using Zimmermann's ex
ample of the truck fleet [13] and solves it with the simulated annealing algorithm. To 
cope with the imprecise information three approaches are followed. First, maximisa
tion/minimisation of the objective function subject to fuzzy constraints. Second, it is 
considered the case of fuzzy constraints and fuzzy goals. Third, the max/min model 
is tested, i.e., we want to obtain the best value of the minimum of the contraint 
deviations. It was also tested the imposition of a threshold to reflect a satisfactory 
constraint level, which is equivalent to an alpha-cut on the function. The third ap
proach is identical to the one proposed by Zimmermann and the results obtained 
with both the SA algorithm and Zimmermann resolution procedure are compared. 
The fuzzification of cases 4), 5) and 6) is not discussed in detail here. 

Table 1. Modes of Imprecision in Fuzzy Optimisation. 

Case 1 Imprecision in the constraints boundaries. This implies the fuzzification 
of the inequalities limits, C. E. g. "the total time of painting should be 
considerably fewer than 100 hours ( )" 

Case 2 A fuzzy goal is imposed on the objective function. Essentially this implies 
fuzzifying the utility function by considering a limiting goal (similar to 
goal programming). E.g. "the total budget for the project should be 
kept well below 100,000 ECU ( )". 

Case 3 Compound imprecision. This implies combinations of the above sources 
of imprecision. 

Case 4 The parameters (coefficients) of the variables of the constraints are not 
known precisely. This means that the coefficients are fuzzy numbers. 
E.g. "the cost per hour of producing a shirt (x) is around 10 ECU ( )". 

Case 5 The coefficients of the variables in the objective function are not known 
precisely. This means that coefficients are fuzzy numbers such as in 4). 
E.g. "the selling price of product x is around 100 ECUs per item". 

Case 6 All possible combinations of uncertainty. 

Considering the first three types of fuzzification, the general conceptual process 
for any optimization problem is: 

1. Depending on the type of problem, formalise it as a linear programming prob
lem or as a multiple objective problem, or even as a non-linear programming 
problem. 

2. If the intention is to fuzzify of the objective(s), define the goal(s) for those 
objective(s). 
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3. Define the membership functions for representing the fuzzification of each con
straint. E.g. triangular, sinusoid, trapezoidal and so forth. 

4. Define thresholds for the degree of acceptance of deviations on the constraints 
satisfaction. 

5. Define the aggregation operator to combine the constraints (and goals when 
dealing with the symmetric model) as for example any J-norm. 

6. Solve with the simulated annealing algorithm. 

In addition it should be noted that if the symmetric model of Bellman and Zadeh 
[1] is used, there is no difference between objectives and constraints in the problem 
model, as well as there is no difference between single or multiple objectives. With 
the symmetric model a mathematical programming problem becomes a constraint 
satisfaction problem, where a decision is a confluence of constraints and objectives: 

Find x such that 

E«*i{<i>>=}^ 

Y^aijXj { < , > , = } c t -

XJ > 0 

and, the maxmin model of the fuzzy problem is: 

max min/ifc (x) 
k 

where fik (x) is the membership values of the goal and constraints satisfaction. 
The problem of embedding fuzziness, where necessary, to deal with imprecision 

leads to the consideration of an extension of the fuzzy optimization problem to accept 
fuzzy coefficients. The normalisation of the combination of the fuzzy constraints and 
objective(s) with the fuzzy variables coefficients leads to the symbolical robust fuzzy 
model: 

Y,yijx3 {<>>>=}c« 
i 

yij=a>ij 

where a,j and c,- are fuzzy numbers. 
Since it is beyond the scope of this paper to address fuzzy coefficients no further 

details are discussed here. However, with this specification and using the same 
solution procedure, the results obtained with the SA algorithm are successful [9]. 

Most of the literature on fuzzy optimization is concerned with fuzziness at the 
rhodelling level, from goal preferences to goal priorities. The majority of authors 
follow the maxmin approach, using the equivalent crisp model of selection of the 
best ("max"), which represents the aggregation of the minimum deviations from the 
model levels (e.g. Z). In summary, they do not propose a fuzzy resolution process 
but an equivalent crisp one (overview in [8]). However, some attempts were made 
to spread the benefits of using algorithms, such as the simulated annealing, to solve 
fuzzy optimization problems (see for example [5]). 
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3. SIMULATED ANNEALING 

Simulated annealing is a stochastic algorithm used for optimization problems where 
the objective function corresponds to the energy of the states of a solid [4]. The 
SA algorithm requires the definition of the neighbourhood structure as well as the 
parameters for the cooling schedule. The temperature parameter distinguishes be
tween large and small changes in the objective function. Large changes occur at high 
temperatures and small changes at low temperatures. It is an evolutionary process 
moving in small steps, from one stage to another, avoiding the problem of getting 
stuck in a local minimum by allowing uphill and downhill moves for the temperature. 

SA is a good tool for solving optimization problems considered NP-complete, 
i.e. computationally inefficient since the search for the optimum is an exponential 
function of the size of the problem [7]. Some good examples on the capabilities of 
the simulated annealing algorithm to solve crisp optimization problems can be found 
in [2, 3, 4, 7]. 

According to [7] the four basic requirements for using the SA algorithm in combi
natorial optimization problems are: (a) concise description of the problem; (b) ran
dom generation of the changes from one configuration to another; (c) an objective 
function containing the utility function of the trade-offs; (d) definition of the initial 
state, the number of iterations to be performed at each temperature and its anneal
ing scheme (for a detailed discussion of the algorithm see [4, 7]). When discussing 
fuzzy optimization none of the basic requirements are affected because the fuzziness 
is usually expressed either by stretching constraints or using fuzzy coefficients in the 
constraints. 

Two implementations of the SA algorithm have been developed. One maximises 
the aggregation of the tolerance intervals (membership values of the goals and con
straints), i.e. the fuzzification of both the objective and constraints (case 2 and 3 of 
Table 1). The other only handles the fuzzification of constraints (case 1, Table 1). 

The objective of the first implementation of the simulated annealing algorithm is 
equivalent to Zimmermann's proposal [12]. Its implementation is defined in pseudo
code 1. 

The variable £ is a counter for the number of constraints. It is used to calculate 
the memberships of each constraint /i(k). Miu represents the aggregation (intersec
tion) of the memberships of the fuzzy constraints. Any aggregation operator could 
have been considered but here the /-norm min is used. The variable 6 depicts the 
difference between the previous the new Miu and the last Miu obtained. This repre
sents the old and new energy states difference. The probability function of moving 
to a smaller energy state (the goal) is given by the exponential of 6 divided by the 
control parameter T. The smaller the temperature T the less probable any change 
will occur. The N(t) represents the number of neighbours generated and conse
quently the number of possible solutions. The T(t) is the decreasing function of the 
temperature. This decreasing factor is set to 0.9 in this paper. 

The second implementation of the SA is similar except that the 6 is obtained by 
the difference between the new and old values for the objective function value and 
some other small details. Hence, we will not detail this implementation any further. 
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Set Nr := number of constraints; 
Select a initial state x € X 
Select a initial temperature T > 0; 
Set temperature change counter t := 0; 
For k := 1 to Nr do /i (k) := membership value of the constraint Rk (x); 
Miul:= aggregation(/i(l), /i(IVr)); 
Repeat 

Set repetition counter n := 0; 
Repeat 

Generate state t/, a neighbour of x; 
Jk:= 1; 
Repeat 

/i (k) := membership value of the constraint Rk (y)\ 
k:=k + l] 

until k > Nr or /x (k - 1) = 0; 
I f / i ( J b - l ) ^ 0 then 

Miu2:= aggregation^ ( 1 ) , . . . , /i (Nr)); 
Calculate 6 := Miu2 — Miul; 
If 6 > 0 t h e n x := y; Miu2 := Miul; 

else If random(0,1) < exp (6/T) 
t h e n x := y; Miul := Miu2; 

n:=n+ 1; 
until n = N (t); 
* : = i + l; 
T:=T(t) 

until stopping criterion true 

Pseudo-code 1. Simulated Annealing maxmin. 

The membership functions of the fuzzy goal and constraints used in the two 
implementations are triangular functions. This choice was based on the necessity of 
obtaining results compatible with Zimmermann's example. Any other membership 
function (e.g. sinusoidal) could have been used since there are no limitations of 
linearity when using the SA algorithm. For example, for case < the function is: 

{ 0 if Rk(x)>ck + dk 

! ^ M g ± £ i L if Ck<Rk(x)<ck + dk 
1 if Я t ( * ) < < * 

where Rk = £\- <*>ijXj or J^• gjXj and dk are the deviations form the crisp value. 
In summary, the main advantages of using simulated annealing (SA) for solv

ing fuzzy optimization problems, as can be observed in both implementations, are 
(a) its convenience and easy development; (b) its flexibility regarding fuzzy linear 
or non-linear problems (see example in [10]); (c) its easy modelling of the problem 
because no rigid structure is required; (d) and it does not require mathematical 
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modifications on the problem to find a suitable solving tool. The main disadvantage 
of the simulated annealing algorithm is the need to define the initial states that 
satisfy the constraints, for each variable. Another disadvantage is the tuning of the 
temperature because it can imply a bigger search and consequently more computing 
time. 

4. EXAMPLE OF FUZZY LINEAR OPTIMIZATION 

4.1. Introduction 

Zimmermann's example [13] is selected because it is a standard linear program
ming problem well-known and discussed in the literature [6, 8]. This crisp linear 
programming example is: 

Min 41400xi + 44300x2 + 48100x3 + 49100x4 

s.t. 0.84xi + 1.44x2 + 2.16x3 + 2.4x4 > 170 
16xi + 16x2 + 16x3 + 16x4 > 1300 
xi > 6 

^ 1 , ^ 2 , ^ 3 , ^ 4 > 0. 

The crisp solution presented by Zimmermann is: 

Crisp solution: xx = 6, x 2 = 16.29, x 3 = 0, x 4 = 58.96, Z = 3,864,983. 

After obtaining the crisp results Zimmermann fuzzifies the problem, considering 
the following tolerance intervals: 

Loweг Bound Deviation Uppeг bound 

Z =z 6i = 3,700,000 dx = 500,000 4,200,000 
c2 = 170 d2 = 10 180 
c 3 = 1,300 d3 = 100 1,400 
C4 = 6 dą = 6 12 

In order to solve the problem Zimmermann assumes the symmetric model of 
Bellman and Zadeh [1], which considers that in a fuzzy environment there is no dif
ference between goals and constraints. Within this model the objective becomes a 
constraint with the resource limit given by the crip solution. Zimmermann resolution 
process proceeds to transform the problem into a crisp one, using an additional vari
able which represents the minimizarion of the deviations (given by the membership 
values) and using membership functions similar to the ones presented on point 3. 
With this auxiliary variable Zimmermann transforms the fuzzy problem into a crisp 
equivalent one (see details in [13]) where the objective is the maximizarion of the 
minimization of the auxiliary variable. 

In this paper we compare the Zimmermann results with the ones given by the 
simulated annealing algorithm. The results comparison of the two methods are 
depicted in Table 2 and Table 3 and discussed in Section 4.3. 



64 R. A. RIBEIRO AND F.M. PIRES 

4.2. SA implementation choices 

In the implementation of the SA algorithm it is necessary to choose the following 
parameters: how to generate a state y neighbour of x\ which aggregation function to 
use (selection criterion); the number of neighbours to generate —N(t)] the decreasing 
temperature function —T(t); and finally the stopping criterion. 

The choice of how to generate a state y as a neighbour of x, is done by defining 
a new state which is a random point y where the distance to the point x is random 
and less than t, defined by 

( 1 if * < 100 

2 if 100 < t < 150 

p(t)= {3 if 150 < * < 250 

5 if 250 < t < 350 

15 if ^ > 350. 

The aggregation function is the intersection of all the membership values of the 
constraints, and the operator used for the intersection is the 2-norm min. The inter
section represents the logical "and" to signify that all constraints must be satisfied 
to a certain degree (Miu). The objective becomes the maximization of minimization 
of the constraint deviations. As defined by Bellman and Zadeh [1] a fuzzy decision 
represents the confluence of goals and constraints (intersection) and the best decision 
is the one with the maximum value. 

The choice for the number of neighbours to be generated, N(t), follows the heuris
tic of generating 200 neighbours, if t < 400, and generating 250, if t > 400. This 
heuristic takes in account that more "sons" should be generated when the temper
ature, T, decreases to have more options to test. The temperature's function T(t), 
is a function which uses a decreasing factor of 0.99. The stopping criterion used for 
the two implementation is reached when the temperature is less than 0.0001. 

4.3. Results discussion 

First, we solved the crisp problem with the simplex algorithm and the SA. The 
results obtained for the objective function Z are equivalent, though with different 
solution for the variables because there are multiple solutions for the crisp problem. 
Secondly, we tested the fuzzy Zimmermann approach with the fuzzy SA approach. 
Table 2 depicts these results. 

The fuzzy results obtained for the Maxmin approach with the SA algorithm 
are also equivalent to the ones obtained with the Zimmermann method (Table 2). 
Table 2 also depicts two other results obtained with the second implementation of 
the SA (case 1 of Table 1). For the first test it is set a threshold of 0.43 to compare 
with the aggregated value obtained in the Zimmermann solution. For the second 
test it is used a threshold of 0.6 to verify the quality of the solution if the contraints 
are less violated. The results of the constraints violations are depicted in Table 3. 



Fuzzy Linear Programming via Simulated Annealing 65 

Comparing the results for the two implementations of the SA (case 1 and 3 of 
Table 1), the fuzzy-constraints with \i > 0.43 and the Maxmin, it can be inferred that 
the objective function results (respectively Z = 3, 986, 458 and Z = 3, 987, 394) 
and the deviations for the constraints limits are quite close, except for constraint 
number C3. However, the implementation that considers degrees of satisfaction for 
its constraints is less demanding on the user since it does not require to pre-define 
a goal for the objective function and, moreover, a solution which ensures a certain 
degree of satisfaction for its constraints seems more reliable. 

The second test performed with the SA (case 1, Table 1) using a better satisfaction 
degree for its constraints (/i > 0.60) presents a worse result for the objective function 
(Z = 4, 035, 284) but still well below the goal limit of the 4,200,000 and has the 
advantage of ensuring an overall degree for the constraints satisfaction of 60%. 

Table 2. Problem results. 

Variables 

Zimmermann Simulated Annealing Appгoach 

Variables 
Maxmin 
(Case 3) 

Maxmin 
(Case 3) 

Fuzzy Constгaint 
(Case 1) 

(џ > 0.43) 

Fuzzy Constгaint 
(Case 1) 

(џ > 0.60) 
Z 3,988,250 3,986,458 3987,394 4,035,284 

x\ 17.41 13.98 16.83 17.28 

X2 0 5.16 0.79 1.06 

xз 0 1.5 0.56 0.1 

£ 4 66.54 63.28 65.76 66.57 

Oi 174.3 174.29 174.3 176 
O2 1343.3 1342.71 1343 1360 
OЗ 17.4 15.213 16.83 17.28 

T a b l e 3 . Miu results. 

Vaгiables 

Simulated Annealing Appгoach 

Vaгiables 
Maxmin 
(Case 3) 

Fuzzy Constгaint 
(Case 1) 

(џ > 0.43) 

Fuzzy Constгaint 
(Case 1) 

(џ > 0.60) 
Z 0.43 

Oi 0.43 0.43 0.6 

O2 0.43 0.43 0.6 

Oз 1 1 1 
Miu* 0.43 0.43 0.43 

Miu* is the aggregated (intersection) memberships of the constraints and goals. 
Observing now Table 3, we can see that the SA provides several advantages 

regarding the Zimmermann approach. First, it tell us all the contraint violations 
and not only the aggregated value. Second, if it is used the implementation where 
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the thresholds can be defined, the decisor can select the degree of satisfaction for 
his/her constraint, i .e . the degree of violation allowed. 

In summary, the use of SA seems more flexible and adaptable to fuzzy optimiza
tion problems than the crisp mathematical transformations required in Zimmermann 
method. The test of only fuzzyfying the constraints and leaving the objective func
tion crisp, has the advantage of not having to stipulate a goal and its respective 
deviation. Many times it is quite dificult for a decisor to set a goal, since what he 
wants is the maximum or a minimum goal for his/her problem. The main disadvan
tage of the SA approach compared with the Zimmermann one is the last ensures the 
optimum while the former gives the best approximate result. 

5. CONCLUSIONS 

This research contributes to the quest of improving fuzzy decision support mod
els. As Zeleny rightly states: "the question is no longer how to formalise, reduce 
or remove the conceptual imprecision and fuzziness (the 'crisp' treatment of 'fuzzy' 
systems), but how to enhance, amplify and utilise natural vagueness and fuzziness 
to reflect the purposes of human communication, co-operation and knowledge pro
duction" [11]. 

This paper shows that the simulated annealing algorithm is a good candidate 
tool for solving fuzzy linear optimization problems without requiring mathematical 
reductions or transformations. A fuzzy linear example is compared with Zimmer
mann's first fuzzy approach and the simulated annealing one, in order to highlight 
their main differences. 

In a future work the authors are planning to solve fuzzy optimization problems 
with genetic algorithms to evaluate the performance of the simulated annealing 
algorithm. Another interesting comparison, under consideration, is to evaluate the 
results obtained with the SA and the Tabu search algorithm. 

(Received April 8, 1998.) 
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