Kybernetika

Josu Arteche

Log-periodogram regression in asymmetric long memory

Kybernetika, Vol. 36 (2000), No. 4, [415]--435

Persistent URL: http://dml.cz/dmlcz/135361

Terms of use:

© Institute of Information Theory and Automation AS CR, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
O digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz


http://dml.cz/dmlcz/135361
http://project.dml.cz

KYBERNETIKA — VOLUME 36 (2000), NUMBER 4, PAGES 415-435

LOG-PERIODOGRAM REGRESSION
IN ASYMMETRIC LONG MEMORY!

Josu ARTECHE

The long memory property of a time series has long been studied and several estimates
of the memory or persistence parameter at zero frequency, where the spectral density
function is symmetric, are now available. Perhaps the most popular is the log periodogram
regression introduced by Geweke and Porter-Hudak [4]. In this paper we analyse the
asymptotic properties of this estimate in the seasonal or cyclical long memory case allowing
for asymmetric spectral poles or zeros. Consistency and asymptotic normality are obtained.
Finite sample behaviour is evaluated via a Monte Carlo analysis.

1. INTRODUCTION

In the time series literature the behaviour of the spectral density around zero fre-
quency has been of great interest and there exist several studies which measure
the impact of a spectral divergence or zero at the origin. For instance several
estimators of the slope of the logged spectral density of a long-range dependent
process are now available. For a scalar real valued covariance stationary process
{z,t = 0,%£1,42,...} assume absolute continuity of the spectral distribution func-
tion so that there exist a spectral density f(A) such that the autocovariance of order
jis

3 = Bi(er — Bo) (z1ag — Bz} = [ S() cos(j3) 0

We say that a process has standard long memory when the spectral pole or zero
occurs at zero frequency such that

fA)~CA"2as X -0 (1.1)

for C a positive constant and |d| < 1/2. The condition d < 1/2 is a stationarity
condition and d > —1/2 is usually required for invertibility.

The long memory can appear at other frequencies different from zero (see for
example Gray et al [6]) which is in accord with the concept of seasonal or cyclical
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long memory. Some parametric seasonal and cyclical long memory models have
been used by Jonas [13], Carlin and Dempster [3], Hassler [9], Robinson [16] and
Ooms [15]. For a review see Arteche and Robinson [2]. All these processes share a
semiparametric condition on the spectral density function around the frequency w
where the spectral pole or zero occurs, namely

flw+A) ~CPA"2?as A -0, (1.2)

for C a positive constant and |d| < 1/2. The spectral density function need not be
symmetric at a frequency between zero and 7 as (1.2) and the existing parametric
models assume. We can generalize (1.2) allowing for different spectral behaviour at
each side of w. We say that z; has asymmetric long memory if its spectral density
satisfies

fw+X) ~ CAx72% asx— o0t
flw—=X) ~ DX 22 a5 )0t (1.3)

for C,D € (0,00) and dy,ds € (—1/2,1/2) and we allow
dy # ds and/or C#D.

For example d; > d; implies that cycles of period just lower than 27 /w are more
persistent than cycles of period just larger. Clearly (1.3) nests (1.1) and (1.2) as
special cases. In this paper we study the asymptotic properties of the perhaps
most popular estimate of the memory parameter, the log periodogram regression of
Geweke and Porter—-Hudak [4], under seasonal or cyclical long memory. Our analysis
allows for asymmetric long-memory as in (1.3). Noting (1.3) the log periodggram
estimates of C' and d; are obtained by applying least squares to

logI(w+ Aj) =c+di(—2logAj)+u; j=1,...,m, (1.4)

where at least L + ™ — 0 as n — 00, Aj = 2—:1 are Fourier frequencies, I(}) =
|[W(X)|? is the periodogram and W()) = WLE Sor_; ze't* is the discrete Fourier
transform of z; at frequency A. The estimates of D and d; are similarly obtained
using frequencies just before w. The good properties of these estimates will hold if
the u; are uncorrelated and homoskedastic. However if we take ¢ = log C' — 1 where
n = 0.5772... is Euler’s constant, u; can be considered as

I(w + ;)
u; = log (a;_ﬁ) +n

and for d; # 0 they are not asymptotically uncorrelated nor identically distributed
if n — oo and j is held fixed (see Theorem 1 in Robinson [18] or Hurvich and
Beltrao [10]). This invalidates the proofs of the asymptotic properties of this estimate
claimed by Geweke and Porter-Hudak [4] and Hassler [7, 8] for the standard long
memory case (1.1). In order to obtain the asymptotics Robinson [18] introduces a
trimming number ! such that the number of frequencies used in the regression (1.4)
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is from j = |+ 1 to j = m. Clearly [ has to go to infinity more slowly than m
such that L — 0. Under Gaussianity and some other mild conditions Robinson [18]
shows that when w = 0 (and because of the symmetry of the spectral density around

0, dy = d3) \/ﬁ(dl —di) 4N (0, %) where d; is the log periodogram estimate of
d;. A gain in asymptotic efficiency is obtained by pooling J adjacent frequencies
and regressing

YD = ) 4 dy(~2log M) +ul”) k=1+4J0+2],...,m, (1.5)

where Yk(") = log(Z:.;-’:1 I(w + Ak4j—-J)) and J is fixed and assumed that m — 1l is a
multiple of J (if this condition does not hold the effects on the asymptotic properties
is negligible because J is fixed and T+ — o0). Note that even if we use the pooling
of J adjacent frequencies all the frequencies from w + Aj4; up to w + A, are used
in the estimation so that there is not loss of efficiency. The asymptotic distribution
of the least squares estimate of d; in (1.5) is \/ﬁ(d(l") —dy) 4 N(0, l%(ﬂ) where
¥'(z) = £14(2) and ¢ is the digamma function, ¥(z) = £ logI'(2) and T is the
gamma function. The gain in efficiency comes up because 9'(1) = #2/6 and Jy'(J)
decreases in J and goes to 1 as J — oo.
ui") in (1.5) can be considered,

J

J I(w+ Akyj—g

uﬁ ):log{zw}_wn k=1+J,0+2J,...,m.
o

(1.6)

If the ui") are uncorrelated and homoskedastic with zero mean, least squares in
(1.5) provides the best linear unbiased estimates of ¢() and d;. The disturbances
in (1.5) do not have those properties but in this paper we complement the work
of Robinson [18] and show in Section 2 that least squares estimates have the same
limiting distributional behaviour as if such properties held. Section 3 shows the finite
sample performance of the log-periodogram estimate in asymmetric long memory
time series and compares it with the Gaussian semiparametric estimate of Robinson
[19] and Arteche [1] by means of a Monte Carlo analysis. Finally Section 4 concludes.

j=1

2. ASYMPTOTIC DISTRIBUTION

Let {z4,t = 0,£1,%2,...} and {zp:,t = 0,%1,42,...} be two real valued scalar
processes with spectral density functions fy(A) and fi()) respectively, integrables
over [—m,w], and cross-spectral density fga(A). Let us state the following assump-
tions:

(A.1) For a frequency w € (0, 7) there exists a € (0,2] such that as A — 0%

fiw+A) = CA™2M(14+0(\)
filw=2) = DA(1+0(x))

for s = g, h and Cy, D, € (0,00), dis,d2: € (=1/2,1/2).
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(A.2) In a neighbourhood (—¢,0) U (0,€) of w fgn is differentiable and as A — 0+:

I

‘ fon(w + ,\)‘ O(A~1-2d1)

O(/\—l—2d;)

‘ fon(w — '\)l

where 2d; = dig + d;ip for i = 1,2.
(A.3) For some g € (0, 2]:
|Rgn(w + A) — Rgn(w)] = O(WF) as A — 0t

where Rgi()) = vf%;—:m is the coherency between z,¢ and zp.
The two main assumptions on the spectral density used in our univariate analysis are
(A.1) and (A.2) because in that case Rgn(A) =1 for all A, but we introduce (A.3)
to allow an easy multivariate extension of the results obtained in the univariate
case. These two assumptions hold with @ = 8 = 2 in the cases in Arteche and
Robinson [2] (note that sin(w — A)~24 = (w—A)~241 (14 O((w — A)?)) as A T w and
sin(A —w)™2% = (A —w)~2%(1 4+ O((A — w)?)) as A | w). Assumption (A.1) could
be generalized allowing for different a’s at frequencies just after and before w but
this would complicate the notation and the results we obtain hereafter would not be
altered.

Let W,(X) = m Yo z51e'*? be the discrete Fourier transform of z,; (s = g, h)

where correction for an unknown mean of z,; is not necessary because W;(A) is

computed only at frequencies \; = 2—:-1 for j = 1,...,m, where m is an integer less
than n/2. Introduce the scaled discrete Fourier transform v,(w + ) = %‘”—“) and
C2a—d1s

denote ¥,(A) the complex conjugate of v,(A).

Theorem 1. Let assumptions (A.1)~(A.3) hold and let k = k(n) and j = j(n) be
two sequences of positive integers such that j > k and -7'; — 0 as n — oo. Then as
n—00:

a) E[vg(w + Xj)n(w + )j)] = Rgn(w) + O (13?1)\].-2(01.--4.) + (;L;)min(a,p))
b) Efvg(w + Aj)vn(w + ;)] = O (lﬁjﬁi,\;z(d-‘—dl))
c) Elvg(w +Aj)on(w+ M) = O (E\/%A;(d"'d"),\;(""‘“’“))

d) Efvg(w + Aj)va(w+ M)} = O (%z\, (dig=dia) = (din— "”'))

where i = 1 if 2d; > 2d; in a) and b) and if dis > da,, s = g, h in ¢) and d) and
i = 2 otherwise.

Proof. See the Appendix. ‘ o
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Remark. Even in the case dy > dj, b) and d) are O ('—OJE‘L) and O (EQEJ.) respec-
tively if 1/2 — daps +dys > 0 for s = g,h and 1/2 —das +2dy >0fors=gor h
(see the Appendix). These conditions hold if dy, > 0 for s = g, h, irrespective of the
values of d,.

If di > dj these results correspond to those obtained by Robinson [18, Theorem
2] for w = 0. We focus on frequencies just after w because this theorem will be useful
in the proof of the asymptotic normality of the estimates of C and d; in (1.3) which
describe spectral behaviour at those frequencies. If we aim to estimate D and dj in
(1.3) a similar result would be obtained for the scaled discrete Fourier transforms,
v(w — ;) and v(w — Ag).

Hereafter we will focus on the estimation of C and d; in the univariate case g = h
and dig = dip = di, 1 = 1,2, in (A.1) and (A.2). In order to obtain the asymp-
totic distribution of the least squares estimates in (1.5) two further assumptions are
needed:

(A4) {z¢,t =0,%1,42,...} is a Gaussian process.

(A5) If dy > d,

Vmlogm + I(log m)? 4 mlitas
l m n

and if d; < ds,

vmn*d2=d1) Jog m + I(log m)? + mitie

as n — 00
[1+2(d;—d1) m — —0 -

where m and [ are the bandwidth and trimming numbers respectively so that
we only use those frequencies w + 2;’:-]— such that | < j < m.

If d; > d3 (A.5) is Assumption 6 in Robinson [18] and the proof of the asymptotic
normality is basically the same noting Theorem 1. However when d; < d; a stronger
condition must be imposed on the bandwidth and trimming numbers. To see the
implications of (A.5) take m ~ n® and | ~ n?. In this situation (A.5) entails

2(d2—d1)+%0—¢(1+2(d2—dl))<0,¢<9,0(1+‘21—a><1 ( )
2.1

The first two conditions imply § > ¢ > 4(d2 —d1)/(1+4(d2—d1)), and incorporating
the last condition in (2.1) indicates that we must have o > 2(d; — d;). Because
|di — d2| < 1, (A.5) can be satisfied for any d;, dy if @ = 2. The larger d; with
respect to d; the larger m and l-we need to get rid of the distorting influence of the
periodogram at frequencies just before w on the estimation of d; which describes
spectral behaviour after w (see Theorem 1). This trimming might be avoidable, or
at least reducible, if we use a tapered discrete Fourier transform instead of W(\)
(see Hurvich and Ray [11] and Velasco [20]).
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Define v()) = %‘%ﬁl = vr(A) + ivs(A) where vg()) and vr()) are the real and

fok 3
imaginary parts of v(X). The uil) in (1.6) can be written

J
u” = log[y {vh(Meti-s) + v} Aesj-1)}e ).
i=1

Introduce the 2 x 1 vector ¥(A) = (vr(A),vr())). The second order moments of
the elements of v();) and v(A;) can be deduced from those of v(};) and v(Ax) and
their complex conjugate in Theorem 1. It indicates that the v();) for j increas-
ing adequately slowly with n can be regarded as approximately uncorrelated with
zero mean (because W()) = ;751;‘- Sr_.(z¢ — Ezy)e'**) and covariance matrix 315
where I is the 2 x 2 identity matrix. Assumption (A.4) implies that the v(};) are
Gaussian and thus the approximate uncorrelation can be interpreted as approximate
independence. Introduce the two dimensional vector

V}-~NID(0,%I;) j=1+1,...,m (2.2)

where V; = (V1,j, V2,5) and the variates

J
wi’) = 10g[Y {Vihyjos+ Vikyj—ste ¥D) bk =1+704+2],...,m. 2.3
i=1 .

It follows that ):;"=1(V1?k+j_1 + Vi yj_s) ~ 3x3; for each k. Thus (see Johnson

and Kotz [12, p.167 and 181]) E[wy)] = 0 and wij) has finite moments of all
orders and variance 1'(J) where ¥'(z) = £¢(z). Further, independence of the V;

implies independence of w,(i)l,wg_;‘,, ,ws,'.’). Consequently if the ui'l) in (1.5)
can be replaced by wﬁ’) without affecting the limit distribution of the centered and

adequately scaled least squares estimates in (1.5) we can apply the Lindeberg—Feller
CLT and we will obtain the result stated in the following theorem:

Theorem 2. Let (A.1),(A.2) (with g = h), (A.4) and (A.5) hold. Then as n — oo,

VA CORCh) N ) 1 -1
[ lzf/ﬁ(ég’)—dl) ] —+N[O,J1,b (J)( 11 )] (2.4)

Proof. For d; > d; the assumptions and proof are equal to that in Robinson
[18] for w = 0 noting Theorem 1. When d; < dz (A.5) differs from Assumption 6
in Robinson. Anyhow the steps followed in the proof are quite similar and therefore
they will be presented briefly paying attention to the steps where (A.5) takes part.
The proof is based on showing that each moment of the variates on the left-hand side
of (2.4) converges to the corresponding moments of the normal distribution implied
by the right-hand side and then appeal to the Frechet—-Shohat “moment convergence




Log-Periodogram Regression in Asymmetric Long Memory 421

theorem” (Loéve [14, p. 187]) and the unique determination of the normal distribu-
tion by its moments. We use Theorem 1 to show that the moments differ negligibly
from those which would arise if instead of ui") we have wf) and then apply the
Lindeberg-Feller CLT.

Let é) and dh(l") be the least squares estimates in (1.5). Then

[ &) _ )

~(J
1()—-d1

i ] =(2'2)"'z'v

where U is a 1_,’—1 x 1 vector such that U; = uﬁ") and Z is a E'J;' x 2 matrix with

the first column a vector of ones and the components of the second column are
zj = —2log Mg, for k=1+3J,and j =1,2,...,(m-1)/J. From formula (5.2), (5.3)
and (5.4) in Robinson [18] and under (A.5):

vm
logn

z = 2/m(1 + O(logn)™ ') (2-5)

where z = =L 5™, 2 = =225 3", log A and

J
——|7'2| = 4? +O(I(log n)2). (2.6)
Now,
1 m-1 z J 1 0
tgyv-1_ _+ m—1 s _ _J
@D =g | e e o o]
and
[ -12U=[ -1 Zk"y), =2y 10g)\k__J_ZlogAk ul”)
ok zkui) - m—14
1 0 1 J
[0 O]Z'U:[O]}:ug’
k
Define now the matrix:
Vm 0
A = logn
0 2ym

It follows that

A(Z'2)"1Z'U

|
<
=
S
3
4+
o |~
~~
3
N
N———"
J
—
—
—
L
o
[*5)
>
x~
|
<}
o
>
x>
N
3
o~

k
e l E )] 7
_— logn 2.
+ i -3 ] - U . ( )

The proof of the theorem is completed if as n — oo:
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2) (£)¥ T (log 2 — w2y i log Ml 5 N(0,/(1))

J
b) 7,7}—;521:“55)1’0-

In order to prove a) and b) we claim that
J\? (J) d '
- > arup) S N(0,¥'(J)) (2.8)
p .

for any triangular array ax, = aj satisfying as n — oo,

max |a;| = o(m) , Za;‘: ~ ? and Zlakl” = OI(m) for all p > 1.
k k p e (2.9)

For b) ar = 1 and for a) ax = logk — =27 ", logk and (2.9) holds for both of

them (see Robinson [18, p.1067]). Thus if we can verify our claim (2.8) the proof

is completed. If instead of ut") in (2.8) we have w!”) a direct application of the
k k

Lindeberg—Feller CLT shows that (2.8) holds under (2.9). We show that the moments

of (L )l Dok GRUy () differ negligibly from those of (% )l Dok akw ) and then we use
the Frechet~ Shoha.t “moment convergence theorem” (Loéve [14])

Write xx = (Z) aku( ). Fix an integer N, E[Y_; xx]" is'a sum of finitely many
terms of the form _

Z ZE(I ) (2.10)

where Ny, Ni,, ..., Ng,, are all positive and sum to N and 1 < M < N. Fix such
M and Ni,,..., Ni,, and introduce the 2J x 1 vector vy = (v(Ak41-7), ..., (X))
and the 2J M x 1 vector v* = (v;!,..., 1 ). Under (A.4) v* is normally distributed
with zero mean and Theorem 1 implies that:

. 1 : iN"  logJ.-20dp-d)\ .r .
E[v}vy) 512,+0((%) +£;?_1Aj Ada “) ifj=k
logj | —(d;-d1) (4 —d:)) o s
o < D VA if j > k.
Vik™ ¢

as n — oo. It follows from (A.5) that:

1 @ logm , _2(d;—d,
L=EWvY] = shuu+0 ((%) + BT )) (2.11)
1 ,
= 1 -4 2.12
2121M +o0 (m 2) ( )

as n — 0o. Thus ©~! = ¥ exists for n large enough. If ¢, is the density function of
a p-dimensional standard normal variate (2.10) is:

N|>l

v) dv* (2.13)
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for n sufficiently large. Robinson [18] proved that the difference between (2.13) and

is negligible (tends to zero as n — oo0) what completes the proof. O

Remark 1. &) converges more slowly than d() and there exists perfect negative
correlation in the limiting joint distribution of &) and d(¥). This distribution, as
we could expect, is equal to that obtained by Robinson [18] for the case w = 0 and it
only differs in a stronger condition on the bandwidth, m, and trimming, I, imposed
to get asymptotic uncorrelation of the scaled discrete Fourier transforms of z;.

Remark 2. C can be estimated from &), CY) = exp(&(Y) — 4(J)) and a simple
application of the “delta method” provides the asymptotic distribution of C(/):

%(ém —C) 4 N(0,C2Iy/())).

Remark 3. The multivariate extension is easily done following the steps in Robin-
son [18] substituting his Assumption 6 for our assumption (A.5) and noting Theo-
rem 1. All his remarks follow in our case of spectral asymmetry around a positive
frequency.

Remark 4. Using a similar result to Theorem 1 it can be readily shown the asymp-
totic independence of the memory estimates on both sides of w in (1.3) which facil-
itates the construction of Wald tests of the hypothesis of spectral symmetry.

Remark 5. dAEJ) is asymptotically less efficient than the Gaussian semiparametric
estimate of Robinson [19] (see also Arteche [1] for the asymmetric long memory
case) since JY'(J) | 1 as J — oo and the asymptotic variance 1/4 of the Gaussian
semiparametric estimate is never achieved by dﬂ(lj). The main advantage of dY) is
its simplicity because the Gaussian semiparametric estimate, unlike dA(IJ), requires
iterative techniques and can not be written in closed form.

3. FINITE SAMPLE BEHAVIOUR

In this section we study via Monte Carlo analysis the effects of asymmetric long
memory on the finite sample performance of the log periodogram regression estimates
and compare it with the Gaussian semiparametric estimate of Robinson [19] that we
denote d;. From Arteche [1] d; is the argument that minimizes

1 < 2d &
I+1 141
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over the closed set [—0.499,0.499]. In order to generate an asymmetric long memory
series we first generated two independent Gaussian processes {€1,:} and {e3,:} with
zero means and lag-j autocovariances

sin(jw
T1j 0'? (5]' - —(—2) )

)
sin(jw)
Yi = 0% e
respectively, where ;0 = 1 if j = 0 and 0 otherwise. It follows that €; ; and €2+ have
spectra
i 0, 0<A<uw,
f€1 (A) = o2 (31)
7k, w<ALm,
and
%, 0<A<w,
fa(W) =9 " (32)
0, w<A<n

Now define the processes {z;.:}, j = 1,2, by
(1-2Lcosw+ L)Yz =€ , j=1,2, t=0£1.... (3.3)

Thus the {z;:} have spectra

fe;(A)

- [1 — e cosw + e2iA|2d;

fz;(A) , 0<A<T, j=1,2,

and in view of (3.1) and (3.2) and independence of the {¢j:}, 7 = 1,2, z: = z1,t+Z2 4
has spectrum

;—i—ll —2ecosw + A2 if w< A<,
fQ) = for(A) + fo,(A) =

%1;?'1—2e""cosw+ez’.'\|_2d2 if 0<A<w,(3.4)

which clearly satisfies (1.3). In order to generate realizations of z; we rewrite (3.3)
as

o0

chdj)(cosw)l‘j,t_, =€t , J=1,2, t=0,%1,..., (3.5)

s=0

(see Gray et al [6]) where the Gegenbauer polynomials C,Sd)(r)) are of the form

(/2 -
R (“1)hr(s — k- d)(2n)
Ci(n) = f\;o T(k+ 1)I(s — 2k + )I(=d)’
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We truncate the sum in (3.5) so that actually our generated z;; are

1500
Tjt=— Z ngi)(cosw):cj,g_, + €1, (3.6)

s=1

where z;; = 0 for ¢ < 0. We prefer an autoregressive truncation over the moving
average one of Gray et al [6] because autoregressive coefficients decay faster. The
Gegenbauer functions are obtained via the recursion

—d+s-1 -2d+s—-2
90 = n (22271 - (227 ooy

S

(see formula 8.933.1 in Gradshteyn and Ryzhik [5]). We carried out simulations
for w = /4, 7/2,37/4 but report results only for w = 7/2 because these are fairly
typical. We took dy,ds = {—0.4,-0.2,0,0.2,0.4} and ¢? = ¢2 = 1. Assumptions
(A.1) with o = 2, (A.2) and (A.4) are then satisfied. We show the results for the
log periodogram (J = 1), J(ll), and the Gaussian semiparametric, dy, estimates of d;
with sample size n = 256 and three different bandwidths, m = 16, 32 and 64. The
effect of the trimming is only shown for m = 64 and three trimmings are analysed,

1l = 2,4,8. The number of replications was 1000 and all the calculations were done
using GAUSS-386i version 3.2.8.

The bias and mean square error (MSE) of the untrimmed estimates are shown in
Table 1. The bias tends to be positive for negative values of d; and when d; < d3, and
negative for positive d; and when d; > d; although a positive bias is more pervasive
in (i&l). The bias and MSE are extremely high in the extreme cases d3 > d; and both
decrease with m because the more frequencies we use the less important the influence
of periodogram ordinates close to w “contaminated” by d;. When we introduce the
trimming we observe in Table 2 that the bias tends to reduce especially when the
difference dy — d; is large. The MSE clearly increases with the trimming except in
those cases where dz —d; is large and we omit a small number of frequencies (I = 2).
It also becomes more invariant to the difference d3 — d;. Comparing J(ll) and d; it
is noticeable the lower MSE of d; corroborating the higher efficiency in form of a
lower asymptotic variance.

4. CONCLUSIONS

All the research done to date on processes with seasonal or cyclical long range depen-
dence implicitly assume symmetry of the spectral poles or zeros and apply methods
developed for the standard long memory at zero frequency. In these pages we have
provided theoretical support to this practice for the log-periodogram estimate. How-
ever if the actual data generating process presents an asymmetric spectral pole or
zero the estimation of the memory parameter using frequencies on both sides of the
frequency of interest can lead to distorted results.
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Table 1. Bias (MSE) of the untrimmed estimates of d;, n = 256.
m =16
di\d> -0.4 -0.2 0 0.2 0.4
-0.4 |d{" | 0.0338 (0.0446) 0.0420 (0.0466) 0.0725 (0.0494) 0.1523 (0.0718) 0.3293 (0.1673)
dy | 0.0408 (0.0192) 0.0477 (0.0206) 0.0705 (0.0257) 0.1395 (0.0468) 0.2999 (0.1298)
~0.2 |d{") | 0.0059 (0.0454) 0.0097 (0.0442) 0.0206 (0.0444) 0.0568 (0.0500) 0.1742 (0.0817)
d; |-0.0085 (0.0275) -0.0051 (0.0276) 0.0065 (0.0281) 0.0431 (0.0322) 0.1490 (0.0572)
0 |d{"|-0.0032 (0.0444) -0.0029 (0.0448) 0.0004 (0.0446) 0.0129 (0.0463) 0.0736 (0.0509)
dy |-0.0231 (0.0312) -0.0217 (0.0312) -0.0174 (0.0312) -0.0024 (0.0319) 0.0521 (0.0348)
0.2 |d{") |-0.0053 (0.0452) -0.0059 (0.0460) -0.0040 (0.0451) 0.0012 (0.0452) 0.0238 (0.0446)
di |-0.0271 (0.0306) -0.0266 (0.0306) -0.0248 (0.0305) -0.0192 (0.0303) 0.0021 (0.0297)
0.4 |d{") | 0.0013 (0.0450) 0.0012 (0.0448) 0.0016 (0.0447) 0.0032 (0.0451) 0.0105 (0.0452)
di |-0.0446 (0.0229) -0.0444 (0.0228) -0.0439 (0.0227) -0.0423 (0.0224) -0.0368 (0.0214)
m = 32
di\d2 —~0.4 -0.2 0 0.2 0.4
~0.4 |d{") | 0.0244 (0.0187) 0.0297 (0.0196) 0.0484 (0.0209) 0.0956 (0.0291) 0.2050 (0.0663)
dy | 0.0224 (0.0098) 0.0275 (0.0104) 0.0429 (0.0124) 0.0896 (0.0210) 0.2014 (0.0596)
-0.2 [d{") | 0.0023 (0.0189) 0.0049 (0.0185) 0.0121 (0.0187) 0.0341 (0.0205) 0.1057 (0.0318)
d; |-0.0080 (0.0127) -0.0055 (0.0127) 0.0021 (0.0127) 0.0259 (0.0139) 0.0961 (0.0244)
0 [d{"]-0.0083 (0.0187) -0.0078 (0.0189) -0.0052 (0.0189) 0.0028 (0.0195) 0.0404 (0.0203)
(Il -0.0195 (0.0131) -0.0185 (0.0131) -0.0156 (0.0130) -0.0057 (0.0131) 0.0293 (0.0143)
0.2 |d{"|-0.0141 (0.0192) -0.0144 (0.0196) -0.0128 (0.0193) -0.0095 (0.0192) 0.0055 (0.0186)
dy |-0.0253 (0.0134) -0.0248 (0.0134) -0.0237 (0.0133) -0.0198 (0.0132) -0.0053 (0.0130)
0.4 |d{"]-0.0139 (0.0189) -0.0138 (0.0188) -0.0135 (0.0189) -0.0124 (0.0191) -0.0071 (0.0190)
d'l -0.0335 (0.0113) -0.0332 (0.0113) -0.0328 (0.0113) -0.0314 (0.0112) -0.0268 (0.0109)
m = 64
d1\d2 -0.4 —-0.2 0 0.2 0.4
—0.4 [d{") | 0.0634 (0.0131) 0.0664 (0.0136) 0.0772 (0.0151) 0.1046 (0.0207) 0.1699 (0.0405)
di | 0.0519 (0.0083) 0.0550 (0.0088) 0.0649 (0.0101) 0.0949 (0.0157) 0.1699 (0.0384)
-0.2 |d{" | 0.0301 (0.0099) 0.0316 (0.0099) 0.0358 (0.0102) 0.0488 (0.0117) 0.0913 (0.0185)
dy | 0.0187 (0.0062) 0.0201 (0.0063) 0.0244 (0.0065) 0.0387 (0.0076) 0.0827 (0.0140)
0 |d{"]0.0038 (0.0088) 0.0040 (0.0089) 0.0055 (0.0089) 0.0105 (0.0093) 0.0334 (0.0103)
dy |-0.0084 (0.0059) -0.0078 (0.0059) -0.0060 (0.0059) 0.0001 (0.0059) 0.0218 (0.0066)
0.2 |d{")|-0.0193 (0.0092) -0.0196 (0.0094) -0.0187 (0.0093) -0.0164 (0.0091) -0.0068 (0.0089)
di |-0.0317 (0.0068) -0.0314 (0.0068) -0-0307 (0.0068) -0.0281 (0.0066) -0.0188 (0.0062)
0.4 |d{") [-0.0385 (0.0101) -0.0383 (0.0101) -0.0384 (0.0101) -0.0376 (0.0101) -0.0335 (0.0100)
dy |-0.0522 (0.0083) -0.0520 (0.0083) -0.0517 (0.0083) -0.0507 (0.0082) -0.0471 (0.0078)
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Table 2. Bias (MSE) of the trimmed estimates of di, n = 256, m = 64.
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=2
di\d2 -0.4 -0.2 0 0.2 0.4
~0.4 |d{") | 0.0799 (0.0168) 0.0805 (0.0169) 0.0826 (0.0175) 0.0914 (0.0189) 0.1196 (0.0241)
dy |0.0651 (0.0104) 0.0658 (0.0106) 0.0679 (0.0109) 0.0748 (0.0121) 0.0981 (0.0164)
-0.2 [d{") | 0.0461 (0.0133) 0.0461 (0.0135) 0.0475 (0.0137) 0.0528 (0.0142) 0.0696 (0.0159)
d; | 0.0294 (0.0084) 0.0299 (0.0084) 0.0312 (0.0086) 0.0355 (0.0089) 0.0501 (0.0101)
o [d{")|0.0147 (0.0120) 0.0145 (0.0121) 0.0152 (0.0123) 0.0180 (0.0124) 0.0289 (0.0127)
dy |-0.0024 (0.0081) -0.0021 (0.0081) -0.0013 (0.0082) 0.0012 (0.0082) 0.0099 (0.0083)
0.2 [d{")[-0.0148 (0.0127) -0.0148 (0.0126) -0.0145 (0.0126) -0.0128 (0.0126) -0.0070 (0.0126)
dy |-0.0324 (0.0097) -0.0322 (0.0097) -0.0317 (0.0097) -0.0303 (0.0096) -0.0253 (0.0093)
0.4 |d{") |-0.0415 (0.0147) -0.0416 (0.0146) -0.0417 (0.0147) -0.0414 (0.0147) -0.0377 (0.0146)
dy |-0.0608 (0.0124) -0.0606 (0.0124) -0.0604 (0.0123) -0.0597 (0.0123) -0.0573 (0.0119)
=4
di\d2 -0.4 -0.2 0 0.2 0.4
~0.4 [d{V) | 0.0951 (0.0227) 0.0952 (0.0229) 0.0960 (0.0233) 0.0991 (0.0241) 0.1111 (0.0260)
dy | 0.0767 (0.0137) 0.0770 (0.0138) 0.0780 (0.0140) 0.0810 (0.0146) 0.0912 (0.0166)
-0.2 |d{") | 0.0576 (0.0178) 0.0572 (0.0181) 0.0577 (0.0182) 0.0606 (0.0186) 0.0680 (0.0195)
dy | 0.0364 (0.0108) 0.0367 (0.0108) 0.0373 (0.0109) 0.0393 (0.0112) 0.0465 (0.0119)
o |d{"]0.0214 (0.0157) 0.0210 (0.0157) 0.0214 (0.0159) 0.0232 (0.0163) 0.0287 (0.0167)
dy |-0.0003 (0.0100) -0.0002 (0.0101) 0.0002 (0.0101) 0.0015 (0.0102) 0.0062 (0.0103)
0.2 |d{"|-0.0141 (0.0164) -0.0141 (0.0164) -0.0137 (0.0164) -0.0124 (0.0163) -0.0088 (0.0163)
dy [-0.0324 (0.0117) -0.0322 (0.0118) -0.0317 (0.0118) -0.0303 (0.0118) -0.0253 (0.0116)
0.4 |d")|-0.0471 (0.0191) -0.0472 (0.0190) -0.0472 (0.0191) -0.0466 (0.0190) -0.0439 (0.0187)
d; |-0.0705 (0.0152) -0.0704 (0.0152) -0.0703 (0.0152) -0.0699 (0.0152) -0.0682 (0.0149)
=8
dy\d> -0.4 —0.2 0 0.2 0.4
~0.4 |d{") | 0.1152 (0.0371) 0.1153 (0.0371) 0.1158 (0.0374) 0.1171 (0.0373) 0.1227 (0.0381)
dy | 0.0949 (0.0216) 0.0951 (0.0216) 0.0956 (0.0217) 0.0969 (0.0220) 0.1011 (0.0231)
-0.2 d‘(ll) 0.0687 (0.0300) 0.0686 (0.0301) 0.0689 (0.0299) 0.0705 (0.0301) 0.0745 (0.0307)
dy | 0.0443 (0.0174) 0.0445 (0.0175) 0.0449 (0.0175) 0.0460 (0.0177) 0.0496 (0.0182)
0 |d"|0.0235 (0.0266) 0.0230 (0.0266) 0.0236 (0.0270) 0.0249 (0.0277) 0.0281 (0.0278)
dy |-0.0017 (0.0166) -0.0016 (0.0166) -0.0012 (0.0167) -0.0004 (0.0167) 0.0022 (0.0168)
0.2 |d{"|-0.0216 (0.0279) -0.0214 (0.0279) -0.0210 (0.0281) -0.0198 (0.0283) -0.0179 (0.0282)
dy |-0.0467 (0.0195) -0.0466 (0.0196) -0.0463 (0.0196) -0.0458 (0.0196) -0.0440 (0.0195)
0.4 |d{"|-0.0642 (0.0332) -0.0643 (0.0329) -0.0645 (0.0332) -0.0641 (0.0332) -0.0620 (0.0331)
dy |-0.0941 (0.0252) -0.0941 (0.0252) -0.0939 (0.0252) -0.0937 (0.0252) -0.0927 (0.0250)
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APPENDIX: PROOF OF THEOREM 1
a) The proof of a) is in two parts. First we show that
- logj )
BIW (o + A)Wa(o + )] = fnlw + 1) +0 (2L qay

and then that

for(w +Xj) = CFCEAT 2 Ryp(w) = O (A;"i"(""”-“*) . (4.2)

In order to prove (4.1) write the left hand side of the equality as

1
27n

n n L
ZZ'Yyh(t 2 s)efswthide=itwidy) = Fan(Q) K(w + Aj — A)dA
t=1 s=1 -7

where 745 (t—s) is the covariance between z4; and 5, and K()) = 5L 37, =, ef(t=o)A

is Fejer’s kernel. Since [* K(w+Aj —A)dA = 1 we have to study the order of mag-
nitude of

{Fon(A) = fon(w + X))} K (w + Aj — A)dA. (4.3)
Due to assumptions (A.1) and (A.2) we can pick € so small that for some Ce < o0 :

@+ 0] < fFw+NFEw+A) < Cela|2

|axfor(w+X)] < Cefa|71-24

for A € (—¢,0)U(0, €) and 2d; = dgy + dhy. Because w € (0, 7) and % —0asn— oo
we can choose € such that for n large enough:

€>2);, 2w+A—€>0, 2w+Aj+e<2m, (4.4)

what will be necessary for subsequent analysis. For such € we have that the integral
over = [-m,w — €] U [w + ¢, 7] is bounded in absolute value by

{maxk 2 =0} [ 1@+ 1fno 420
= O(n ' (1+A7*")=0 GA;“I) :

The first equality comes from the following facts that will be useful in subsequent
analysis:

2
KQ) = '22(7:‘% (4.5)
D) = Do < I -1A| if0<X<2r (4.6)
1 sin 2
KN = O®m™'A7?) for0<|A| < (4.7)

A

£ < FENFE(A) and | ) = var(ei) <oo, i=g.h (48)
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and the second one because:

n

] 142d, 1
_o(( ,\-“1) and 1+ 2d; > 0.

Now decompose the remainder of the integral :
we %’- w+ w+2A;5 w+e
[ [ L
- +—é’- wH2A;

The first integral in (4.10) is bounded in modulus by

o
2
{ | f_,,,.(A)|} / K(w+ ) — A)dA
w- £<A<w w—€

w-.:.

Hfon(w + )] / K(w+3; - A)dA

= { max Ifg;.(w—/\)l}/;l{(/\j—}-z\)d/\

—J-<A<e 3

(@ + )] /ii K(A; +2)dA

IA

1
, )
Hrgerr; AT

e+A;
Hnw + X)) /:i K(\)dA
2

= 0 (n—l,\j—l—Mz + n—ll\j—l—zdl) -0 (j—l)\j—2d.')

e+A;
{ max —————lf""(“’_’\)l} /: K3 d)
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(4.9)

(4.10)

because of (4.7). Similarly the last integral in (4.10) is O(j '1/\].'2‘1‘). Now using the

mean value theorem,

w+2A;5
-[.;+5i

2

2);

IA

A
Faga 3

- 25 logj,_
= O(n~1a;1-24 /h |D(Ai"'\)|d’\)=0(_j‘)‘j 2d1>

because of (4.5) and
DOV < 2L, o< <7

CAj
/ ID(A)|dA = O(logj) for C < oo.
~-CXj

- {fon(W+2) = for(w +2)HE(X; = A)dA

23,
{ _max |f;;,(w+/\)|}/3j_ [A =X |K(Aj —A)dA

(4.11)

(4.12)
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For the property (4.11) on Dirichlet’s kernel D(}) see Zygmund [21, pp.49-51] and
(4.12) is Lemma 5 of Robinson [17]. To complete the proof of (4.1) fw+f’_ in (4.10)

p A
2

is bounded in absolute value by -

{ max K(/\j—/\)}/_;{|fgh(w+/\)|+lfyh(er/\j)I}d,\

~HacH
_ - —2d; — ;- —2d;
= o(naAl2) =0 (57152 |
Proceeding as in the proof of Theorem 2 in Robinson [18] we have that (4 2) is

O(\j~ 2d‘)+0( A?=24Y ypider assumption (A.1) and (A.3) what completes the proof
of a)

b) To prove b) write E[W,(w + Aj)Wh(w + A;)] as

n n
_21_ Z Z'yyh(t — s)eitlwtdi)gis(wths)
T

t=1 s=1
™1
- / 5 Tn(N)D( + X + D + 35 = ) dA

-7

The integral over Q = [-7, —w — €]U[-w +¢€,w — €]U[w +¢, 7] is bounded in absolute
value by

271m {maxlD(w+/\ + )IIDW + A —/\)]}/jﬂ 1fon(A)] dA
_ O(n—l) -0 (j—ll\;-Zdl)

using (4.4), (4.6) and (4.9). Now |f_w *%| is bounded by

1 €
s Lo (3=} [ 100, = 01022+ + D1

1 |fyh(—w—A)| 1 __—dlh
2{““_—,\ B o / pmTmd

- o) o b (5™ ) ol

the first inequality because of (4.4), (4.6) and (4.11) and the last equality because
1/2 +d1y > 0. Similarly
w+e€
/u+2Xj

IN

=0 (j1a).
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Proceeding in the same manner the integral over [—w + 5.{-, ~w + €] is bounded in
modulus by

1 max ——-————Ifgh(l—w + )l max w+A / T A k-dag g
21 | Gagern; AT Mcage [sin 2E=A [y
=0 (a7 ¥) = 0 (j-10;2)

and under the conditions in the remark to Theorem 1 this is O(]"lz\_“‘/\i—d"”dl)
= O(j~'A;?%). Similarly the integral over [w — €,w — A;/2] is O(J‘I/\J“Zd’) and
O(j"l)\j"“‘) under the conditions in the remark to Theorem 1. The rest of integrals
are

w2 -—w-—%j-
Loy *
w+ 4 —w=2X;
o) ! max |fen(w + A)| max 1 /)‘. |D(A)| dA
= — h T
2rn %SASZAJ’ g iL()\<2A ISln Ml
- . logj,_
- 2d; — 2d,
the second inequality because of (4.4) and (4.6) and the first equality due to (4.12).

To complete the proof of b) the integral over [w — %J'-,w + 52-?-] is bounded in absolute
value by

A

1 il
— max  |D(2w + Aj + A)| max _ |D(A; — A)| / o | fon(w +A)[dA
Yok ~Yack -%

= 0 ("7 (7 4 212)) = 0 (5 1ay )

the first equality because of (4.4), (4.8) and (4.11), and under the conditions in the
remark to Theorem 1 this is O(j ’1/\"2‘1‘(/\ + )\1 2dat2diy) 0(]’1)\'“‘) The

analysis for the integral over [—w % —’-] is similar and this concludes the proof of b).

¢) To prove c) write E[W,(w + A;)Wa(w + At)] as

S s et = [T (B () aa

t=1s=1

where Eji()) = g2=D(w+Aj = A)D(A —w — A). Since [T €'~ dX =0 for s # ¢
and 27 for s =¢, and 3 ;- "(AJ M) =0 for 0 < j — k < n/2 then

/ " () dh =0. (4.13)
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Thus we can expand the integral as

{/ - / ;A.}{ffh(*)-fw-(wﬂ,-)}E,-k(A)dA (4.14)

w+2;
[ hean, U ) = 40} Bis(3) 02 (4.15)
+ /+5L {fgh(/\) - fgh(w + '\k)}Ejk()\) dX (4.16)
. w2ETR
- Un@r) =S} [T Baan @)
w3k

2

Now (4.15) is bounded by

1 2);

™ {(»\k+»\ )/2<)\<2A |fon(w +'\)I}ﬁ i+ [D(A = Ag)|dA

—ly—1-2dy . ; logj y~di, 1 logj \-dys -
- O(n 1/\]'1 2d log]): (\/‘k‘ ; AT dah(;);-i—du.) :__0(\/_":_)‘] 1 ,\ din

for j > k. The absolute value of (4.16) is bounded by

1 ]

2
™ ' A A — A)d)
{'\*/2<Xr£a)§+z\k)/z fonw + )l}/%,L [D(A; — M)
-0 (i)

if j/2 < k < j, and when k < j/2 (4.16) is bounded by

1 X*-;-A'
= HEVIRY e U
wn{x,.<2,\<(x . )Ifyh(w+/\)|+|fyh(w+/\ )I}(A At) /T" ID(A; = \)]d

0 ((A,-‘“‘ + 724 (j - k)" log )
Now (4.17) is bounded in modulus by

1 A Ak

o {mas, 01} [T 100 - a0las

2mn
2

—1- . logj . —dyg\-d,
= O(Tl—l/\kl dllog]) (\/g_Z_I\Jdﬂ,\ dh)
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if k > j/2, and when k < j/2 (4.17) is bounded by

Aj A
1 7
U@ 01+ o+ D05 =207 [T 1DO=lax

ot md 108 « —dy, -,
= 07 37 - i loga) = 0 (i)

as in the evaluation of (4.16). Proceeding similarly and as in Robinson [18] it is
straightforward to show that (4.14) is O ((jk)"°'5)\;d"z\;d“') which completes the
proof of c).

d) Write E[Wy(w + A;)Wh(w + A)] as

Z Z Ygh (t - S)e‘t(w+AJ)e”(“'+Ak)
ol 127rn
m
- / S fan(N)D(w + 35 + )D(w + Xy = X)X
-
Proceeding as in b),

LT[ |0 =0 (o).
~/—1f —w+e€ w+e ( ) \/7C_J

Now the integral over [~w — €, —w — 2J;] is bounded in absolute value by

1 €
2—,;,;{” nax e Ifgh(—‘*’—/\)|}/ ID(Aj = M)||D(2w + A + )| dX

1 1 Uan(=w =D\ [ )i
™ {2'\1?58:\)2‘ |sin M’—Aﬁﬁl} {a\r~r<l§<c A3—dn iy ,\ da

J
- o) =o (Jpreare)

and similarly the integral over [w+2Ak, w+€] is O(( jk)‘°'5/\;d")\;d”'). The integral
over [—w — 2)j, —w — %-’-] is bounded in absolute value by

IA

1 2);
I { max |fon(—w — /\)]} ./2.1. ID(Aj = AM)||D(2w + Ak + A)|dA

2
S <AL2); 3

= 0(n 1 logj) = (l\‘;il,\;"",\-"u)
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and similarly the integral over [w + A /2,w 4 2)] is O((ch)'o's/\;d”/\,:d”‘). The
integral over [—w + %’-] is bounded in absolute value by

1 | 3
2—{ mx | 100 +A>||D(2w+xk—x)|} [ U+ 21 an
™ | _2icag 3

= 0(n A" 2,,) o(\ﬂc_x;dw,\-dm)

and under the conditions stated in the remark this is

| 1 a1 1_ 1 -
0 (ﬁ’\, dlg)\;du. {/\]? din /\;+du. + ’\]? 2dz+d1g)\’:+d1h]) -0 ( /\] dlg)‘_d”,> .

We obtain similarly the same result for the integral over [w + '\7"] The integral over

[~w+ -)‘-21, —w + €] is bounded in absolute value by

1 YanQ =)\ [Ty,
E{ max |D(2w + A A)l} {Ajsrilgj+5w /’\f ’ “

—J-<)\<c
- —3—d2 _ "'ng —dy
= 0(n 3 = 0(\/—76_,\J ¥ )

and under the conditions in the remark

—dx din y—d2g+digy 3+din | __ —dyg y—din
TN DA AZ ) (0] ( A AL ) .
/— ] k /E J

We obtain similarly the same upper bound for the integral over w—€w-— -)‘5’-]
Finally the absolute value of the integral over [w — '—\Zi,w - %’-‘-] is bounded by

1 Won@ = DIV 1% 4o,
m{ max |D(2w + A ’\)I}{,\Kfﬂ(x, A5—d2g A A d/\

Acrci k

= 0 (n"l,\;%"d”‘ Aj%_dzy) = O (\/__TAJ—ng)\ dzh)

and under the conditions in the remark this is

g L—dag+dig | $—dantds 1i-ayy-q

and the proof is completed. o

(Received March 12, 1999.)
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