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K Y B E R N E T I K A — VOLUME 39 ( 2003 ) , NUMBER 5, P A G E S 5 1 1 - 5 2 0 

NEURAL NETWORKS USING BAYESIAN TRAINING 

GABRIELA ANDREJKOVÁ AND MIROSLAV LEVICK\ 

Bayesian probability theory provides a framework for data modeling. In this framework 
it is possible to find models that are well-matched to the data, and to use these models to 
make nearly optimal predictions. In connection to neural networks and especially to neural 
network learning, the theory is interpreted as an inference of the most probable parameters 
for the model and the given training data. This article describes an application of Neural 
Networks using the Bayesian training to the problem of Predictions of Geomagnetic Storms. 
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1. INTRODUCTION 

Neural networks continue to offer an attractive paradigm for the design and analysis 
of adaptive, intelligent systems for many applications in artificial intelligence [7], 
[8]. This is true for a number of reasons: for example, amenability to adaptation 
and learning, robustness in the presence of noise, potential for massively parallel 
computation. 

Predictions of the hourly Dst index from the interplanetary magnetic field and 
solar plasma density, based on Artificial Neural Networks (ANN), were made and 
analysed by Lundstedt and Wintoft (feedforward networks) [10] and Andrejkova et al 
(recurrent networks, fuzzy neural networks) [2], [3]. Recent results have shown that 
it is possible to use dynamic neural networks for predictions of GeoMagnetic Storms 
(GMS) and modeling of the solar wind-magnetosphere coupling. In this paper we 
are reporting preliminary results obtained with the help of a neural network model 
using Bayesian probability at its training. 

There has been increased interest in using of Bayesian networks but our model 
is different. A Bayesian network is a compact, graphical model of a probability dis­
tribution [5]. Our model represents a combination of artificial neural networks with 
Bayesian probability. Andel [1] and Bernardo and Smith [4] describe the probability 
theory and the Bayesian probability theory which have proved very successful in 
a variety of applications, for example MacKay [11], [12], Schlessinger and Hlavac 
[16] and Miiller and Insua [13]. The effectiveness of the models representing non­
linear input-output relationships depends on the representation of the input-output 
space. The method belongs to a large family of approximation techniques working 
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with some training samples. Families of approximation techniques are described in 
Dechter and Rish [6]. 

A designed Neuro-Bayesian model will predict the occurrence of geomagnetic 
storms on the basis of input parameters n,v,osz and Bz: n . . . the plasma density 
of solar wind, v ... the bulk velocity of solar wind, Bz, OBZ • • • z-component of the 
interplanetary magnetic field and its fluctuation. 

To follow the changes of the geomagnetic field values we use the quantity Dst 

index. Its values are in the interval ±10 nT (nano Tesla) during a normal situation 
but during the geomagnetic storm they can decrease as much as some hundreds nT 
in a few hours. 

In Section 2, we describe some basic definitions and properties of the Bayesian 
probability theory. In.Section 3, we briefly describe the neural networks as a proba­
bilistic models. Section 4 contains the starting point to finding the weights of neural 
networks. Some interesting results for GMS prediction are presented in Section 5. 

2. BAYESIAN PROBABILITY 

A Bayesian data-modeller's aim is to develop probabilistic model that is well matched 
to the data and makes optimal predictions using that model. A very good description 
of this theory is presented in Bernardo at al [4]. Bayesian inference satisfies the 
likelihood principle: Inferences depend only on the probabilities assigned to the 
data that were obtained, not on properties of the data which might have occurred. 

We shall use the following notation for conditional probabilities: fl,Q ^ 0 -
the space of elementary events; H - o-algebra of some nonempty subsets of ft (a 
model of computation), A,B eU - events, P(A),P(B) - probabilities of the events 
A, B, (ft, T~L, P) - a probability space, p(x) is a density of the random vector x on a 
probability space (ft, H, P), P(A\B, H) is pronounced "the probability of A, given B 
and H" and it explains the conditional probability; B and H mean the conditional 
assumptions on which this measure of plausibility is based. 

The Bayesian approach requires: 

— specifying a set of prior distributions for all of weights in the network (and 
variance of the error) and 

— computing the posterior distributions for the weights using Bayes' Theorem. 

Prior distribution is a probability distribution on the unknown parameter vec­
tor to G ft in the probability model, typically described by its density function p(u) 
which encapsulates the available information about the unknown value of u. In our 
case the weight vector w has no known prior distribution; this is therefore replaced 
by a reference prior function. 

Posterior distribution is a probability distribution on the unknown parameter 
vector u G ft in the probability model, typically described by its density function 
p(u\D), conditionally on the model, encapsulates the available information about 
the unknown value of u, given the observed data D and the knowledge about u, 
which the prior distribution p(u) might contain. It is obtained by Bayes' Theorem. 
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Bayes Theorem: Given data D generated by the probability model {p(D\A)y 

A G ft} and a prior distribution P(-A), the posterior distribution of A is p(A\D) oc 
p(D\A)p(A). The proportionality constant is {JQp(D\A)p(A)dA}~1. 

Two approaches have been explored in the finding of the posterior probability: 

— To find the most probable parameters (weights) using methods similar to the 
conventional training and then approximate the distribution over weights us­
ing information available at this maximum. 

— To use the Monte Carlo method to sample from the distribution over weights. 
This was the method we applied initiation to using Markov chains. 

There are two rules of probability which can be used: 

— The product rule relates to joint probability of A and B,P(A,B\H) to the 
conditional probability: 

P(A,B\H) = P(B\n)P(A\B,n) (1) 

— The sum rule relates the marginal probability distribution of A, p(A\n), to 
the joint and conditional distributions: 

p(A\H) = Y,P(A>B\H) = ^p(A\B,H)p(B\H) (2) 

Having specified the joint probability of all variables as in equation, we can use the 
rules of probability to evaluate the way in which our beliefs and predictions should 
change when we get new information. 

3. NEURAL NETWORKS AS PROBABILISTIC MODELS 

A supervised neural network is a non-linear parametrized mapping.from an input x 
to an output y = f (x, w; A). The output is a continuous function of the parameters 
w, which are called weights and A is an architecture of the network. 

The network is trained in the classical way using a data set D = {(x^1), y ^ ) , . . . , 
(x(n) ,y(n))} by the backpropagation algorithm, n is the length of a training sample. 
It means the following sum squared error is minimized 

EDM = \it I > ( m ) - /<(x(m);w))2 (3) 
m = l i 

The weight decay is often included in the objective function for minimization. This 
means that 

M(w) = (3ED(w) + aEw(w), (4) 

where Ew(w) = § ^2iwh a a n d P a r e regularization constants. 
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The learning process above can have the following probabilistic interpretation. 
We suppose ft = lZd, where d is a weight vector dimension. The error function is 
interpreted as minus the log likelihood for a noise model: 

p(D\w,p,n) = j^Gxp(-PED(v,)) (5) 

where parameter /? defines a noise level crn = 4 and ZD((5) is a suitably chosen 
constant. 

Similarly, the regularization is denoted as a log prior probability distribution over 
parameters w 

p(w\a,H)= exp(-aEw(w)) (6) 
Zw(a) 

where al^ = ^, a is a regularization constant and Zw(a) is a suitably chosen 
constant. 

The function E corresponds to the deduction of parameters w according to data 
D. It means that 

/ i n „ n nj\ P(-P|w, 0?,/?, 7 l)p(wla, 71) 
p(w .D, a, /3, H) = (7) 

p(D,a,(J,H) 
Bayesian inference for modelling problems may be implemented by analytical 

methods, by Monte Carlo sampling, or by deterministic methods using Gaussian 
approximations. 

4. DESCRIPTION OF ALGORITHMS 

We deal only with neural networks used for regression. Assuming a Gaussian noise 
model, the conditional distribution for the output vector given the input vector 
based on this mapping will be as follows: 

p(y|x,w) = ( 2 7 r a 2 ) ^ e x p ( - | y - /
2

(
a

X
2 ' w ) | 2 ) (8) 

where d is the dimension of the output vector and a is the level of the noise in the 
outputs. 

In the Bayesian approach to the statistical prediction, one does not use a single 
"best" vector of weights, but rather integrates the prediction from all possible weight 
vectors over the posterior weight distribution which combines the data with prior 
computed weights. 

The best prediction for the given input from the testing data x n + i can be ex­
pressed by 

yn+i = / / ( x n + i , w ) i p ( v / | ( x i , y i ) , . . . , ( x n , y n ) ) d w . (9) 
JRd 
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The densities of the posterior probabilities of weight vectors are as follows (ac­
cording to the Bayes theorem): 

^wlfV v ^ (^ v ^ P(w)p((x i ,y i ) , . . . , (x n ,y n ) |w) 
P(w ( x i , y i ) , . . . , ( x n , y n ) ) = — • — - — r r (10) 

p ( ( x i , y i ) , . . . , ( x n , y n ) ) 

P(w)p(yi,...,ynlxi,...,xn,w) 
P(yi,...,yn|xi,...,xn) 

The training data are independent of each other which means that the following 
relationship is satisfied: 

F(w)p(yi,...,ynlxi,...,xn,w) = p(w) n?=i P(y*lxnw) . 
P(yi, • • •, y n | x i , . . . , xn) p ( y i , . . . , y n | x i , . . . , x n) 

To the formulation of Bayesian problem it is necessary to add the prior distri­
bution of weights. One of the possibilities is using the Gaussian noise function: 
p(w) = (2~u2)~ 2 exp (— 2^r) , where u is an expected weight scale, it should be set 
by hand. 

High-dimensional integrals mentioned above for predictions are in general ana­
lytically unsolvable and numerically difficult to compute. This leads to the problem 
of Bayesian learning. While in traditional training we deal with an optimization 
problem, in Bayesian training we deal with evaluation of high-dimension integrals. 
Metropolis algorithm presents a method for evaluation of the integrals. However, 
this algorithm works slowly for our problem. But it forms the basis for Hybrid Monte 
Carlo method, which should be more effective for evaluating the integrals. Now we 
will describe used methods in some basic steps. The developed algorithm for our 
problem was applied according to the construction of Neal [14]. 

Suppose that we wish to evaluate 

(9) = [ 0(q)p(q)dq- (12) 
jRd 

The Metropolis algorithm generates a sequence of vectors qo,qi, • • •, which forms a 
Markov chain with the stationary distribution p(q). The integral in equation (12) 
is then approximated as 

I+M-l 

k > * M ^ *(*). (13) 
t=i 

where I stands for the number of initial values which will not be used in evaluation 
and M stands for the number of functional values g. Averaging those values one 
gets an approximate value for (g). In limit case, as M increases, approximation 
converges to the real value (g). It is difficult to determine how long it takes to reach 
the stationary distribution (and hence to determine the value of 7), or determine how 
the values of q* are correlated in following iterations (and hence how large M should 
be). One cannot avoid such difficulties in applications that utilize the Metropolis 
algorithm. 
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Generation of the Markov chain is described by an energy function, defined as 

E(q) = - l n ( p ( q ) ) - l n ( Z ^ ) f (14) 

where ZE is a positive constant chosen for convenience. The algorithm starts by 
random sampling of qn. In every £-th iteration, a random candidate q^+i for the 
next state is sampled from distribution P(q*+i |q*)- The candidate is accepted if its 
energy is lower than that of the previous state; if its energy is higher it is accepted 
with probability exp(-AJ5), where AE = .E(q*+i) - E(qt). In other words, 

f q*+1 if U < exp(-AE) 

1 q̂  otherwise 

and U is a random number from uniform distribution from interval (0,1). 
The Hybrid Monte Carlo method as an improvement on the Metropolis algorithm 

eliminates much of the random walk in weight space, and further accelerates explo­
ration of the weight space. The method uses a gradient information provided by the 
backgropagation algorithm. 

Unlike the Metropolis algorithm, the Hybrid Monte Carlo method generates se­
quence of vector couples (qo,r0), ( q i , r i ) , . . . , where vectors q are called position 
vectors and vectors r are called momentum vectors. Both these vectors are of the 
same dimension. Potential energy function E(q) used in Metropolis algorithm is ex­
tended to Hamiltonian function H*(q, r) that combines potencial and kinetic energy: 

Jff(q,r)=E(q) + i |r|2 . (16) 

p(q? r) = p(q)p(r) is fact for the stationary distribution of generated Markov chain. 
Marginal distribution of q is the same as the one for Metropolis algorithm. Thus, 
the value of (g) can be again approximated by use of equation (13). Momentum 
characteristics have Gaussian distributions, and they are independent of q and of 
each other. The Markov chain is generated by two types of transitions - dynamic 
and stochastic moves. The hybrid Monte Carlo method is described in [15]. 

5. RESULTS OF GEOMAGNETIC STORM (GMS) PREDICTIONS 

We will discuss various implementation issues which are necessary for the actual 
prediction. The data are available from the NASA "OMNI database" and are dis­
tributed by National Space Science Data Center [17] and WDC-A for Rockets&Satel-
lites. In the period 1963-1999, the quantities: Bz,aBz,n,v and Dst are measured 
and saved at each hour. We will predict the values of Dst index with neural networks 
in depending on the next four quantities: 

Bz - z-coordinate of the interplanetary magnetic field, the values are in the 
interval ±50 nT, 

GBZ ~ mean square error Bz characterizes the swings of the quantity, 
n - the plasma density of solar wind in 1 cm3, 
v - the bulk velocity of solar wind, the values can be as much as 1200 km/s. 
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We suppose that the measured Dst index of geomagnetic storm is a function of 
parameters BZJOBZ ,n}v and in Figure 1 we can see the course of it. 

Some data are not complete and we use linear interpolation to fill the gaps but 
only in the case if the gap is less then 30 hours. The reconstructed data are used for 
a choice of the samples to the training set according to the following criteria: if the 
value Dst decreases at least 40 nT during two hours then the training sample (the 
storm) is created from the measured values 36 hours before the decreasing, 2 hours 
of the identification of decreasing and 106 hours after the decreasing. The file of 
the values must satisfy requirements of completeness of measurements. This means 
that 144 hours describe one event - GMS. One storm is used for the learning of the 
neural network by moving the 8 hours window. 

Fig. 1. The Dst index of geomagnetic storm measured in 1981, 62-nd day. 

We have prepared the training data set and two data testing sets A and B. To 
prepare the A and B sets we used the data from years 1980-1984 and 1989-1999 
because we had the continued values of parameters n,v,Bz,OBz and Dst. The 
prepared data were represented by a sequence of 

s^yy^Biy^D^), 
where s* can be applied as time series. 

The software of Levicky described in [9] was modified and used in the present 
application. The algorithm based on the works of Neal and McKay was written in 
Delphi 5. 

The feed-forward neural network calculating the following function y = / ( x , w ) 
(the function / is corresponding to the function / in (9)) was used in the tests: 

hidden layer: oj1 ' = YALI WJIXI + 0j J hj = tanh(a]1)), j = 1 , . . . ,p 

output layer: o^ = ]Cj=i wijhj + ^i J 2/1 
,(2) 

The vectors x = (xi,. . . . , x m ) (where m is the dimension of the data representing 
a geomagnetic storm) represent neural network inputs. Every vector w stands for 
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Table 1. Experimental Results - approximations of GMS. 

Data # Iteration #Good #Bad Average Success 

Approximations Approximations Error 

A 6000 62 74 1.90585 45,59 % 

B 6000 101 35 0.48040 74,26 % 

A 12000 76 60 1.19665 55,88 % 

B 12000 113 23 0.23863 83,09 % 

A 18000 86 50 0.77771 63,24 % 

B 18000 109 27 0.23801 80,15 % 

coordinates of one GMS. Values y\, represent outputs of the neural network. It 
means the results are values of some function. 

The energy function explained by (14) in our problem is the function M(w) 
described by (4). The sequence of weights is generated by the energy function as 
the Markov chain. The sequence of weights is used to the approximation of values 
Dst. It means that the function / in (9) is approximated by (13). 

The computed results are in the following Table 1 and Table 2. The model was 
at the time in the initial testing stage. In Table 1 we present results computed with 
two data sets A and B. The measured and predicted data follow the Dst index in 
the interval 0 — 143 hours, if both values are closed to each other then the prediction 
is good in the opposite case it is bad. The prediction performance is measured by 
#Good Predictions, #Bad Predictions, Average Error and % of Success. In Table 
2 are presented results concerning of the predicted GMS numbers. 

Ф 41 ? -г 
B, Oщ, n V 

Fig. 2. The model of the neural network. 
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Table 2. Experimental Results - predictions of GMS. 

# Iteration Average Error # Predicted GMS 

20000 0.91344 21 

60000 0.72604 21 

100000 0.64452 19 

120000 0.61764 18 

Total test samples in testing sets A and B: 272, the number of input neurons in 
the neural network: 32 (for each block - i?z,cr£z,n,it, 8 input values), the number 
of hidden neurons in the neural network: 28, the number of output neurons: 1, as 
it is shown in Figure 2. 

The computed results are interesting from the following points of view: 

— With the increase in the number of iteration the average error decreases. It is 
one of the criteria for the evaluation of the model. 

- After 18000 iterations the success grows very slowly in the case of the testing 
data set A and decreases in the testing data set B (results in Table 1). 

— The numbers of predicted Geomagnetic Storms (results in Table 2) are higher 
than the numbers of real GMS but after 120000 iterations the numbers of pre­
dicted GMS decrease. 

— Bayesian neural networks that we used in the prediction of geomagnetic storms 
seems a very good model. They move the weight vector to the most probable 
part of the weight space. 

— The using method has very slow convergence. It means that the trainig is very 
time-consuming. 

6, CONCLUSION 

In the present paper we dealt with feed-forward neural networks and their training 
for the prediction of Geomagnetic Storms. We use Bayesian probability theory 
and Monte Carlo methods. Monte Carlo methods provide good approximations 
of evaluating high-dimensional integrals which are needed to be computed at the 
training of neural networks. Their greatest disadvantage is the fact that they are 
extremely time-consuming because they need the high numbers of iteration steps. 
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