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K Y B E R N E T I K A — V O L U M E 3 8 ( 2 0 0 2 ) , N U M B E R 2, P A G E S 2 1 7 - 2 3 2 

ROTARY INVERTED PENDULUM: TRAJECTORY 
TRACKING VIA NONLINEAR CONTROL TECHNIQUES 

L u i s E . R A M O S - V E L A S C O 1 , J O S É J . R U I Z - L E Ó N 2 A N D S E R G E J Č E L I K O V S K Ý 3 

The nonlinear control techniques are applied to the model of rotary inverted pendulum. 
The model has two degrees of freedom and is not exactly linearizable. The goal is to control 
output trajectory of the rotary inverted pendulum asymptotically along a desired reference. 
Moreover, the designed controller should be robust with respect to specified perturbations 
and parameters uncertainties. A combination of techniques based on nonlinear normal 
forms, output regulation and sliding mode approach is used here. As a specific feature, 
the approximate solution of the so-called regulator equation is used. The reason is that its 
exact analytic solution can not be, in general, expressed in the closed form. Though the 
approximate solution does not give asymptotically decaying tracking error, it provides rea
sonable bounded error. The performance of the designed feedback regulator is successfully 
tested via computer simulations. 

1. INTRODUCTION 

The problem of the output regulation of a laboratory model of the rotary inverted 
pendulum is considered here. This plant is similar to the classical inverted pendu
lum, the difference is that its base is moving along a circular trajectory. The problem 
of the output regulation (or the regulator problem) has received a lot of attention 
and, especially during the last decade, its nonlinear theory has been intensively de
veloped [2, 4, 6]. The purpose of the output regulation is to achieve asymptotic 
tracking of desired output trajectory and/or reject the influence of undesired dis
turbances. The regulator problem for nonlinear systems has been introduced in the 
pioneering works [4, 6]. These initial results were not analyzed with respect to their 
robustness under uncertainties to the system. Basically, the necessary and sufficient 
conditions to solve the regulator problem [4, 6] consist in certain observability and 
stabilizability properties together with solvability of the set of algebraic and partial 
differential equations. This nonlinear analogue of the well-known Sylvester equa
tion, called as the regulator equation, is difficult to solve analytically and a natural 
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idea is to use approximate solution obtained via series expansions. That yields in 
general, a nondecaying tracking error which, nevertheless may be limited by a cer
tain sufficiently small maximal bound, [5]. Starting with [3, 4] several methods have 
been proposed for reducing the influence of unknown parameters in the nonlinear 
regulator scheme. In particular, a combination of the nonlinear regulation theory 
and the sliding mode approach is used in [1, 8, 9, 10]. Such an approach allows to 
compensate, under certain assumptions, the effects of unknown parameters on the 
system, while keeping the tracking error within an acceptable small margin. More 
precisely, if the upper bound of the uncertain terms is known, the sliding mode based 
controller is able to perform the so-called approximate tracking, i. e. the controller 
may be adjusted in order to force the output tracking error remain less than any 
prescribed tolerance margin. The present paper develops and applies this approach 
to the rotary inverted pendulum model to obtain a control law which guarantees 
bounded output tracking error in the presence of variation of some parameters of 
the system. 

The paper is organized as follows. Some basic results from nonlinear control 
theory are repeated in Section 2. In Section 3 the nonlinear model of the rotary 
inverted pendulum is presented while the control laws to assure the tracking reference 
signal are obtained in Section 4. Simulation results are discussed in Section 5. 
Finally, some conclusions are drawn in Section 6. 

2. BASIC FACTS FROM NONLINEAR CONTROL THEORY 

2.1. Nonlinear regulation 

Consider the following nonlinear system 

x = f (x) + g(x)u + p(x)w (1) 
w = s(w) (2) 

e = h(x)-r(w)y (3) 

where equation (1) describes the plant dynamics with state x G Mn and input 
u G M. Here, /(•), s(-), g(-) and the columns of p(-) are smooth vector fields, while 
h(-) and r(-) are smooth functions. The second equation describes the so-called 
exogenous system (exosystem) with the state w G Ms which is assumed to generate 
both disturbances and reference signals. The exosystem is assumed to be neutrally 
stable, i. e. the point w = 0 is a stable equilibrium (in the usual Lyapunov's sense) 
and there exists an open neighborhood of the point w = 0 in which every point 
is Poisson stable.4 The last equation represents the output tracking error e G Mv 

being the difference between the given output of the plant and another output of 
exosystem. The output regulation scheme is illustrated by Figure 1. 

4Roughly saying, the point WQ is said to be Poisson stable if the trajectory starting at wo 
returns to its arbitrarily small neighborhood after sufficiently large time. Typical example is a 
linear oscilator. 
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Remark 1. By virtue of the First Lyapunov's Method, the hypothesis of neutral 

stability implies that the matrix S = s£™' which characterizes the linear 

approximation of the vector field s(w) at w = 0, has all its eigenvalues on the 
imaginary axis. Actually, the existence of a positive real part eigenvalue implies the 
existence of unstable solution, thereby violating the Lyapunov's stability. On the 
other hand, the existence of a negative real part eigenvalue implies the existence of 
nontrivial solution converging to the origin what contradicts the Poisson stability 
property. 

Reference Уref -= r 
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Fig. 1. Output régulation scheme. 

It is also assumed that (x,w,u) = (0,0,0) is an equilibrium state for the system 
(1-2), i.e. /(0) = 0, 5(0) = 0 and h(0) = r(0) = 0. 

Definition 1. The State Feedback Regulator Problem (SFRP) consists in finding 
a state feedback controller u = *f(x,w) where 7(-, •) is a, Ck(k > 2) mapping, with 
7(0,0) = 0 such that: 

S I . The equilibrium x = 0 of the so-called disconnected system x = f(x)-r-g(x)^(x^ 0) 
is asymptotically stable in the first approximation. 

R l . There exists a neighborhood U C Mn x Ms of (0,0) such that, for each initial 
condition on £7, the system (1-3) with u = ^y(x,w) satisfies that 

lim (h(x(t)) - r(w(t))) = 0. 
t—¥OQ 

Theorem 1. [6] Suppose: 

A l . The exosystem (2) is neutrally stable. 

A2. The pair ff(0), g(0)\ is asymptotically stabilizable. 

The State Feedback Regulator Problem is solvable if and only if there exist Cr 

(r > 2) mappings x = TT(W) and u = c(w) with 7r(0) = 0 and c(0) = 0, both defined 
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in a neighborhood W° C M9 of 0, satisfying the conditions 

n^W'-s(w) = f(n(w)) + g{ir(w))c{w) (4) 

0 = h(n{w)) - r(w). (5) 
дw 

Remark 2. Suppose (A2) holds, then there exists K = [Ki,..., Kn] such that the 
matrix ^(0)+g(0)K is Hurwitz (i. e. asymptotically stable). It is straightforward to 
check that the choice of 7(x, w) = c(w) + K(x — ir(w)) satisfies (SI), since 7(2;, 0) = 
Kx = K\X\ + ... + Knxn stabilizes the linear approximation of f(x) + g(x) Kx. 
Moreover, it is shown in [6] that such a choice also satisfies (III). 

In other words, conditions (4) - (5), usually referred to as the regulator equation, 
are crucial for the solvability of the State Feedback Regulation Problem. That is, in 
general, difficult task, however, approximate solutions may be used, see e. g. [4, 5]. In 
particular, the first paper improved the stabilization results and addressed the issue 
of finding a power series expansion of the solution ir(w) of the regulator equation. 
The second paper obtained the property that if the solution in question in determined 
only up a certain degree of accuracy, then the output regulation can be secured up to 
a steady-state error of the same degree. Issues related to polynomial approximation 
and/or power series expansions for the determination of the solution of (4) - (5) were 
also considered in [7]. 

2.2. Input-output linearization and the normal forms 
of nonlinear sys tems 

Consider the nonlinear system of the form 

£ = f(x) + 9(x)u (6) 

V = h(x) 

with output y G Mp. Differentiating y with respect to time, we have 

y = - p / ( s ) + -j^9(x)u ~ Lfh(x) + Lgh(x)u (7) 

where Lfh(x) : Mn —> M and Lgh(x) : Mn -> M stand for the Lie derivatives of 
h with respect to / and g, respectively. If Lgh(x) ^ 0 V £ G B(x0), an open ball 
centered at xo, then state feedback transformation of the form u = a(x) + 0(x)v, 
introducing a new input variable v as follows 

U=L^){-L^i) + V) ( 8 ) 

yields the linear system 
y = v. (9) 

The control (8) renders n—1 of the states of (6) unobservable. HLgh(x) =0 V xG 
jB(x0), one differentiates (7) further to get 

y = L)h(x) + LgLfh(x)u (10) 
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where L2
fh(x) stands for Lf(Lfh)(x) and LgLfh(x) for Lg(Lfh)(x). As before, if 

Lgh(x) 7-= 0 V x G B(XQ), the control law 

yields the linear system 
y = v. 

More generally, if r is the smallest integer such that 

LgL
ifh(x) = 0 V xeB(x0) i = 0 , . . . , r - 2 

and Lgh(x) ^ 0 V x e*B(x0), then the control law 

1 
U = 

LgL
rflh(x) 

(-Lr
fh(x) + u) 

(11) 

(12) 

(13) 

(14) 

(15) 

In this case we say that a system has relative degree r.5 Suppose that the procedure 
terminates for some r < n and dim{dh(x),dLfh(x),... ,dLrf~lh(x)} = r for each 
x G B(xo). For r <n, set 

<t)i(x) = L)~lh(x), z = 0 , l , . . . , r . (16) 

If r is strictly less than n, it is easy to verify that at each x G B(xo) there exists 
a neighborhood Uo of x where it is always possible to find n — r more functions 
(j)r+i(x),..., (j)n(x) such that the mapping 

yields 
y ( r ) = V. 

defined as 

</>: U0 -> Mn 

( M£) \ { *i \ / M-0 \ 

(17) 

ф(x) = 
фr(x) 

Фr+1(í) 
Zr 

Vi 

LŢ^Ңx) 
фr+l(î) 

(18) 

\ <t>n(x) J \ r)n-r J \ <t>n(x) J 

is a diffeomorphism. Without going into the details, it can be shown that (f)r+i,.. •, <j)n 

can be chosen so that Lg<j)i = 0 for all x G B(xo), i = r + 1 , . . . ,n. If we set 
rj = (<j)r+\,..., 0 n) , it follows that the equations (6) may be written in the normal 
form as 

Zi = Zi+i, i = l , . . . , r - l , 

zr = b(z,r]) +a(z,rj)u (19) 

r) = q(z,rj) 

V = zi- . (20) 
5The theory is considerably more complicated if LgL

Tj~lh{xo) = 0, but is not identically zero 

on any neighborhood of rro-
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In (19) b(z,rj) represents Lrjh(x) and a(z,rj) represents LgL
r^~lh(x). The linearizing 

control is 
u = 7(TV\(-h^ri) + v). (21) 

a(z,T]) 

so that the state variables 77 = (</>r+i, • • •, </>n) are rendered unobservable from the 
output z\. The feedback law (21) is referred to as the static state feedback input-
output linearizing control law. Now, if x = 0 is an equilibrium point of the system 
(6), i. e. / (0) = 0, h(0) = 0, then z = 0,77 = 0 is an equilibrium point of the undriven 
system (19) i. e. 6(0,0) = 0, a(0,0) = 0. A crucial property of the linearizing control 
(21) with v = 0 applied to (19) is that it keeps the submanifold 

Mh = {xe L7(K: h(x) = Lfh(x) = -. • = Lr~lh(x) = 0} 

= {x e Uo : zi = z2 = • • • = zr = 0} 

invariant with respect to the closed-loop system. 
The unforced dynamics of 77 on this invariant submanifold is referred to as the 

zero-dynamics, in other words the zero-dynamics is defined as 

17 = 9(0,1/). (22) 

If the relative degree r = n, then 77 should be skipped in (19) and the full state 
equation (19) may be linearized by feedback (21). This is referred to as the full 
state linearization via coordinate transformation and static state feedback. 

Remark 3. The dynamics (22) are referred to as the zero dynamics since it is the 
maximal dynamics always producing zero output made unobservable by static state 
feedback (21). It might help to the reader to note that the linearizing state feedback 
law is nonlinear analogue of placing some of the closed-loop poles at the zeros of the 
system, thereby rendering them unobservable. 

Definition 2. The nonlinear system (6) is said to be locally minimum phase if xo 
is a locally asymptotically stable equilibrium of the zero-dynamics. In particular, a 
locally minimum phase system is said to be: 

(a) hyperbolically minimum phase if the Jacobian matrix qyv' \n=o has all its 
eigenvalues with negative real part, 

(b) critically minimum phase if the Jacobian matrix Q' \n=o has an eigenvalue 
with zero real part. 

An interesting application of the notion of the normal form is the following one. 
Consider ( l ) - (3 ) as the system (6) with the state x = (xT,wT)T. Assuming that 
its relative degree r with respect to input u is well defined, the state space coordinate 
transformation (z,77, w) = 3>e(-C, w)> where z = col(z\,... ,zr) and 77 are independent 
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coordinates, can be chosen in such a way that the description of the system (1-3) in 
the new coordinates becomes 

ii = Zi+\, i = l,...,r-l, ' (23) 

zr = b(z,rj,w) + a(z,rj,w)u 

r) = q(z,r),w,u) (24) 

w = s(w) (25) 

e(t) = Zl. (26) 

Since the zero tracking error is desired, that implies z\ = 0 and successive substi
tutions in (23) yield Zi = 0, i = 1 , . . . ,r. Thus, the input which keeps the error 
constrained to zero has the form 

u = a*(0,r),w) = -a-l(0,r),w)b(0,r),w). (27) 

The zero dynamics of the above system is in this case given by 

r) = q(0,r),w,a*(0,r),w)) :=q0(r),w) (28) 

w = s(w) (29) 

and <1fj(?7j0) coincides with the zero dynamics of the system (6). Theorem 1 then 
implies that, under its assumptions Al, A2, the SFRP has a solution for ( l ) - (3) if 
and only if there exists the smooth map ^(w) : Ms i-r Mn~r satisfying 

- ^ p - * H = q&ir^w)^, a* ( 0 ,7^H,w) ) , 7^(0) = 0. (30) 

In other words, the regulator equation, being the set of n partial differential equations 
and single algebraic equation, is in the above normal form reduced to n - r partial 
differential equations only. If (30) has the solution ir^w), it may be seen that the 
choice of the controller 

u = a~1(z,r),w){-b(z,r),w) + K\z + K2(r) - 7rv)} = as(z,r),w), (31) 

solves the SFRP, where K = [K\ K2] is chosen such that K\z -F K2r) stabilizes the 
linear approximation of equations (23)-(24). 

Moreover, the normal form (23) - (26) provides significantly simpler and construc
tive sufficient condition to solve the SFRP. Namely, the Center Manifold Theorem 
shows that (30) is solvable if the zero dynamics r) = qo(r),0) have an hyperbolic 
equilibrium at rj = 0. Therefore, if the system in question is hyperbolic minimum 
phase, the SFRP is obviously solved via state feedback (31) with K2 = 0 and K\ 
being the vector of gains stabilizing the chain of integrators (23). Notice, that in this 
case the knowledge of the solution 7iv- (w) of (30) is not required for the controller 
design. 
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2.3. Sliding mode technique 

Since the control law (31) is designed based on the exact cancellation of nonlinear 
terms, it is clear, that if some additiona1 perturbations occur in the system (due to 
parameter changes in the plant, for example), then this control law is not able to 
guarantee the zero output tracking error. The sliding mode technique is proposed 
here to deal with this situation. 

When combining the variable structure control with the exact (partial) lineariza
tion, the essential idea is to exploit linearizability by the smooth state feedback in 
order to reduce the problem to one which is solvable by available methods. It is 
presumed that the output set is given and the associated zero dynamics are asymp
totically stable. However, the results therein provide a straightforward construction 
for the switching surface and do not depend on a local explicit representation of 
the zero dynamics. Therefore, we use a scheme which is based on the nonlinear 
regulation theory and sliding mode approach. The last point is important in some 
applications, including rotary inverted pendulum studied by the present paper. 

Remark 4. The connection between the zero dynamics and the variable structure 
control is straightforward since the constrained motion is analogous to the sliding 
motion of variable structure control. When the concepts of variable structure control 
are combined with the idea of partial linearization and the zero dynamics for non
linear dynamical systems, we obtain an elegant characterization of control systems 
of this type. It will be seen that the equivalent control of variable structure theory 
is precisely the feedback (partial) linearizing and stabilizing control. 

To proceed with the exposition of the sliding mode technique, let H(z,rj,w,t) be 
a smooth function that we refer in the sequel as the switching function. The set 

MH = {(z,ri,w)\H(z,ri,w,t) = 0} (32) 

is known as the switching surface and is called a sliding surface if it attracts all 
motion starting in a neighborhood of it. The motion of the system constrained on 
such a surface is known as sliding mode. Here, we choose H(z1rj,w,t) as 

H(z, 77, uv, t) = zr. (33) 

During the sliding modes, H = H = 0, and the state trajectory of the nominal 
system is constrained to evolve on the sliding surface by the so-called equivalent 
control u = ueq, which can be determined from the equation 

H = zr = b(z, 77, w) + a(z, 77, w)ueq = 0 (34) 

for all (z,rj,w) belonging to a neighborhood of (0,0,0). On the other hand, z = 0 
and 77 = 7rrj(w) on M # , thus, on this surface, the equivalent control coincides with 
the control law (31) that solves the regulator problem for the nominal system, i. e. 
ueq = a8(0,7rr}(w),w). So, if the state trajectory of the system is attracted to the 
sliding surface, the equivalent control makes invariant the sliding surface. Note that 
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the surface Me = {(z,rj,w)\z = 0,r] — ir^ = 0}, which is precisely the steady state 
zero error submanifold, is contained in the switching surface MH-

From [12] it is known that if an initial point (zo,?7o, ^o) does not belong to M#, 
the sliding condition 

HTH < - /? , /? > 0 (35) 

must be satisfied in a neighborhood of MH so that this surface becomes attractive, 
as illustrated in Figure 2. A control law, which allows to reach the sliding surface, 
can be obtained from the equation H = —F(z,r],w), known as the attractiveness 
equation, where F(-) is, in general, a discontinuous vector function of its arguments. 
The control needed is thus given by 

u = -a~1(z,rj,w) {F(z,rj,w) + b(z,rj,w)} = usiid(z,r),w). (36) 

Fig. 2. Illustrating the sliding condition. 

To guarantee the validity of the equation (35) and to have usiid — v>eq on the 
sliding surface, we choose the function F to be 

F(z,V,w) = 7sign(iI) - \Kxz + K2(r) - 7^)] (37) 

where 7 > 0, by definition sign(0) = 0 and K\ and K2 are calculated for the system 
(23)-(24). The proof that the control law (36)-(37) achieves bounded tracking 
error with parameters perturbations is given in [1]. 

R e m a r k 5. Note that Me is a submanifold of Mh which, in turn, is submanifold 
of M#. The relationship between M^, MH and output zeroing manifold H = 0 is 
illustrated in Figure 3. 

3. THE ROTARY INVERTED PENDULUM 

The rotary inverted pendulum is an underactuated system shown in Figure 4. For 
our purpose, we assume that it has a planar motion without friction. The equation of 
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Fig. 3. The relationship between the output constraint manifold, the sliding manifold 
and the zero dynamics manifold in a three dimensional state space. 

motion for the rotary inverted pendulum can be described by the standard equation 
for general mechanical system with several links [11] 

D(q)q + C(q,q)q + G(q)=т (38) 

where q is the vector of joint variables (generalized coordinates), D = {dij} is the 
n x n inertia matrix, C = {c^} is the matrix of Coriolis and centripetal torques, 
G = {gij} are the gravitational terms, and r is the vector of input torques. If only m 
joints are actuated, vector q can be partitioned, without loss of generality as (gi, q2), 
where q\ represents the actuated joints, and q2 represents the unactuated joints. For 
the rotary inverted pendulum system, the dynamic model (38) is further specified 
as 

П 
0 

d\\ 
d2\ 

a\2 
d22 

a 
ß + 

c ц 
c 2 i 

c i 2 

c 2 2 

a 
ß + 

9i 
92 

where d\\ = m2l\ + J , d12 = d21 = m2l\l2 cos(/3), d22 = m2l\, c\\ = c21 = c22 = 0, 
c12 = —m2l\l2s'm(/3)/3, g\ = 0, g2 = —m2l2gs'm((3) and J is the moment of inertia 
of the base, g is the gravity acceleration, l\, a are respectively the length and the 
rotation angle of link 1, r is the torque of the motor and ra2, l2, (3 are respectively 
the mass, length and the rotation angle of pendulum. 

The dynamics of the motor is given by 

n = TlV - T2j3, Tx = 
KmKg 

Rm т2 = 
h2 h2 
Km^g 

•t^m 

and kg is the gear ratio and km, Rm, and v are respectively the gain, resistance and 
the voltage input to motor. 

Choosing as the state vector x = (a, /?, a, /3)T, as the input u = (T\ +T 2/3)T 1" 1 

and y = (3 as the output, the description of the system can be given in state space 
form as: 

xз 
XĄ 

fзi(x) 
ÎAl (x) 

+ 

0 
0 

9zi(x) 
941 (x) 

u, y = x2, (39) 
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Fig. 4. Rotary inverted pendulum system. 

/зi = 

#31 = 

(T2 -F c12)x± ~ dì2д2 

d?2 — ^11^22 

Tid. 

Л i = 
d\\g2 - (T2 -F ci 2 )x4 

dìo - dцd22 

'22 
d\2 -dцd22' 

gu 
Г i ď 12 

*12 •durf: 22 

This model will be used to compute the control law necessary for achieving the 
tracking of a reference signal. 

4. C O N T R O L S C H E M E S 

Suppose we are interested in tracking a reference signal given by yre{(t) = _4sin(At-F 
p). Therefore, we consider an exosystem given by 

w = 
Лi02 

—Aг0i 
, with 10(0) = [ uvi(0) w2(0) ]T . 

4 . 1 . S t a t e f e e d b a c k regu la tor 

Setting e = x2 — w2 as the output tracking error, equations (4-5) for system (39) 

take the form: 

Әҡ\ 

дw 
S(w) = 7Г3 

дҡ2 

r\ 

-õ^-s(w) = fзi(w) + g3i(w)c(w) 

(40) 

(41) 

(42) 
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— s ( w ) = fu(w) +gu(w)c(w) (43) 

7r2 - w2 = 0. (44) 

From the equation (44) we obtain directly 7T2 = w2, straightforward computat ions 

give 7T4 = — Xwi and c(w) may be obtained from (43). Nevertheless, as t h e system 

in question fails to be hyperbolic minimum phase, it is necessary to calculate the 

solutions TTI(W) and 7Ts(w) solving (40) and (42). As a m a t t e r of fact, (40) and (42) 

are exactly the reduced regulator equation (30) applied to the case of the rotary 

inverted pendulum model in normal form. Since solving these equations analytically 

is, in general, a difficult task, we propose an approximate solution. The price for 

such a simplification would be approximate tracking instead of the asymptotic one, 

as explained earlier, see for more details [5]. We thus assume a solution for 7ir of the 

form 
ni(w) = aiwi + a2w2 + a$w\ + a±wiw2 + a*>w\ + aGwf 

+a7w\w2 + a$wiw% + a$w\ + 6(\ w4
 |). 

Differentiating this equation twice with respect to t ime, substi tuting in (41), and 

performing the expansion of the right side of the same equation of wk to obtain a 

set of equations from which the values of aj (j = 1 , . . . ,9) are calculated. For the 

case of A = 1, the solutions are given by 

m(w) = -15 .33^2 - 4.31wiw2 - 4.78w\ 

7r2(uv) = 45.99uvi + 12.3wf + 18wiwj. 

Finally, t h e control law is given by 

/ v w2 + / 4 1 H ( , ^ 
j(x,w) = — \- K(x -ir(w)). 

94i\w) 

4 . 2 . C o n t r o l law u s i n g s l id ing m o d e s 

Setting e = x2 — w2 = zi as the output, tracking error, the equations (23-25) for 

system (39), take the form: 

zi = z2 (45) 

z2 = f4i(z,r),w) + g4i(z,r),w)u (46) 

Vi = V2 (47) 

r)2 = /31 (2, r), w) + 531 (z, r), w)u (48) 

w = s(w), (49) 

where 

f3i(z,r),w) 

fai(z,r),w) 

(T2 + ci2(z,т],w))(z2 - Xwi) - di2(z,rf,w)g2(z,т],w) 

p(z,t],w) 

(T2 + ci2(z,т],w))(z2 - Xwi) + dцg2(z,r],w) 

p(z,т],w) 
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/ N Tid22 Tid12 

g3i(z,r),w) = - , gAi(z,r),w) = p(z,r),w) p(z,r),w) 

p(z,r),w) = d\2(z,r),w) - dnd22(z,r),w), d12(z,r),w) = m^h cos(zi +w2), 

c12(z,r),w) = -m2l1l2sm(z1+w2)(z2-\w1), g2(z,r),w) = -m2l2gsm(z1+w2). 

After verifying all requirements, the robust controller (36)-(37) can be obtained, 
with 

a(-) = £41 (z, rj,w), b(-) = hi(z,r),w). (50) 

The mapping ^^(w) must be obtained by solving the equations 

^s(w) = ^ (51) 

drr 
- ^ 8 H - fsi(0,rj,w) + g3i(0,rj,w)u. (52) 

As before, we propose an approximated solution for irm (w) of the form 

nm (w) = aiwi + a2w2 + a3w\ + a±w1w2 + a$wl + aQw\ 

+a7w\w2 + a8wiwl + a9w2 + 0(|™4|). 

For the case of A -= 1, the solution is given by 

7rm(w) = 530.92wi - 81.23™2 - 147.97™? + 73.80w\w2 - 221.95™^ + 58.55™| 
irm(w) = 81.23™i + 530.92™2 - 73.80™? + 28 .04™^ - 221.95™!-

Finally, the control law is given by 

1 

дĄ1(z,r),w) 
{f4i(z,r],w) + 7sign(iZ) - Kxz - K2(rj - 7r„)}. (53) 

To avoid the discontinuities at H = 0 of the function 7sign(iiI), the following satu
ration function was implemented: 

7sign(tf) = { 

7, H>e 

-Г» - e < Я < e ( 5 4 ) 

- 7 , Я < є 

where e is a suitable positive number. 

5. SIMULATION RESULTS 

For the simulation purposes the parameters shown in Table 1 were used. Simulations 
plots are presented in Figures 5 and 6. 

The rotary inverted pendulum started at initial time moment from the state a = 0 
and /3 = 0.5, i. e. the initial condition of the system was near the equilibrium point. 
The reference signal to be tracked was taken as 

2/ref(*) = 0'.lsin(0. 
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Table 1. Parameters of the rotary inverted pendulum. 

m2 [kg] !i[m] !2[m] J [kgmЧ g[%] kg [cm] Һ 
rym 

Rm[U] 
0.55 0.13 0.75 0.005 9.81 5.5 0.104 1.9 

Volts o 

Reference signal and output 

a) Nonlinear regulator 

Volts 0 

Reference signal and output 

0 2 4 6 
Error signal 

8 т- 1 

Time 

0 
Deg 

-2 

-4 

0 2 4 

b) Nonlinear regulator with perturbations 

Fig. 5. Simulation results: nonlinear regulator. 

The matrix K introduced in Section 4 was chosen as the matrix that stabilizes the 
linear approximation of the system (39). It was obtained by solving a LQR problem 

as 
f Г = [ - 0 . 6 6 -43.25 -1.33 - 1 3 . 5 ] 

and the matrix K = [K\ K2] is chosen such that K\z + K2r] stabilizes the linear 
approximation of equations (23)-(24). It was obtained by solving a LQR problem 

as 
Ќ = [ 94.42 361.06 77.731 15.064 ] . 

For comparison purposes, we have first tested the controller described in subsection 
4.1, based on the state feedback computed via the approximation of the regulator 
equation. As expected by the theory, the controller provides a good performance 
resulting in a small tracking error for the initial condition chosen, see left column of 
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Figure 5. Nevertheless , it does not compensate unknown variations of the nominal 
values of Zi, Z2 and ra2, cf. the right column of the same figure. 

Secondly, Figure 6 illustrates the simulations results using sliding mode based 
robust controller developed in the subsection 4.2. In this case, the corresponding 
controller compensates the effects of perturbations and/or uncertainties on the sys
tem. Actually, to show the robustness of the sliding mode based controller scheme, 
a modification up to 20% of the nominal values of the parameters Zi, Z2 and ra2 

has been introduced on the time interval [2,10] and e = 0.1. Despite these mod
ifications, the sliding mode controller designed based on the nominal parameters 
knowledge performs well, resulting in the output tracking with a prescribed tracking 
error. Notice the typical sliding mode controller plots. For the real-time implemen
tation, a suitable filter is to be used to produce an implementable control signal. 

Reference signal and output Reference signal and output 

Volts 

a) Robust nonlinear regulator 
Time" 

Volts 

Time 
b) Robust nonlinear regulator with perturbations 

Fig. 6. Simulation results: nonlinear sliding regulator. 

6. CONCLUSIONS 

Nonlinear control techniques, applicable to the output regulation problem, have been 
studied in this paper. The rotary inverted pendulum model has been investigated 
in detail to illustrate how the combination of the normal forms and sliding mode 
control may be used in order to design controllers robust with respect to the changes 
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of the system parameters. Normal forms were used to reduce the order of the 
regulator equation and the corresponding reduced equation (30) has been solved 
approximately. On the other hand, the sliding surface has been designed in such 
a way that the corresponding sliding mode equivalent control coincides with the 
input-output linearizing state feedback, thereby handling impossibility to compute 
linearizing feedback in the presence of uncertainties. The computer simulations 
showed effectiveness of the above approach for the rotary inverted pendulum model 
subjected to parameter variations up to 20%. 

The future research will be devoted both to further aspects of real-time imple
mentation (e.g. filtering of sliding mode control signal) and further theoretical 
interpretation of robust properties of the scheme based on sliding modes. 

(Received August 20, 2001.) 
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