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LOG-PERIODOGRAM REGRESSION 
IN ASYMMETRIC LONG MEMORY1 

Josu ARTECHE 

The long memory property of a time series has long been studied and several estimates 
of the memory or persistence parameter at zero frequency, where the spectral density 
function is symmetric, are now available. Perhaps the most popular is the log periodogram 
regression introduced by Geweke and Porter-Hudak [4]. In this paper we analyse the 
asymptotic properties of this estimate in the seasonal or cyclical long memory case allowing 
for asymmetric spectral poles or zeros. Consistency and asymptotic normality are obtained. 
Finite sample behaviour is evaluated via a Monte Carlo analysis. 

1. INTRODUCTION 

In the time series literature the behaviour of the spectral density around zero fre­
quency has been of great interest and there exist several studies which measure 
the impact of a spectral divergence or zero at the origin. For instance several 
estimators of the slope of the logged spectral density of a long-range dependent 
process are now available. For a scalar real valued covariance stationary process 
{xt, t = 0, ± 1 , ± 2 , . . . } assume absolute continuity of the spectral distribution func­
tion so that there exist a spectral density /(A) such that the autocovariance of order 
j is 

7 i = E{(xx - Exx) (x i + i - Exx)} = / /(A) cos(jA) dA. 
J-7T 

We say that a process has standard long memory when the spectral pole or zero 
occurs at zero frequency such that 

/(A) - C\~2d as A -* 0 (1.1) 

for C a positive constant and \d\ < 1/2. The condition d < 1/2 is a stationarity 
condition and d > —1/2 is usually required for invertibility. 

The long memory can appear at other frequencies different from zero (see for 
example Gray et al [6]) which is in accord with the concept of seasonal or cyclical 

1 Research supported by UPV grant 038.321-G55/98. I thank Peter M. Robinson, Javier Hidalgo. 
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long memory. Some parametric seasonal and cyclical long memory models have 
been used by Jonas [13], Carlin and Dempster [3], Hassler [9], Robinson [16] and 
Ooms [15]. For a review see Arteche and Robinson [2]. All these processes share a 
semiparametric condition on the spectral density function around the frequency u 
where the spectral pole or zero occurs, namely 

f(uj + A) - C|A|- 2 d as A -> 0, (1.2) 

for C a positive constant and \d\ < 1/2. The spectral density function need not be 
symmetric at a frequency between zero and n as (1.2) and the existing parametric 
models assume. We can generalize (1.2) allowing for different spectral behaviour at 
each side of LJ. We say that xt has asymmetric long memory if its spectral density 
satisfies 

/(w + A) ГSJ CA" •2di as A - 0 + 

/ ( " - A ) Г S У DУ -2d2 as A ̂ 0 + (1.3) 

for C,D e (0, co) and <Ii, d2 G (-1/2,1/2) and we allow 

d\ ^ d2 and/or C ^ D. 

For example d\ > d2 implies that cycles of period j.ust lower than 27r/a; are more 
persistent than cycles of period just larger. Clearly (1.3) nests (1.1) and (1.2) as 
special cases. In this paper we study the asymptotic properties of the perhaps 
most popular estimate of the memory parameter, the log periodogram regression of 
Geweke and Porter-Hudak [4], under seasonal or cyclical long memory. Our analysis 
allows for asymmetric long-memory as in (1.3). Noting (1.3) the log periodggram 
estimates of C and d\ are obtained by applying least squares to 

log/(u; + \j) = c+di(-2\og\j) + Uj ; = l,...,m, (1.4) 

where at least -^ + ^- _• o as n ---> co, \j = ^ are Fourier frequencies, 7(A) = 
\W(\)\2 is the periodogram and W(\) — } YA=I xtettX *s the discrete Fourier 
transform of xt at frequency A. The estimates of D and d2 are similarly obtained 
using frequencies just before u. The good properties of these estimates will hold if 
the Uj are uncorrelated and homoskedastic. However if we take c -= logC — rj where 
rj = 0.5772... is Euler's constant, Uj can be considered as 

(l(u + \j)\ 

and for d\ ^ 0 they are not asymptotically uncorrelated nor identically distributed 
if n —>- oo and j is held fixed (see Theorem 1 in Robinson [18] or Hurvich and 
Beltrao [10]). This invalidates the proofs of the asymptotic properties of this estimate 
claimed by Geweke and Porter-Hudak [4] and Hassler [7, 8] for the standard long 
memory case (1.1). In order to obtain the asymptotics Robinson [18] introduces a 
trimming number / such that the number of frequencies used in the regression (1.4) 
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is from j = / + 1 to j = m. Clearly / has to go to infinity more slowly than m 
such that ~—• 0. Under Gaussianity and some other mild conditions Robinson [18] 
shows that when UJ = 0 (and because of the symmetry of the spectral density around 
0, d\ = d2) y/m(d\ — d\) —* -V (0, §4 J where d\ is the log periodogram estimate of 
d\. A gain in asymptotic efficiency is obtained by pooling J adjacent frequencies 
and regressing 

Y<J) = c<J) + rfi(-2log AO + u[J) k = / + J, / + 2J , . . . , m, (1.5) 

where Y^ = l°g(]Cj_i ^(u + ̂ k+j-j)) and J is fixed and assumed that m — / is a 
multiple of J (if this condition does not hold the effects on the asymptotic properties 
is negligible because J is fixed and y —• 00). Note that even if we use the pooling 
of J adjacent frequencies all the frequencies from u + A/+i up to u + \m are used 
in the estimation so that there is not loss of efficiency. The asymptotic distribution 
of the least squares estimate of d\ in (1.5) is y/m(d\ * — d\) —> JV(0, - ~ p ^ ) where 
xp'(z) = j^ip(z) and xj) is the digamma function, \p(z) = ^ l o g r ( z ) and T is the 
gamma function. The gain in efficiency comes up because tp'(l) = 7r2/6 and Jip'(J) 
decreases in J and goes to 1 as J —• 00. 

ujj. ' in (1.5) can be considered, 

•ÿ) = log\T,I(Ы+-iï-j)\-*W k = l + J,l + 2J,...,m. 
CXк+j-J I (1.6) 

If the vrk ' are uncorrelated and homoskedastic with zero mean, least squares in 
(1.5) provides the best linear unbiased estimates of c^ and d\. The disturbances 
in (1.5) do not have those properties but in this paper we complement the work 
of Robinson [18] and show in Section 2 that least squares estimates have the same 
limiting distributional behaviour as if such properties held. Section 3 shows the finite 
sample performance of the log-periodogram estimate in asymmetric long memory 
time series and compares it with the Gaussian semiparametric estimate of Robinson 
[19] and Arteche [1] by means of a Monte Carlo analysis. Finally Section 4 concludes. 

2. ASYMPTOTIC DISTRIBUTION 

Let {xgt,t = 0 , ± 1 , ± 2 , . . . } and {x^tyt = 0 , ± 1 , ± 2 , . . . } be two real valued scalar 
processes with spectral density functions fg(\) and A (A) respectively, integrables 
over [—7T,7r], and cross-spectral density fgh(ty> Let us state the following assump­
tions: 

(A.l) For a frequency u € (0, w) there exists a e (0,2] such that as A —• 0+ 

fs(u + \) = Cs\~
2d>'(l + 0(\°)) 

/ f ( W -A) = D.\-2d»(l + 0{\°)) 

for 5 = g,h and CS1DS <E (0-oo), dlsid2s e (-1/2,1/2) . 
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(A.2) In a neighbourhood (—e,0) U (0, e) of u fgh is differentiable and as X —» 0 + : 

д f,h(ы + A) 

I\f°h{ш ~ A ) 

= 0 ( A - 1 - 2 d l ) 

= OÍA" 1" 2^) 

where 2di = dig + dih for i = 1,2. 

(A.3) For some /? e (0,2]: 

|i2^(w + A) - fl^(w)| = O(A^) as A — 0+ 

where Rgh(X) = / '9h\ ' is the coherency between xgt and xht. 

The two main assumptions on the spectral density used in our univariate analysis are 
(A.l) and (A.2) because in that case Rgh(X) = 1 for all A, but we introduce (A.3) 
to allow an easy multivariate extension of the results obtained in the univariate 
case. These two assumptions hold with a = (3 = 2 in the cases in Arteche and 
Robinson [2] (note that sin(cj - A)~2dl = (u> - X)"2dl(l + 0((u> - A)2)) as A | u and 
sin(A - u)~2d> = (X - u)-2d*(l + 0((X - a;)2)) as A [ u>). Assumption (A.l) could 
be generalized allowing for different a's at frequencies just after and before u but 
this would complicate the notation and the results we obtain hereafter would not be 
altered. 

Let Ws(\) = - J — X^=i xsteltX be the discrete Fourier transform of xst (s = g) h) 
where correction for an unknown mean of xst is not necessary because VV5(A) is 
computed only at frequencies Xj = —-- for j = 1 , . . . , ra, where ra is an integer less 
than n/2. Introduce the scaled discrete Fourier transform vs(u + X) = p ^ + ' and 

denote vs(X) the complex conjugate of vs(X). 

Theorem 1. Let assumptions (A.l)-(A.3) hold and let k = k(n) and j = j(n) be 
two sequences of positive integers such that j > k and £ —* 0 as n —• oo. Then as 
n —• oo : 

a) E[v,(U + \,)vh(U + A,)] = R,h(u>) + O (H±\J^>-^ + (L)™^ 

b) E[v,(w + \i)vh(U + \j)} = O (iSjLxjm-V) 

c) E[v,(u> + \j)vh(u, + \k)} = O fls^xj^-^X;^-^) 

d) E[v,(u> + \j)vh(U + A,)] = O (!2BjLxj<di'-dl')\k-l<
i>-d»A 

where i = 1 if 2d\ > 2d2 in a) and b) and if d\s > d2sy s = g) h in c) and d) and 
i = 2 otherwise. 

P r o o f . See the Appendix. 
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Remark. Even in the case d2 > c/i, b) and d) are O i^f1) and O (-^f1) respec­
tively if 1/2 — d2s + dis > 0 for s = g,h and 1/2 — d2s + 2t/i > 0 for s = g or h 
(see the Appendix). These conditions hold if d\s > 0 for s = g, h) irrespective of the 
values of d2s. 

If d\ > d2 these results correspond to those obtained by Robinson [18, Theorem 
2] for u = 0. We focus on frequencies just after LU because this theorem will be useful 
in the proof of the asymptotic normality of the estimates of C and d\ in (1.3) which 
describe spectral behaviour at those frequencies. If we aim to estimate D and d2 in 
(1.3) a similar result would be obtained for the scaled discrete Fourier transforms, 
V(UJ — Xj) and v(u> — Xk). 

Hereafter we will focus on the estimation of C and d\ in the univariate case g = h 
and dig = dih = di) i = 1,2, in (A.l) and (A.2). In order to obtain the asymp­
totic distribution of the least squares estimates in (1.5) two further assumptions are 
needed: 

(A.4) {xt,t = 0 , ± 1 , ± 2 , . . . } is a Gaussian process. 

(A.5) If di >d2) 

\fm\o&m /(logm)2 m1+2^r 
v 6 + ---—2—L. + • 0 as n -+ oo / m 

and if d\ < d2, 

y^n2(d2--d1)j m / ( logm) 2 m 1 + 2 t 
- — y 1 , 9 M . v + + • 0 as n -> co 

/ l+2(d2--di) m n 

where m and / are the bandwidth and trimming numbers respectively so that 
we only use those frequencies u + - ^ such that / < j < m. 

If d\ > d2 (A.5) is Assumption 6 in Robinson [18] and the proof of the asymptotic 
normality is basically the same noting Theorem 1. However when d\ < d2 a stronger 
condition must be imposed on the bandwidth and trimming numbers. To see the 
implications of (A.5) take m ~ n9 and / ~ n^. In this situation (A.5) entails 

2(d2 - rfi) + it? - 4>(l + 2(d2 - dt)) < 0 , 4 < 6 , 0 (1 + ±) < 1. 
2 V 2 « ; ( 2 1 ) 

The first two conditions imply 6 > <j>> 4(d2-di)/(l+4(d2-di)), and incorporating 
the last condition in (2.1) indicates that we must have a > 2(d2 — d\). Because 
\di - d2\ < 1, (A.5) can be satisfied for any d\, d2 if a = 2. The larger d2 with 
respect to d\ the larger m and /-we need to get rid of the distorting influence of the 
periodogram at frequencies just before u on the estimation of d\ which describes 
spectral behaviour after u> (see Theorem 1). This trimming might be avoidable, or 
at least reducible, if we use a tapered discrete Fourier transform instead of W(X) 
(see Hurvich and Ray [11] and Velasco [20]). 
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Define v(X) = ^ ^ B l = VR(X) + ivj(X) where vR(X) and t//(A) are the real and 
Cix~dl (J) 

imaginary parts of v(X). The u\ in (1.6) can be written 

4 J ) = log[£{4(A*+i--J) + «?(A*+i-j)}e-*W]. 
i=i 

Introduce the 2 x 1 vector i/(A) = (^H(A), tj/(A)). The second order moments of 
the elements of v(Xj) and v(Xk) can be deduced from those of v(Xj) and v(Xk) and 
their complex conjugate in Theorem 1. It indicates that the v(Xj) for j increas­
ing adequately slowly with n can be regarded as approximately uncorrelated with 
zero mean (because W(X) = -J;—'Ylt=i(xt ~ Ex\)eitX) and covariance matrix \h 
where 72 is the 2 x 2 identity matrix. Assumption (A.4) implies that the v(Xj) are 
Gaussian and thus the approximate uncorrelation can be interpreted as approximate 
independence. Introduce the two dimensional vector 

VJ~NID(O,±I^ 3 = 1 + 1, 

where V} = (V\j, Vij) and the variates 

,m (2.2) 

w 
V) WĚiKk+j-J + ^%+j- .7>e-* ( / ) l ,k = l + J,l + 2J,...,m. 

i=i (2.3) 

It follows that 5[2.==1(Vr
1

2
A.+ •___j + Vfk+j^j) ~ \x\j f° r e a c h ^- Thus (see Johnson 

and Kotz [12, p. 167 and 181]) E[w[J)] = 0 and w[J) has finite moments of all 
orders and variance $'(J) where ^'(z) = j^ip(z). Further, independence of the Vj 
implies independence of w}+}, w\J^2j,... ,ww?. Consequently if the u[ ) in (1.5) 

can be replaced by w\. ' without affecting the limit distribution of the centered and 
adequately scaled least squares estimates in (1.5) we can apply the Lindeberg-Feller 
CLT and we will obtain the result stated in the following theorem: 

T h e o r e m 2. Let (A.l), (A.2) (with g = /i), (A.4) and (A.5) hold. Then as n -> oo 

&{*J) - < ( J ) )" 
2^m~(d{J) - h) 

N 0,JФ'(J) 
1 - 1 

- 1 1 
(2.4) 

P r o o f . For d\ > d2 the assumptions and proof are equal to that in Robinson 
[18] for u = 0 noting Theorem 1. When d\ < d2 (A.5) differs from Assumption 6 
in Robinson. Anyhow the steps followed in the proof are quite similar and therefore 
they will be presented briefly paying attention to the steps where (A.5) takes part. 
The proof is based on showing that each moment of the variates on the left-hand side 
of (2.4) converges to the corresponding moments of the normal distribution implied 
by the right-hand side and then appeal to the Frechet-Shohat "moment convergence 
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theorem" (Loeve [14, p. 187]) and the unique determination of the normal distribu­
tion by its moments. We use Theorem 1 to show that the moments differ negligibly 
from those which would arise if instead of vrk ' we have wk ' and then apply the 
Lindeberg-Feller CLT. 

Let c(J) and o\ ' be the least squares estimates in (1.5). Then 

oři — d\ 
= [Z'Z)-lZ'U 

where U is a r-y-i x 1 vector such that Uj = u[J^ and Z is a —p- x 2 matrix with 
the first column a vector of ones and the components of the second column are 
ZJ = -21ogA f c,for* = / + jV, and j = 1,2,... , ( m - / ) / J . From formula (5.2), (5.3) 
and (5.4) in Robinson [18] and under (A.5): 

i ^ z = 2 V ^ ( l + 0( logn)- 1 ) 

where z = ^ - £ , . -* = --5J--T E * l°g A* and 

J . m 
m — / 

\Z,Z\=4-- + 0(l(lognү). 

(2.5) 

(2.6) 

Now, 

W 1 = ӮҒ, 
1 m-l 

\Z'Z\ J 
z 

- 1 
[г -1] + 

m — l 

1 0 
0 0 

and 

[г - \\Z'U = [ž - 1] E*4J) 

(D = 2Ç^logЛfc--^7ÇlogA,jUíJ) 

1 0 
0 0 Z'U = Ľ« (•0 

k 

Define now the matrix: 

It follows that 

д = logn 
0 2^/Ш 

A(Z'Z)~1Z'U = jlí—L—) 
\m + o[m) J 

m — l 
logn 

0 

r 1 ' 
- 1 үi(\„i\k--LГlүi\ol\i)Ą') 

k * 

E 
Jt 

«Í J ) . (2.7) 

The proof of the theorem is completed if as n —» co: 
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a) (£)*E* (log\k-^Zk\og\k)ulJ)±N(0,i,>(J)) 

In order to prove a) and b) we claim that 

(^)2E4;)-^,fW) (2-8) 

for any triangular array akn = <*>k satisfying as n —• oo, 

max|ajb| = o{m) , y^aj 7 anc~ ^ \ak\p = O(m) for all p > 1. 
* * * (2.9) 

For b) a-. = 1 and for a) a*. = logfc — -^zjYlk^&k and (2.9) holds for both of 
them (see Robinson [18, p. 1067]). Thus if we can verify our claim (2.8) the proof 
is completed. If instead of uk ' in (2.8) we have wk ' a direct application of the 
Lindeberg-Feller CLT shows that (2.8) holds under (2.9). We show that the moments 

°f (m) 2 -Cjb ak^k differ negligibly from those of (^-) 2 Y2k akwk a n ( l then we use 
the Frechet-Shohat "moment convergence theorem" (Loeve [14]). 

Write Xk = ( ^ ) 2 a,kUk \ Fix an integer 1V, E[%2k Xk]N is a sum of finitely many 
terms of the form: 

£•••£* (fU'') <-"» 
ki kM \ t = l / 

where Nk1}Nk2i... , NkM are all positive and sum to N and 1 < M < N. Fix such 
M and Nkl,... , JVfcM and introduce the 2J x 1 vector v* = {v{\k+i- j)',... , ^(A*)')' 
and the 2JM x 1 vector v* = {vki,... , i ^ ) ' . Under (A.4) v* is normally distributed 
with zero mean and Theorem 1 implies that: 

*W«il = i/2J + o((i)\^Ar*<<.-<.>)ifi = t 

= o ̂ A j - ( . . -« . )A - (*-«.)) i f i > t . 

as n —* oo. It follows from (A.5) that: 

1 
2 

£ = *[,*,*'] = І 7 2 Ј M + 0((^)%ł2pлГ^)) ( 2 . П ) 

= \hjM + o(m-*) (2.12) 

as n —> oo. Thus E _ 1 = ^ exists for n large enough. If ipp is the density function of 
a p-dimensional standard normal variate (2.10) is: 

ki * M

 J \*=i / 
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for n sufficiently large. Robinson [18] proved that the difference between (2.13) and 

" M 

17 
1 = 1 

is negligible (tends to zero as n —• oo) what completes the proof. D 

E-Ľ-1 

&i kм 

M 

ÍÍ 
m 

Remark 1. c^J) converges more slowly than d^J^ and there exists perfect negative 
correlation in the limiting joint distribution of c^J^ and d^J\ This distribution, as 
we could expect, is equal to that obtained by Robinson [18] for the case u = 0 and it 
only differs in a stronger condition on the bandwidth, m, and trimming, /, imposed 
to get asymptotic uncorrelation of the scaled discrete Fourier transforms of x%. 

Remark 2. C can be estimated from c^J\ C^J^ = exp(c(J) — ip{J)) and a simple 
application of the "delta method" provides the asymptotic distribution of C^J^: 

^™-{c^ _ C) - i N(o, c2J^(J)). 
logn 

Remark 3. The multivariate extension is easily done following the steps in Robin­
son [18] substituting his Assumption 6 for our assumption (A.5) and noting Theo­
rem 1. All his remarks follow in our case of spectral asymmetry around a positive 
frequency. 

Remark 4, Using a similar result to Theorem 1 it can be readily shown the asymp­
totic independence of the memory estimates on both sides of a; in (1.3) which facil­
itates the construction of Wald tests of the hypothesis of spectral symmetry. 

Remark 5. d\ is asymptotically less efficient than the Gaussian semiparametric 
estimate of Robinson [19] (see also Arteche [1] for the asymmetric long memory 
case) since J%j)'{J) { 1 as J —• oo and the asymptotic variance 1/4 of the Gaussian 
semiparametric estimate is never achieved by d\ \ The main advantage of a{ Ms 

its simplicity because the Gaussian semiparametric estimate, unlike d\ , requires 
iterative techniques and can not be written in closed form. 

3. FINITE SAMPLE BEHAVIOUR 

In this section we study via Monte Carlo analysis the effects of asymmetric long 
memory on the finite sample performance of the log periodogram regression estimates 
and compare it with the Gaussian semiparametric estimate of Robinson [19] that we 
denote d\. From Arteche [1] d\ is the argument that minimizes 
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over the closed set [—0.499,0.499]. In order to generate an asymmetric long memory 
series we first generated two independent Gaussian processes {^i,t} and {/2,t} with 
zero means and lag-j autocovariances 

71 j = 0*1 6jo 

2 s i n ( ju) 
72j = 02" 

1(І"Л 
тгj / 

ҠJ 

respectively, where 6JQ — 1 if j — 0 and 0 otherwise. It follows that e_|V and 62,, have 
spectra 

( 0, 0 < A < w , 
fe1W = \ « (3-1) 

and 

_ . £ , 0<A<ы, 
L2(A)= 2 " " (3.2) 

I 0, _•< A <w. 

Now define the processes {xj<t}, j — 1,2, by 

(l-2Lcosu + L2)d*xj<t = ej<t , j = 1,2, * = 0=1= 1 (3.3) 

Thus the {xj<t} have spectra 

- M A ) = h ,A / t j ( A l 2,AI2d > 0 < A < 7 T , J = 1,2, 
J |1 -- e t A cos la; + eztA\zaJ 

and in view of (3.1) and (3.2) and independence of the {e^t}, j = 1, 2, xt = #i,t+ #2,t 
has spectrum 

£11 - 2eiA cosw + e
2iX\-2d* if u < A < TT, 

/(A) = /,1(A) + /„2(A) ' 
£ | l - 2 e I A c o s o ; + e2t'A|-2<i2 if 0 < A < C J , ( 3 . 4 ) 

which clearly satisfies (1.3). In order to generate realizations of xt we rewrite (3.3) 
as 

J2c(
s
dj\cosu)xjit-s = ejtt , j = 1,2, * = 0 , ± 1 , . . . , (3.5) 

*=o 

(see Gray et al [6]) where the Gegenbauer polynomials Q *(r)) are of the form 

CUM - V (-l)kns-k-d)(2r)y-2k 

^ r ( i b + i)r(s-2ib + i)r(-d)' 
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We truncate the sum in (3.5) so that actually our generated Xjfi are 

1500 

*i.. = - £ C^\cosu)xjit_, + ej>u (3.6) 
5 = 1 

where Xjtt = 0 for t < 0. We prefer an autoregressive truncation over the moving 
average one of Gray et al [6] because autoregressive coefficients decay faster. The 
Gegenbauer functions are obtained via the recursion 

C^ir,) = 2„ ( ^ - ^ ) <f£>M ~ { ^ ^ ) Cffa (il). 

(see formula 8.933.1 in Gradshteyn and Ryzhik [5]). We carried out simulations 
for LJ = 7r/4,7r/2,37r/4 but report results only for u = 7r/2 because these are fairly 
typical. We took d\,d2 = {-0.4,-0.2,0,0.2,0.4} and v\ = <r2 = 1. Assumptions 
(A.l) with a = 2, (A.2) and (A.4) are then satisfied. We show the results for the 
log periodogram (J = 1), d\ , and the Gaussian semiparametric, di, estimates of d\ 
with sample size n = 256 and three different bandwidths, m = 16, 32 and 64. The 
effect of the trimming is only shown for m = 64 and three trimmings are analysed, 
/ = 2,4,8. The number of replications wa§ 1000 and all the calculations were done 
using GAUSS-386i version 3.2.8. 

The bias and mean square error (MSE) of the untrimmed estimates are shown in 
Table 1. The bias tends to be positive for negative values of d\ and when d\ < d2l and 
negative for positive d\ and when d\ > d2 although a positive bias is more pervasive 
in d\ \ The bias and MSE are extremely high in the extreme cases d2 > d\ and both 
decrease with m because the more frequencies we use the less important the influence 
of periodogram ordinates close to u "contaminated" by d2. When we introduce the 
trimming we observe in Table 2 that the bias tends to reduce especially when the 
difference d2 — d\ is large. The MSE clearly increases with the trimming except in 
those cases where d2 —d\ is large and we omit a small number of frequencies (/ = 2). 
It also becomes more invariant to the difference d2 — d\. Comparing d\ and d\ it 
is noticeable the lower MSE of d\ corroborating the higher efficiency in form of a 
lower asymptotic variance. 

4. CONCLUSIONS 

All the research done to date on processes with seasonal or cyclical long range depen­
dence implicitly assume symmetry of the spectral poles or zeros and apply methods 
developed for the standard long memory at zero frequency. In these pages we have 
provided theoretical support to this practice for the log-periodogram estimate. How­
ever if the actual data generating process presents an asymmetric spectral pole or 
zero the estimation of the memory parameter using frequencies on both sides of the 
frequency of interest can lead to distorted results. 
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Table 1. Bias (MSE) of the untrimmed estimates of di, n = 256. 

m = 16 

d i\d 2 -0.4 -0.2 0 0.2 0.4 

-0.4 ď ^ ai 

di 

0.0338 (0.0446) 0.0420 (0.0466) 0.0725 (0.0494) 0.1523 (0.0718) 0.3293 (0.1673) 

0.0408 (0.0192) 0.0477 (0.0206) 0.0705 (0.0257) 0.1395 (0.0468) 0.2999 (0.1298) 

-0.2 a i 0.0059 (0.0454) 0.0097 (0.0442) 0.0206 (0.0444) 0.0568 (0.0500) 0.1742 (0.0817) 

-0.0085 (0.0275) -0.0051 (0.0276) 0.0065 (0.0281) 0.0431 (0.0322) 0.1490 (0.0572) 

0 ď ^ ai 

ďi 

-0.0032 (0.0444) -0.0029 (0.0448) 0.0004 (0.0446) 0.0129 (0.0463) 0.0736 (0.0509) 

-0.0231 (0.03Î2) -0.0217 (0.0312) -0.0174 (0.0312) -0.0024 (0.0319) 0.0521 (0.0348) 

0.2 ai 

ďi 

-0.0053 (0.0452) -0.0059 (0.0460) -0.0040 (0.0451) 0.0012 (0.0452) 0.0238 (0.0446) 

-0.0271 (0.0306) -0.0266 (0.0306) -0.0248 (0.0305) -0.0192 (0.0303) 0.0021 (0.0297) 

0.4 dy) 
ďl 

0.0013 (0.0450) 0.0012 (0.0448) 0.0016 (0.0447) 0.0032 (0.0451) 0.0105 (0.0452) 

-0.0446 (0.0229) -0.0444 (0.0228) -0.0439 (0.0227) -0.0423 (0.0224) -0.0368 (0.0214) 

m = 32 

dl\d2 
-0.4 -0.2 0 0.2 0.4 

-0.4 

ďi 

0.0244 (0.0187) 0.0297 (0.0196) 0.0484 (0.0209) 0.0956 (0.0291) 0.2050 (0.0663) 

0.0224 (0.0098) 0.0275 (0.0104) 0.0429 (0.0124) 0.0896 (0.0210) 0.2014 (0.0596) 

-0.2 4 1 } 

ďi 

0.0023 (0.0189) 0.0049 (0.0185) 0.0121 (0.0187) 0.0341 (0.0205) 0.1057 (0.0318) 

-0.0080 (0.0127) -0.0055 (0.0127) 0.0021 (0.0127) 0.0259 (0.0139) 0.0961 (0.0244) 

0 cЃ1) 
al 
ďl 

-0.0083 (0.0187) -0.0078 (0.0189) -0.0052 (0.0189) 0.0028 (0.0195) 0.0404 (0.0203) 

-0.0195 (0.0131) -0.0185 (0.0131) -0.0156 (0.0130) -0.0057 (0.0131) 0.0293 (0.0143) 

0.2 ď*1) 
al 
ďl 

-0.0141 (0.0192) -0.0144 (0.0196) -0.0128 (0.0193) -0.0095 (0.0192) 0.0055 (0.0186) 

-0.0253 (0.0134) -0.0248 (0.0134) -0.0237 (0.0133) -0.0198 (0.0132) -0.0053 (0.0130) 

0.4 ď^1) 
a l 
ďl 

-0.0139 (0.0189) -0.0138 (0.0188) -0.0135 (0.0189) -0.0124 (0.0191) -0.0071 (0.0190) 

-0.0335 (0.0113) -0.0332 (0.0113) -0.0328 (0.0113) -0.0314 (0.0112) -0.0268 (0.0109) 

m = 64 

di\dг -0.4 -0.2 0 0.2 0.4 

-0.4 ď*1) 
a l 
ďl 

0.0634 (0.0131) 0.0664 (0.0136) 0.0772 (0.0151) 0.1046 (0.0207) 0.1699 (0.0405) 

0.0519 (0.0083) 0.0550 (0.0088) 0.0649 (0.0101) 0.0949 (0.0157) 0.1699 (0.0384) 

-0.2 ď^1) 
a l 
ďl 

0.0301 (0.0099) 0.0316 (0.0099) 0.0358 (0.0102) 0.0488 (0.0117) 0.0913 (0.0185) 

0.0187 (0.0062) 0.0201 (0.0063) 0.0244 (0.0065) 0.0387 (0.0076) 0.0827 (0.0140) 

0 

ďl 

0.0038 (0.0088) 0.0040 (0.0089) 0.0055 (0.0089) 0.0105 (0.0093) 0.0334 (0.0103) 

-0.0084 (0.0059) -0.0078 (0.0059) -0.0060 (0.0059) 0.0001 (0.0059) 0.0218 (0.0066) 

0.2 o*1) 
a l 
ďl 

-0.0193 (0.0092) -0.0196 (0.0094) -0.0187 (0.0093) -0.0164 (0.0091) -0.0068 (0.0089) 

-0.0317 (0.0068) -0.0314 (0.0068) -0-0307 (0.0068) -0.0281 (0.0066) -0.0188 (0.0062) 

0.4 

ďl 

-0.0385 (0.0101) -0.0383 (0.0101) -0.0384 (0.0101) -0.0376 (0.0101) -0.0335 (0.0100) 

-0.0522 (0.0083) -0.0520 (0.0083) -0.0517 (0.0083) -0.0507 (0.0082) -0.0471 (0.0078) 



Log-Periodogram Regression in Asymmetric Long Memory 427 

T a b l e 2 . Bias (MSE) of the trimmed estimates of di, n = 256, m = 64. 

| 1 = 2 

1 0*1 \d2 | - 0 . 4 -0 .2 0 0.2 0.4 

1 -0 .4 Ь1) a l 

ďi 

1 0.0799 (0.0168) 0.0805 (0.0169) 0.0826 (0.0175) 0.0914 (0.0189) 0.1196 (0.0241) 

1 0.0651 (0.0104) 0.0658 (0.0106) 0.0679 (0.0109) 0.0748 (0.0121) 0.0981 (0.0164) 

1 -0 .2 L Ѓ 1 ) a i 

ďi 

1 0.0461 (0.0133) 0.0461 (0.0135) 0.0475 (0.0137) 0.0528 (0.0142) 0.0696 (0.0159) 

1 0.0294 (0.0084) 0.0299 (0.0084) 0.0312 (0.0086) 0.0355 (0.0089) 0.0501 (0.0101) 

Г ° k i } 

ďi 

1 0.0147 (0.0120) 0.0145 (0.0121) 0.0152 (0.0123) 0.0180 (0.0124) 0.0289 (0.0127) 

-0.0024(0.0081) -0.0021(0.0081) -0.0013(0.0082) 0,0012(0.0082) 0.0099(0.0083) 

1 0.2 k° 
ďi 

1-0.0148(0.0127) -0.0148(0.0126) -0.0145(0.0126) -0.0128(0.0126) -0.0070(0.0126)1 

1-0.0324(0.0097) -0.0322(0.0097) -0.0317(0.0097) -0.0303(0.0096) -0.0253 (0.0093) | 

1 0 A \p) 
a i 

íi 

-0.0415(0.0147) -0.0416(0.0146) -0.0417(0.0147) -0.0414(0.0147) -0.0377(0.0146)1 

-0.0608(0.0124) -0.0606(0.0124) -0.0604(0.0123) -0.0597(0.0123) -0.0573 (0.0119) | 

/ = 4 | 

1 ^i\d2 -0.4 -0 .2 0 0.2 - 0.4 | 

1 -0.4 

ďi 

0.0951 (0.0227) 0.0952 (0.0229) 0.0960 (0.0233) 0.0991 (0.0241) 0.1111 (0.0260) 1 

0.0767 (0.0137) 0.0770 (0.0138) 0Д780 (0.0140) 0.0810 (0.0146) 0.0912 (0.0166) | 

Г-0.2 p) аi 

ďi 

0.0576 (0.0178) 0.0572 (0.0181) 0.0577 (0.0182) 0.0606 (0.0186) 0.0680 (0.0195) I 

0.0364 (0.0108) 0.0367 (0.0108) 0.0373 (0.0109) 0.0393 (0.0112) 0.0465 (0.0119) 

1 ° p) аi 

ďi 

0.0214 (0.0157) 0.0210 (0.0157) 0.0214 (0.0159) 0.0232 (0.0163) 0.0287 (0.0167) 1 

-0.0003 (0.0100) -0.0002 (0.0101) 0.0002 (0.0101) 0.0015 (0.0102) 0.0062 (0.0103) | 

1 0.2 Ф 
* 

-0.0141 (0.0164) -0.0141 (0.0164) -0.0137 (0.0164) -0.0124 (0.0163) -0.0088 (0.0163) 1 

-0.0324 (0.0117) -0.0322 (0.0118) -0.0317 (0.0118) -0.0303 (0.0118) -0.0253 (0.0116) | 

1 0.4 

ďi 

-0.0471 (0.0191) -0.0472 (0.0190) -0.0472 (0.0191) -0.0466 (0.0190) -0.0439 (0.0187) 1 

-0.0705 (0.0152) -0.0704 (0.0152) -0.0703 (0.0152) -0.0699 (0.0152) -0.0682 (0.0149) | 

/ = 8 | 

1 ^i\d2 -0 .4 -0 .2 0 0.2 0.4 

1 ~0,4 

ďi 

0.1152 (0.0371) 0.1153 (0.0371) 0.1158 (0.0374) 0.1171 (0.0373) 0.1227 (0.0381) 1 

0.0949 (0.0216) 0.0951 (0.0216) 0.0956 (0.0217) 0.0969 (0.0220) 0.1011 (0.0231) | 

-0.2 

dг 

0.0687 (0.0300) 0.0686 (0.0301) 0.0689 (0.0299) 0.0705 (0.0301) 0.0745 (0.0307) 1 

0.0443 (0.0174) 0.0445 (0.0175) 0.0449 (0.0175) 0.0460 (0.0177) 0.0496 (0.0182) | 

0 1 P)\ аi 

ďi 

0.0235 (0.0266) 0.0230 (0.0266) 0.0236 (0.0270) 0.0249 (0.0277) 0.0281 (0.0278) 1 

-0.0017 (0.0166) -0.0016 (0.0166) -0.0012 (0.0167) -0.0004 (0.0167) 0.0022 (0.0168) | 

0.2 1 P)\ аi 

Ji 

-0.0216 (0.0279) -0.0214 (0.0279) -0.0210 (0.0281) -0.0198 (0.0283) -0.0179 (0.0282) 1 

-0.0467 (0.0195) -0.0466 (0.0196) -0.0463 (0.0196) -0.0458 (0.0196) -0.0440 (0.0195) | 

0.4 1 

ďi \ 

-0.0642 (0.0332) -0.0643 (0.0329) -0.0645 (0.0332) -0.0641 (0.0332) -0.0620 (0.0331) 1 

-0.0941 (0.0252) -0.0941 (0.0252) -0.0939 (0.0252) -0.0937 (0.0252) -0.0927 (0.0250) | 
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APPENDIX: PROOF OF THEOREM 1 

a) The proof of a) is in two parts. First we show that 

E[Wg(u + \i)Wh(u + \j)] = fgh(u + \j) + 0 (^jl\]^) (4.1) 

and then that 

fgh(u> + \j) - c}ct\J2d>Rgh(u) = O (Afn^)-2d>) . (4.2) 

In order to prove (4.1) write the left hand side of the equality as 

ZirU t = l 5 = 1 J~* 

where Jgh(t—s) is the covariance between xgt and Xhs and A'(A) = —^ Ylt ^2s e'(*""*)A 

is Fejer's kernel. Since f* K(u + \j — A) dA = 1 we have to study the order of mag­
nitude of 

f Ugh(\) - fgh(" + \j)}K(u + \j - A) dA. (4.3) 
J —7T 

Due to assumptions (A.l) and (A.2) we can pick e so small that for some Ce < oo : 

! / , / . (" +A) | < / / ( w + A)/fc*(u, + A)<O £ |A | - 2 d i 

\&fgh(u + \)\ < OelAl"1"2^ 

for A G (—e, 0) U (0, e) and 2<Ii = dg\ + dhi. Because u G (0, TT) and £ —» 0 as n -+ oo 
we can choose e such that for n large enough: 

e>2\j, 2LJ + \J - e > 0 , 2w + \j + e < 2TT, (4.4) 

what will be necessary for subsequent analysis. For such e we have that the integral 
over Q = [—7r,u; — e] U [u> + e,7r] is bounded in absolute value by 

{maxKlw + A,- - A)} f {|/jfc(A)| + | / , f c(w + A;)|} dA 

= 0(71^(1 + A72d ')) = O (~\J2dl) • 

The first equality comes from the following facts that will be useful in subsequent 
analysis: 

m - .Mi m 

\D(\)\ = XX" 
t 

^TľГ-лT if 0 < A < 2тr (4.6) 
isinfl 

\K(\)\ = Oln^A"2) for 0 < |A| < 7T (4.7) 

\fgh(\)\ < /,*(A)/fc*(A) and / ' /,(A)dA = var(x,ť) < oo , i = g, h (4.8) 
J —7T 
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and the second one because: 

n"1 = O l \J- J \\J2dl ) and 1 + 2dx > 0. (4.9) 

Now decompose the remainder of the integral : 

ŕLO + Є rLO f- ЃLO+- fLO + 2\j fLO + C /•W-f-C pLO f- rW+2 fLO + ZAj fLO + € 

/ = / + / » • + / » • + / 
JLO — e Jo; —c J LO—-*• Ju>+-£ JLO+2\J 

The first integral in (4.10) is bounded in modulus by 

max |/ÿл(A)| K(ш + \j - \) d\ 
^LO-Є<\<LO--J-

(4.10) 

_ _ J L 

+\f,h(<- + \j)\ P 3 K(u + \j - A) dA 
JLO — e 

= ( max |/,fc(W-A)|lr«'(Ai+A)dA 
1^<A<£ J J** 

+\M" + ^j)\J!.K(\j+\)d\ 

- W<A<£+A, A . - * - J L * 

+./,*(«+ A,-)|j^+,*(A)dA 

= O ( n - ^ ; 1 - 2 * + n - ^ r 1 " 2 ^ ) = O ( j - ^ r 2 " . ) 

because of (4.7). Similarly the last integral in (4.10) is 0(j~l\J2dl). Now using the 
mean value theorem, 

LO+2XJ ґLO+г, 

Ju+Џ 

r2Xj 

= \L {fth(" + ^-f,h(u> + \j)}K(\j-\)d\ 

< ( max \f'gh(u> + \)\) rJ\\-\j\K(\j-\)d\ 
1^<A<2A , ) J^t 

= Oín"^;1-3* £' \D(\j - \)\ d\) = O (^f-\J2dl) 

because of (4.5) and 

|D (A) |<2 |A| - 1 , 0 < | A | < ? r 

/

CXj 
|D(A)|dA = 0(logj) forG< 

-CA, 
oo. 

(4.11) 

(4.12) 
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\j 

(4.12) is Lemma 5 of Robinson [17]. To complete the proof of (4.1) f" x

2 in (4.10) 

For the property (4.11) on Dirichlet's kernel D(\) see Zygmund [21, pp. 49-51] and 

(4.12) is Lemma 5 of Robinson [ 

is bounded in absolute value by 

I m a x , K(Xj-X)} I {|/sft(w + A)| + |/, f t(a; + Ai)|}dA 

2 i л 2 . 2 

= 0 ( n - 1 A - 2 A J

1 - 2 d - ) = 0 ( r 1 A 7 2 d ' ) -

Proceeding as in the proof of Theorem 2 in Robinson [18] we have that (4.2) is 
0(\"~2dl) + 0(\j l) under assumption (A.l) and (A.3) what completes the proof 
of a). 

b) To prove b) write E[Wg(u + \j)Wh(u + \j)] as 

~J2J2lgh(t- 5 ) e ^ + A ^ e i s ^ ^ ) 
1TTl t = l 5 = 1 

= / ' ^-fgh(X)D(w + A,- + X)D(u + A,- - A) dA. 
J — Tj- Z7T71 

The integral over fi = [—7r, —UJ — e] U [—u + e, u - c] U [CJ + e, w] is bounded in absolute 
value by 

- L L ^ D ^ + XJ + X^D^ + XJ-XA / ' |/,fc(A)|dA 
L-KTl \ AGf2 J J_w 

= 0 ( n " 1 ) = 0 ( r 1 A 7 2 d l ) 

using (4.4), (4.6) and (4.9). Now /J"J C

 J\ is bounded by 

2 ^ {2A?<aAX<£ l ^ ( " A " W ) ' } £ 1 ^ " A ) H P ( 2 W + A- + A ) l ^ 
1 / „„ l/fft(-"-A)|\ / _ 1 L / 0 , - X - d l < - — { max ' - " " \ _, - - W max , . , . . . , > / 2 A " - d l h dA 

~ 2™ \\i<x<e A*"*- J [A,<A<£ |sin ?id î+ |̂ J L. 
= o („-A7*-*-) = o ( 1 A 7 ^ ( i ) H d l h ) = o ( r V * ) 

the first inequality because of (4.4), (4.6) and (4.11) and the last equality because 
1/2 + dig > 0. Similarly 

fW + Є I 

/ =oгvdi • 
Jш-Ь2Л, X ' 
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Proceeding in the same manner the integral over [—u + -_/•, --u/ + e] is bounded in 
modulus by 

1 f 
max l / ^ + AJll ( max . - - \ 2 /

£+Aí
 A-.-

^.A.e+A, A*"--. / l-\ř<A<c | Sin ___±*___i_| / Jhl 

0(n-1\J*-''>h)=0(j-1\JM>) 

and under the conditions in the remark to Theorem 1 this is 0(j~^1 A. 2dl A ? 2h l) 
= 0{j~l\J2dl). Similarly the integral over [u> - e,cj - A^/2] is OO'-^AJ2*2) and 
0(j~~1\J2dl) under the conditions in the remark to Theorem 1. The rest of integrals 
are 

A,' 

/ x + / 

= ° f _ ^ { - m a X !/--(«+ *).}{,.max —^—[fX,\D(\)\d\ 
V™ 1^-<A<2A, j 1^-<A<2A, | Sin V Ij j-Ai ; 

= O ( n - V * logi) = O ( ^ V " 1 ) 

the second inequality because of (4.4) and (4.6) and the first equality due to (4.12). 
___. /J + __i 
2 ' ^ "̂  2 

To complete the proof of b) the integral over [<J — -£-,& + ^-] is bounded in absolute 
value by 

-ir {_£?<*p(2w+Ai+A) l} { - £ " *|D(Aj'"A)l} / - t ""̂ +A)l dA 

= O ( n - ^ r ^ A ) - 2 " 1 + Aj-2d>)) = O (r1^2"') 

the first equality because of (4.4), (4.8) and (4.11), and under the conditions in the 
remark to Theorem 1 this is 0(j~x\J2di(\j + Aj-2 d 2 + 2 d l)) = 0{J-x\J2dx). The 

analysis for the integral over [—u ± -_*•] is similar and this concludes the proof of b). 

c) To prove c) write E[Wg(u + \j)Wh(u + \k)] as 

^EE*-(«-0e' l (w+Ai )^^^ 

where Ejk(\) = ^D(u + A,- - A ) D ( A - u - \ k ) . Since /__ e'('-')AdA = 0 for s ± t 

and 2TT for s = t, and __)"__ eft<A'-A-> = 0 for 0 < j - fc < n/2 then 

/ : 
_7jib(A)dA = 0. (4.13) 
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Thus we can expand the integral as 

( f+ * + f }{ / , f c(A)- / ,k(w + Ai)}^*(A)dA (4.14) 
^J-TT JW + 2AjJ 

rLU + 2\j 

+ / ^.{f9^)-f^ + ^)}Ejk(X)dX (4.15) 

+ I , {/-*(A)-/,fc(w + A*)}£?i*(A)dA (4.16) 
JW+--|--

- {/,*(<- + A , - ) - / , * ( « + A * ) } / -5j*(A)dA. (4.17) 

Now (4.15) is bounded by 

r2A 

I max |/ifcfw + A)l!» l 
TTTl 
— ( max |/Ji.(w + A)|> / ' |o (A-At ) |dA 
rn \(Afc+A,)/2<A<2A, l-'i'',V "/Iii+ii1 V n 

= 0(n"1A71-a* logj) = O ( ^ A 7 * ' A 4 - - « ( i ) * + - t - ) = O ( ^ . 7 * . * - - . - ) 

for j > k. The absolute value of (4.16) is bounded by 

^r(i#-«12SKxi»J^w + A4/» 3 P(A;-A)|dA 
7TH ^At/2<A<(A,+A)t)/2 * j Jli. 

- n(lo6:'\-dio\-d'A 
-°\7^i k J 

if j / 2 <k<j) and when k < j/2 (4.16) is bounded by 

7T71 ^Afc<2A<(Aj+Afc) j J^L 

= 0 ( ( A 7 a * + A » " » ) ( ; - A ) - 1 logj) 

Now (4.17) is bounded in modulus by 

= 0 ( . - v - * *;)=<> ($*»-*•*.•*') 
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if k > j/2, and when k < j/2 (4.17) is bounded by 

^{\f*h(» + Aj)l + \fA" + AOIXAj - A.)"1 J^ 3 \D(\ - AOI dA 

= 0((\J"> + \^)(j - fc)-1 log j) = O ( ^ A 7 ^ A - r f - ) 

as in the evaluation of (4.16). Proceeding similarly and as in Robinson [18] it is 
straightforward to show that (4.14) is O ((jk)~° 5Aj"rfigA~^) which completes the 
proof of c). 

d) Write E[Wg(u + \j)Wh(u + A*)] as 

< = 1 4 = 1 

= f ^fAx)Di" + A; + X)D(" + A* - A)dA-

Proceeding as in b), 

/

—uf — e pu) — t rn \ / 1 \ 

.n J-^+« Jw+d Vv^7 j / 
Now the integral over [—u — e, — u — 2Aj] is bounded in absolute value by 

2 ^ IZWJM-" - A)l}/ / |D(A,- - A)||D(2* + A, + A)|dA 

< j _ { raax __L_}( mox lA.^-*)!} /Y^-dA 
- nn [2A,<A<e|sin

2u,+^+A|J UJ-,*-. ' A.-dl» J A, 

= o(»-,V'-*-) = o(-Vr',A**') 
\ - 0 . 5 \ - d i g \-<*i and similarly the integral over [cj+2Ajfe,o;+e] is 0((jk)-°5Xj

 lg\^ lh). The integral 

2 over [—u) — 2A;-, —u —f\ is bounded in absolute value by 

- L i m « \fth{-u - A)| 1 /2 A j \D(\j - A)||D(2c, + A* + A)| dA 
1 l^"<A<2Ay ) J-4-

= 0 ( „ - A 7 « . l o g , ) = o ( ^ A 7 ^ A ^ ) 
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and similarly the integral over [u + Afc/2,w + 2Afc] is 0((kj)-°5XJdl9XJdlh). The 

integral over [-_> ± -j-] is bounded in absolute value by 

2 ^ - j ^niax ^ \D(Xj + A)| |D(2u/ + Xk - X)\ 1 j ^ \fgh(-u + A)| dA 

= 0 ( » - 1 A 7 ^ * ) = 0 ( - ^ A 7 * . A ^ ) 

and under the conditions stated in the remark this is 

o (J^xjdl9x-dih \xj~dlhxl+dlh + xf2d>+dl9xl+dlh}) = O (-^XJdl9XJdlh) . 

We obtain similarly the same result for the integral over [u; ± ^ - ] . The integral over 

[-CJ + ^-, —u + e] is bounded in absolute value by 

i - ( max | o O + A f c - A ) | W max 1M__-____1I / ' + * ' > - - ' - - d A 

- 0(n-V"--)--0( ;^A7-'-A^) 

and under the conditions in the remark 

f 1 x - d i g x-rfxh \-d2g+<-ig > _•+<*->* i — n i \ ~ d l g \-di* l 

°lvWAj * ' k ) - WE* k ) ' 
We obtain similarly the same upper bound for the integral over [u - e,u - - ^ ] . 

Finally the absolute value of the integral over [u - ^,L> - fy] is bounded by 

- L ( max | D ( 2 . + A, - A)|) { max 1 ^ " A ) ' } f ' A - - - " - . dA 
2?rn 1 n<A<_iz. J lA*<A<A; A- *-» ) j X k 

and under the conditions in the remark this is 

O {k^XJdl9XJdlhXJ-^+dl3Xrd-+d1^ = O (JAT^AT^) 

and the proof is completed. 

(Received March 12, 1999.) 
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