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AN INTERPOLATION PROBLEM 
FOR MULTIVARIATE STATIONARY SEQUENCES 

LUTZ KLOTZ 

Let X and V be stationarily cross-correlated multivariate stationary sequences. Assume 
that all values of Y and all but one values of X are known. We determine the best linear 
interpolation of the unknown value on the basis of the known values and derive a formula 
for the interpolation error matrix. Our assertions generalize a result of Budinsky [1]. 

1. INTRODUCTION 

In [1] Budinsky studied the following problem. Let X and Y be two univariate sta
t ionary cross-correlated stationary sequences. Assume that all values of Y and all 
but one values of X are known. Find the linear interpolation error of the unknown 
value of X on the basis of all known values. In the present paper we generalize 
Budinsky's result to multivariate sequences X and Y. The main tool of our inves
tigations is the Hellinger-spectral domain of a stationary sequence. H. Salehi first 
used Hellinger integrals in the interpolation of multivariate stationary sequences, 
see [6] and [7]. His method was developed and completed by Makagon and Weron, 
cf. [2,3], and [8]. Some results of these authors, on which we heavily lean, are 
summarized in Section 2. Section 3 is devoted to the solution of the interpolation 
problem mentioned above. We obtain a formula for the interpolation error matrix as 
well as a recipe for determining the best linear interpolation of the unknown value. 
Since our formulas are rather difficult to apply in the general situation, in Section 4 
we study some special cases and, using some facts on the Moore-Penrose inverse 
of a non-negative Hermitian block matrix, derive more tractable formulas for the 
interpolation error matrix. 

2. PRELIMINARIES AND NOTATIONS 

Let W, Z, and C be the sets of positive integers, integers, and complex numbers, 
resp. For r E N, the symbol Mr, stands for the space of r x r-matrices with 
complex entries. If A E Mr, then A*, 71(A), Ker A, and p(A) denote its adjoint, 
range, kernel, and rank, resp. Furthermore, A+ is the Moore-Penrose inverse of 
A, cf. formulas (1.2) in [4]. If A is regular, its inverse .A""1 coincides with A + . 
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The symbol I stands for a unit matrix, where its size should become clear from the 
context. 

Let 7i be a Hilbert space over C and TV the Cartesian product of r copies of 
7i. We will consider 7ir as a left A^r-module, i.e., the generic element u of W is 
written as a column vector so that for each A £ Mr the product Au is defined in a 
natural way and belongs to 7ir. The zero element of W is denoted by Or, whereas 
the symbol 0 stands for 0\ as well as for several zero matrices. For two vectors 
ix, v of 7ir let (u,v) be their Grammian matrix. Finally, e& denotes the Mh unit 
vector of C r , i.e. the vector whose kth entry is 1 and all its other elements are 
0 , f c £ { l , . . . , r } . 

An r-variate stationary sequence is a map S : Z 3 n —> sn £ 7ir such that 
( s m , s n ) depends only on m - n , m , n £ Z. By M. we denote the time domain of 
5 , i.e. the closed subspace of 7ir spanned by all sn, n £ Z, with coefficients from 
A4r. Recall that M = Mr, where yVJ is the closed linear subspace of 7i, spanned 
by the entries of all sn, n £ Z. 

Let us assume that the spectral measure F of S is absolutely continuous with 
respect to the Lebesgue measure a on the cr-algebra B of Borel sets of [—7r, 7T). Let 
/ be the spectral density and L2(F) the spectral domain of S, i.e. the left Hilbert 
yVfr-module of (equivalence classes of) ^-measurable JVfr-valued functions $ such 
that J^$(A)/(A)<J>(A)V(dA) = /$ /$*d<r exists. 

In the following we will omit the integration variable and the domain of integration 
[—7r, 7r) in the notation. Furthermore, relations between /^-measurable functions are 
to be understood as relations that hold <j-a. e., although we will not emphasize this 
each time. 

Let U be Kolmogorov's isomorphism between the time domain and the spectral 
domain of S, i.e., U is an isometric yVfr-linear isomorphism of M onto L2(F) such 
that 

Usn = e l n 7 , n £ Z 

Let us consider the Hilbert-yVfr-module H2(F) of (equivalence classes of) B-measurable 
JVfr-valued functions M such that KerM D Ker / and f Mf+M*da exists. The 
mapping 

V : $ -+ $ / 

establishes an isometric jVfr-linear isomorphism of L2(F) onto H2(F)) cf. [6, Theo
rem 1] and [3, Theorem 3.3 (b)]. 

It is not hard to see that 

y - 1 M = M / + , MeH2(F). (1) 

In [3, Theorem 3.4 and Lemma 3.7] and [8, Lemma 4.5 (b)] it was proved the 
following result. 
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Lemma 1. A vector u of M is orthogonal to all sn) n G Z \ {0}, if and only if 
VUu is equal to a constant ./Vf r-valued function, where its value A has the following 

P r O P e r t i 6 S : K(A) C 11(f) (2) 

and r 

/ Af+A*da (3) 

exists. The matrix A can be computed by 

-4= (u,s0). (4) 

Conversely, if A G yVfr has properties (2) and (3), then there exists a vector u £ M) 

which is orthogonal to all s n , n G Z \ {0}, such that VUu = A cr-a. e. 

3. AN INTERPOLATION PROBLEM 

Let p, q G IN and let X be a p-variate and Y a g-variate stationary sequence such 

that S : s n := ( Xn ), n G -£, is a (p+g)-variate stationary sequence. Let Mo be the 

closed Xp+g-linear hull of all snj n E Z\ {0}, and f p J . Denote the vector ( Q° J 
by #0. Motivated by a paper of Budinsky [1] we study the following interpolation 
problem: __̂  
Find the orthogonal projection xo of x0 onto Mo and the interpolation error matrix 

A := (x0 — xo}x0 — xo). 

Since Mo is of the form Mo = «MQ , where Mo is the closed subspace of Ti spanned 
by the entries of all sn, n E Z\ {0}, and the entries of y0) the problem is equivalent 
to determining the orthogonal projections of the^entries of xQ onto Mo- However, 
we find it convenient to study the larger space Mo since this allows us to use the 
isomorphisms U and V. 

First note that the singular part of the spectral measure F of S does not affect 
on the interpolation error. So we assume that S has a spectral density / . 
Let ~ , ^ 

xo := x0 — xo. 

In the following we have to consider block partitions A := ( " *2 J of matrices A 

from yVfp+g. In all these cases the left upper block An is assumed to belong to Mp. 

In particular, the block partition / = ( }+ P ) of / corresponds to the partition 

of S into X and Y and the interpolation error matrix A has the form 

* = ( A o " °o). («) 
where A n is non-negative Hermitian and belongs to Mp. 

Consider the subset 
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1 :=S{U) 6 CP+i • U) e W ) and / ( 0
C

f ) V ( j f ) d , exists } of €?+«. 

Since ( j ) € i if and only if ( J ) E ft(/) and the Cp-valued function ( ( / + ) n ) * c 

is square-integrable, the set L is a subspace of Cp+q. Denote by P the orthogonal 
projection in Cp+q onto L. 

Let F" be the .Mp+g-valued function 

ад : = ( o o ) ' A €[-*.*). 

T h e o r e m 2. The interpolation error matrix A can be calculated by 

\ + 
Д= (fpf+PdЛ (6) 

The orthogonal projection of xQ onto Mo is equal to 

x0 = U-\E-Af+). (7) 

P r o o f . Note that x 0 is of the form [Q J for some u E MQ, which implies 

(2o,*o) = (®o,»o) = A. (8) 

Since £o is orthogonal to all sn) n E Z\ {0}, from Lemma 1 and (8) we obtain that 
VUXQ is a constant function whose value is equal to A. Since VU is an isometry of 
M onto H2(F), it follows 

A=(x0)xo)= f Af+ Ada. (9) 

Relations (2) and (5) yield 11(A) C Tl(f). Thus / A / + A d<r = / A P / + P A d<r = 
A / P/+Pd<xA. Comparing this with (9), we get 

A = A / p / + P d < r A . (10) 

If we can show that the range of the matrix B := / Pf+P da is included in 7£(A), 
the result immediately follows from (10). But 11(B) C H(P) C ft(/) and the integral 
/ Bf+Bda = B / Pf+PdaB exists. According to Lemma 1 there exists a vector u 
of M, which is orthogonal to a l l s n , n E -2.#\{0}, such that VUu = 5 = (u,so)0"-a.e. 
Moreover, since fVUuf+Vu(°p^da = / P / + / ( J J)d<r = / p ( J J)d<r = 0, 

the vector u even belongs to the orthogonal complement of Mo- This means that 
it has the form u = Dxo, for some D E Mp+q. Then F? = (IA,50) = (Dxo,so) = 
D(5o,cco) = -DA, which implies Ker A C Ker_8 and, hence, 7£(P) C 11(A). 
To prove (7) note that Uxo = £/V0 — UxQ) UxQ = £", and VUxQ = A <r-a.e., thus 
Uxo = 7 - ^ = A / + by (1). • 
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Corollary 3. The range of A is equal to the range of P. 

P r o o f . It was shown in the proof of Theorem 2 that 11(A) C Tl(P). Thus, 
if P A denotes the orthogonal projector onto 7£(A), we get f Pf+Pda = A + = 
P A A+ P A = PAfPf+PdaPA = fPAPf+PPAda = fPAf+PAda. From this 
equality it is easy to conclude that 1Z(PA) = H(P). D 

4. SPECIAL CASES 

Under additional assumptions formula (6) can be brought into a more explicit form. 
Because of (5) it is enough to give expressions for A n . 

/ < 

Corollary 4. If the values of / are regular matrices and 

j (fn-furt&r1** (ii) 

exists, then 

An = (J(hi - hifnfar1**) • (12) 

P r o o f . If the matrix /(A) is regular, then the left upper block of / ( A ) - 1 is 
equal to (/n(A) — /i2(A)/22(A)~1/i2(A)*)"1 by the well-known Frobenius formula, 
A E [—7r, 7r). NOW the result immediately follows from (6). Q 

The following corollary generalizes Theorem 1 of [1]. 

Corollary 5. Let p = 1 and the values of / be regular matrices. Then A n can 
be computed by (12), where the right-hand side of (12) is to be interpreted as 0, if 
the integral (11) does not exist. 

P r o o f . If (11) exists, the result is a special case of Corollary 4. If (11) does not 
exist, the projection P is equal to 0. D 

In the statement and the proof of our next corollary we make use of the following 
result on matrices, which can be easily obtained from formula (3.24) in [4]. If A G 
Mp+q and A is non-negative Hermitian, then p(A) = p(A22) + p(A\\ —-4i2-422^2i)-
In particular, p(A) = p(A22) if and only if An — A12A22A21 = 0. 

Corollary 6. Let p = 1. Then A n = 0 if one of the following conditions hold: 

(i) p(f) = p(f22) or, equivalently, / n - fuf^f 12 = 0 on a set of positive measure 
(7. 

(ii) p(f) > p(f22) 0*-a.e. and the integral 

P(/n-/i2/2
+

2 / i*2)"1d^ (13) 
/ < 
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does not exist. 

If p(f) > p ( / 2 2 ) cr-a.e. and (13) exists, then A n is equal to 

An = (j(fn - ii2ff2ri2r
1^) • (14) 

P r o o f . It is not hard to see tha t the condition p( / (A)) = p( / 2 2 (A)) is equivalent 
to the fact tha t e\ does not belong to 1Z(f(X))) X £ [—TT, IT). SO, (i) yields P = 0 and, 
hence, A n = 0. If p(f(X)) > />(/22(A))5 we have p ( / n ( A ) - / i 2 ( A ) / 2 2 ( A ) + / i 2 ( A ) * ) = 
1 = p(fn(X)) and therefore p(f(X)) = p ( / n ( A ) ) + p( / 2 2 (A)) . Under this condition 
the left upper block of / (A)+ is equal to ( / n ( A ) - / i 2 (A) / 2 2 (A)+ / 1 2 (A)* ) " 1 , cf. 
formula (3.32) in [4]. Thus , from the non-existence of (13) we again conclude P = 0 
and the existence of (13) yields (14) because of (6). O 

Corol lary 7. Let p = 1. Then A n = 0 if and only if e\ belongs to 11(f) cr-a.e. 
and the integral (13) exists. 

P r o o f . In the proof of Corollary 6 it was mentioned tha t e\ belongs to 1Z(f(X)) 
if and only if p(f(X)) > p( / 2 2 (A)) , A £ [—7r,7r). Hence, Corollary 7 is a consequence 
of Corollary 6. Q 

Now let us use our results to derive a minimality condition for r-variate stat ionary 
sequences due to Rozanov [5, Theorem 10.2 of Ch. 2]. 

An r-variate s tat ionary sequence 5 is called minimal in the sense of Rozanov if 

for each k £ { 1 , . . . , r } the kth entry SQ ' of SQ does not belong to the space Hk 

spanned by the entries of all sn) n £ Z \ {0}, and the elements s$\j / k. 

Corol lary 8. An r-variate s tat ionary process S is minimal in the sense of Rozanov 
if and only if the values of / are regular matrices and all functions on the principal 
diagonal of f~l are integrable. 

P r o o f . From Corollary 7 it follows tha t SQ ' does not belong to Hk if and only if 
ejb belongs to 1Z(f) and the kth function on the principal diagonal o f / + is integrable. 
But ek £ 11(f) for all k £ { 1 , . . . , r } if and only if f~l exists. D 

R e m a r k 9. We conclude with the remark tha t all results of the present paper can 
be extended to a multivariate stat ionary process on a discrete Abelian group in an 
obvious way. 

(Received February 8, 1999.) 
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