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MULTIDIMENSIONAL TERM INDEXING 
FOR EFFICIENT PROCESSING OF COMPLEX QUERIES1 

MICHAL KRÁTKÝ, TOMÁŠ SKOPAL AND VÁCLAV SNÁŠEL 

The area of Information Retrieval deals with problems of storage and retrieval within 
a huge collection of text documents. In IR models, the semantics of a document is usually 
characterized using a set of terms. A common need to various IR models is an efficient term 
retrieval provided via a term index. Existing approaches of term indexing, e. g. the inverted 
list, support efficiently only simple queries asking for a term occurrence. In practice, we 
would like to exploit some more sophisticated querying mechanisms, in particular queries 
based on regular expressions. In this article we propose a multidimensional approach of 
term indexing providing efficient term retrieval and supporting regular expression queries. 
Since the term lengths are usually different, we also introduce an improvement based on a 
new data structure, called BUB-forest, providing even more efficient term retrieval. 
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1. INTRODUCTION 

The area of Information Retrieval (IR) [1, 18, 22] deals with problems of storage 
and retrieval within a huge collection of text documents. The most widely used 
models in the IR, the vector model and the boolean model, specify a form in which 
the documents are represented, queried and stored. In both mentioned models, the 
semantics of a document is characterized using a set of terms. In general, the term 
can be a word or a multi-word phrase. A common need to various IR models is an 
efficient term retrieval provided using a term index. For efficient querying, the term 
index must be implemented using a suitable persistent data structure [13], because 
we must keep in mind that the term number can raise up to 106. The choice of data 
structure is crucial since it must reflect query types to be supported. 

One of the most important term index application is the inverted list (used in the 
boolean model) based on B-tree [22], where to each term in the list a set of relevant 
documents is assigned. However, existing approaches of term indexing, e. g. the 
inverted list, support efficiently only simple queries asking for a term occurrence. 

xWork is partially supported by Grant Agency of the Czech Republic under grant No. 
201/03/0912. 
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In practice, we would like to exploit also more sophisticated querying mechanisms, 
in particular queries based on regular expressions. Such a general type of query 
is highly applicable in unstructured as well as in structured information retrieval 
(e.g. native XML databases). In XML retrieval [23], such query could look like 
/ t i t l e s / t i t l e [keywords/keyword--(*comput ing ' ] . 

1.1. Exist ing approaches 

In the B-tree-based inverted list, a single term retrieval is realized in logarithmical 
time complexity (relative to the number of terms). The B-tree indexes the terms 
according to lexicographical order and thus it can efficiently process also the right 
extension queries, i.e. regular expressions of form <string>*. However, execution 
of another regular expression query could lead to a sequential scan over the whole 
term index. In addition, a finite automaton corresponding to regular expression is 
necessary to be constructed for searching the B-tree and all the terms must be put 
into this automaton. Hence, the B-tree is not suitable structure for non-trivial term 
indexing. In [11] the String B-tree was introduced for efficient querying of substrings. 

Unfortunately, we cannot efficiently exploit neither the traditional cost-expensive 
approaches like automata nor pattern matching algorithms [5, 20] since the volumes 
of term collections are huge. Furthermore, an automaton cannot be stored on a 
secondary storage device efficiently, in such case an efficient page transfer between 
primary and secondary storage devices is impossible during a query processing. 

In [1] the suffix arrays were proposed for term indexing. Suffix arrays are a space-
efficient implementation of suffix trees. This indexing structure views the text as 
a single long string. Each position in the text is considered as a text suffix, i.e. 
a string that follows from that text position to the end of the text. It is a main 
memory data structure. Persistence of suffix arrays is known but the overhead is 
too large. Moreover, the "interior" of words is not possible to retrieve and thus it is 
not able to use suffix arrays for complex regular expression queries, e. g. for queries 
of form *<string>*. In [22] string rotations were proposed for efficient processing 
of regular expression queries. Each term is stored n times, where n is the number of 
the term characters. This fact can be a problem for term collections of large volumes 
thus string rotations do not provide an efficient solution of this problem. 

Our objective was to propose a method for term indexing satisfying the following 
conditions: a persistent method, minimal storage overhead, and an efficient sup­
port of complex queries. In [7] a multidimensional approach was introduced for 
an efficient term retrieval. The fundamental idea resides in modelling the term as 
an n-dimensional point. The multidimensional approach enables to process regular 
expression queries. In Sections 2 and 3, the approach is briefly recapitulated. In 
Section 4 we introduce a new data structure, called BUB-forest, which allows effi­
ciently index terms of variable lengths. In Section 6, some experimental results are 
presented and the last section concludes contributions of the paper. 
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2. MULTIDIMENSIONAL TERM INDEXING FOR EFFICIENT 
PROCESSING OF COMPLEX QUERIES 

In our approach [7], we model a term as a point in n-dimensional vector space [17], 
where n is the maximal term length. The space is called term space. Each term is 
thus uniquely represented with an n-dimensional tuple whose each coordinate value 
determines a character from fixed alphabet (e.g. an ASCII code character). 

Definition 1. (Term as n-dimensional tuple.) Let D be domain, D = { 0 , 1 , . . . , 2l — 
1}, |D| = 2l, ft be a discrete finite n-dimensional vector space, ft = Dn, A be the 
character alphabet, s = c\c2 .. .cn-\cn be a term of length n, where Ci G A is a 
character, 1 < i < n. Then n-dimensional point (tuple) representing the term s is 
defined as ts = (code(ci),code(c2),... ,code(cn)), ts G ft, code(ci) G D, where code : 
A -> D is a function which encodes a character Ci into a binary number of the 
bit-length I. 

If a term length is lower than n, the extra tuple coordinates are set to a blank 
value (in this case to zero). The terms, as a set of multidimensional points, are 
then indexed using a spatial access method [4]. We have chosen the UB-tree [2] for 
indexing. Spatial access methods (the UB-tree respectively) support range queries 
algorithms which can be, in turn, applied for implementation of regular expression 
queries. Due to the proposed multidimensional term model such regular expression 
query implementation is possible and efficient. 

2.1. Regular expression query construction 

In multidimensional term indexing we exploit the maximal term length due to which 
we are allowed to construct regular expression queries by a combination of several 
range queries. In other words, such sequence of range queries can be defined as a 
complex range query. 

Definition 2. (Complex range query.) A complex range query is defined as qb\ U 
qb2 U . . . U qbq, where qbi (the ith query box, 1 < i < q) is an n-dimensional hyper-
rectangle defining simple range query. If C\q

i=l Q^i = 0 then the complex range query 
is processed by q range queries. Symbol U is meant for geometrical union and fl for 
geometrical intersection. 

A comprehensive description of the complex range query construction for general 
regular expressions is out of scope of this paper where we demonstrate the query 
construction just for three forms of regular expressions. Let k be the length of 
s t r ing , n be the dimension of the term space fi, and maxn,. be the maximal value 
of domain Di. A right extension query (expression <string>*) is perfomed by 
a single range query (c r , c 2 , . . . ,ck, 0 , . . . ,0) : (c r ,c 2 , . . . ,ck,maiXDk+l,... ,max£>J. 

A left extension query (expression *<string>) is processed by a complex range 
query qh = ( d , c 2 , . . . , c f c ,0 , . . . ,0) : (c r ,c 2 , . . . ,c&,0,.. . ,0) U qb2 = (0,ci,c2 , 
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. . . , C A , 0 , . . . ,0) : (max D l ,C i ,c 2 , . . . , c* ,0 , . . . ,0) U . . . U qbn-k+1 = ( 0 , . . . ,0 ,c i ,c 2 , 

. . . ,Cjb) : (maxn, , . . . ,maxD n_ f c ,Ci ,c2 , . . . ,c*). 
A left-right extension query (expression *<string>*) is processed by a complex 

range query qbx = ( c i , c 2 , . . . , c * , 0 , . . . ,0) x (c x , c 2 , . . . ,cjfe,max£>fc+1,... , m a x D J 
U qb2 = (0 ,c i , c 2 , . . . ,c*.,0, . . . ,0) : (max D l ,Ci ,c 2 , . . . , Q , m a x D H 1 , . . . , m a x n j U 
. . . U <7&n-ifc+i = (0 , . . . , 0 , c i , c 2 , . . . ,Cjk) : (max D l , . . . ,maxDTl_fc,ci,c2, . . . ,ck). 

Since the term space domains D{ are equal, we can label the maximal domain 
values maxn. as maxD, where maxD = 2l — 1. If the ASCII encoding is used 
then maxn = 28 — 1 = 255. The complex query can be processed either by several 
"rectangular" range queries or by a single complex-shape range query (created by 
hyper-rectangle union). In [10] is described how to efficiently process complex-shape 
range queries. The result of a range query consists of all the relevant tuples. The 
tuples retrieved from the multidimensional term index are inversely decoded back 
into terms where the decoding is performed using an inversion function code~l. A 
list of decoded terms is returned to the user as a query result. 

2.2. Term clustering using Z-ordering 

The main idea of multidimensional structure UB-tree [2] as well as BUB-tree [9] 
resides in vector space ordering. If we order all the points within a discrete finite 
vector space we will get an ordering according to which the tuples can be indexed 
by a single-dimensional indexing structure (e.g. by the B+-tree). An important 
property of such ordering is that it should partially preserve the tuple distances. In 
other words, tuples that are "close" in the space (using a metric) should be "close" 
also within the ordering. In [8] the Gray codes and the Z-ordering were introduced 
for partial matching and range queries, respectively. 

Definition 3. (Z-address.) Let ft be a discrete finite n-dimensional vector space, 
ft = Dn, where D = { 0 , 1 , . . . ,2l - 1}, \D\ = 2l. For a tuple t G ft of the length 
n, t = ( a i , a 2 , . . . , a n ) and a binary representation of the coordinate value ai = 
a u - i a U - 2 •. .tti,o, where at G -D, / is the bit-length of the value a*, a^j is j t h bit 
value of a;, 1 < i < n, 0 < j < Z, the function Z(t) (Z-address) is defined: 

z w = EX>.;-jxn+i~1-
j=02=1 

In our approach, we exploit the Z-ordering where a position of a tuple in the 
Z-ordering is called Z-address. If we calculate the Z-addresses for all the points of n-
dimensional space ft we will get a Z-curve filling the entire space ft. See Z-addresses 
and the Z-curve for 2-dimensional space 8 x 8 in Figure 1 a. 

In our application, the tuples of terms which are close in the term space could 
be considered as similar (from the lexical point of view). Due to the Z-ordering 
properties we can say that similar terms have close Z-addresses, see Example 1. 
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Fig. 1. a) The Z-curve filling the entire 2-dimensional space 8 x 8 . 

b) 2-dimensional space 8 x 8 with tuples t\ - ts. 

These tuples define the BUB-tree Z-regions 

partitioning [0:2],[7:11],[25:30],[57:62] with the node capacity 2. 

E x a m p l e 1. (Transformation of terms into tuples.) Let us take terms t o , we, d o t , 

t a b , and t e n . In this case, function code uses the ASCII encoding. The domain is 

D = {0,1, . . . ,255}, the cardinality of domain is \D\ = 256,1 < i < 3. Maximal 

length of a term is 3 thus the dimension of the term space n = 3. Resultant term 

tuples are: 

tt0 = (codeCt'^codeCo'^O) = (116,111,0) 

twe = (code('w'),code('e'),0) = (119,101,0) 

tdot = (codeCd'),codeCo'),codeCt')) = (100, 111, 116) 

ttab = (code('t'),code('a'),code('b')) = (116,97,98) 

Uen = (code('t'),code('e'),code('n')) = (116,101,110) 

For clarity, we present the Z-addresses in path notation, where each binary Z-

address (the left-most bit is the most significant) is shown as a block of n-bit numbers 

(in this example n = 3). Z-addresses and their path notations in decimal form are: 

Z(íto) 

Z(£-ve) 

z(w) 
Z(ttab) 

%(tten) 

000011011001010011010010 = 0.3.3.1.2.3.2.2 

000011011001000011001011 = 0.3.3.1.0.3.1.3 

000111111100010111010010 = 0.7.7.4.2.7.2.2 

000111111001000001100010 = 0.7.7.1.0.1.4.2 

000111111001100111100010 = 0.7.7.1.4.7.4.2 

It is obvious from the example tha t Z-addresses of tab and t e n or t o and we are 
closer than Z-addresses of d o t and t a b or we and tab. In simple words, using the 
Z-ordering the similar terms are approximately clustered together. 



386 M. KRÁTKÝ, T. SKOPAL AND V. SNÁŠEL 

3. THE BOUNDING UNIVERSAL B-TREE (BUB-TREE) 

The Bounding Universal B-tree2 (BUB-tree) [9] is a multidimensional indexing struc­
ture exploiting the Z-ordering. The idea of the (B)UB-tree is based on the Z-ordering 
and the B^ -tree [21]. The B^ -tree is a balanced and persistent tree which provides 
logarithmical complexities for basic operations and a minimal overhead. A node 
utilization [13] over 50 % is guaranteed. 

The (B)UB-tree indexes the Z-addresses of n-dimensional tuples into the B - ­
tree. Within a (B)UB-tree node hierarchy the Z-regions represent clusters of tu­
ples that are close (according to the Z-ordering). Each Z-region resides in a single 
disk page. Z-regions allow an efficient processing of multidimensional range queries. 
A Z-region [a:/?] is defined as a space area bounded by the interval (a,/3) on the Z-
curve, a < ft. In Figure 1 b, four Z-regions in 2-dimensional space 8 x 8 are depicted. 
In the case of UB-tree, the Z-regions define an ordered disjunctive partitioning of 
the entire n-dimensional space. The BUB-tree does not partition the entire space 
but it follows the tuples distribution thus it does not index the "dead space". E .g . 
the empty interval (31,56) between Z-regions [25:30] and [57:62] in Figure l b is not 
indexed by the BUB-tree. 

Let there be m tuples inserted into the UB-tree (BUB-tree respectively). The 
space ft will then be partitioned by r disjunctive Z-regions [a; : /?;], 1 < i < r. Let 
amm = o be the minimal Z-address and /3 m a x = 2nxl - 1 be the maximal Z-address 
(see Definition 3). Then 

[m : pi]n[aj : Pj] = 0 , i , j > l , t , j <r,i^j. 

For UB-tree 
r 

\J[ai:Pi}^[amin,pm^} 
i=\ 

a\ = amh\ßr 
/эmax 

aѓ+i = ßi + h for І < r, 

For BUB-tree 
r 

\J[ai:Pi}C[amin,(3™*} 
i=\ 

ax > a m i n , / 3 r < / 3 m a x . 

Because the shapes of Z-regions evolve during the tuples insertion, the BUB-tree 
does not index the "dead space" (contiguous empty space). This is an improvement 
over the UB-tree which indexes the entire space. Due to this fact the range query 
processing is more efficient in the BUB-tree. The (B)UB-tree hierarchy is depicted 
in Figure 2. The leafs contain indexed tuples, the inner nodes contain Z-regions. 

Basic operations (insertion, deletion and point query) share a common technique: 
Transform the argument tuple into Z-address, find an appropriate leaf (the Z-region 
of which matches the tuple's Z-address) and execute the operation on that leaf. If a 

2UB-tree, the ancestor of the BUB-tree, was introduced in [2]. 
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node overflows by a tuple insertion, the node must be split. Using a suitable splitting 
policy a node utilization of up to 75 % can be achieved [14]. In the case of BUB-tree, 
the splitting policies can be further enhanced by various heuristic methods keeping 
the BUB-tree's efficiency at maximum. 

index - hierarchy of 
Z-regions 

indexed tuples 

Fig. 2. This BUB-tree indexes the tuples presented in Figure lb. 

Unlike regions of other persistent multidimensional structures, e. g. the R-tree [12] 
based on a hierarchy of bounding boxes, the Z-regions of (B)UB-tree are disjunctive. 
This fact is very important especially for higher dimensionalities where the curse of 
dimensionality takes place. The disjunction of Z-regions significantly helps to reduce 
the negative aspects of searching in high-dimensional spaces. Some other structures 
are also designed to keep their regions disjunctive, e. g. the R/ -tree [3], but here the 
complexity just moves from the querying operations to the inserting operation. 

It is clear from the previous descriptions that the BUB-tree storage overhead must 
be greater than by the UB-tree. However, in our implementation of the BUB-tree 
the leaf capacity is approximately two times higher than the inner node capacity. 
This refinement causes the BUB-tree index file is approximately of the same size as 
an equivalent UB-tree index file. 

The most important and most difficult algorithm in the (B)UB-tree is the range 
query algorithm. An exponential (according to the dimension) algorithm is presented 
in [2]. A linear (according to the Z-address bit-length) algorithm is presented in [14, 
16], but that description is very vague. For that reason, we have developed our own 
linear algorithm implementation [19] based on intersection operation of query box 
and Z-region. 

4. BUB-FOREST 

As in the case of term tuples, some tuple sets are of different dimensionalities. 
Such variously dimensional tuples can be indexed in a single n-dimensional vector 
space, where n is the maximal dimension over all the tuples in a given set. Shorter 
(lower-dimensional) tuples can be aligned to n-dimensional tuples, where the extra 
dimensions are set to a blank value. This solution was used in our previous UB-tree-
based term indexing. On the other side, this simple approach has a major drawback. 
Since all the tuples are modelled in high-dimensional space there is a large amount 
of redundant information (the blank values) stored within the extra dimensions of 
possibly great number of aligned tuples. 
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We deal with term indexing, let us take a term dataset as an example. The 
term dataset was extracted from the TREC's collections of text documents [15], in 
particular from LATIMES and FBIS collections. These collections contain 816,716 
unique terms. Figure 3 a shows a term length frequency histogram of the whole 
term dataset. Figure 3 b is another interpretation of Figure 3 a and shows how the 
number of terms grows with growing maximal allowed term length (i. e. with growing 
dimension of term space). We can observe that for majority of the terms the term 
length is smaller than 15. Thus, creation of 40-dimensional BUB-tree will lead to 
unnecessary storage overhead. 

Term length frequency 
in TREC's document collections 
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Fig. 3 . a) Term length frequency histogram of term dataset 
extracted from the TREC's document collections LATIMES and FBIS. 

b) Number of terms with growing maximal term length. 

In this section we introduce a new multidimensional data structure, BUB-forest, 
which was designed just to avoid unnecessary storage and performance overhead 
when indexing variously dimensional tuple sets. 

Definition 4. (The BUB-forest.) BUB-forest BFk(ni,n2,... ,nk) is a data struc­
ture forest consisting of k BUB-trees BTi(ni), 1 < i < k. Let n be the dimension 
of the original high-dimensional vector space. Every BUB-tree BTi(ni) indexes an 
ni-dimensional space, where 1 < i < k, 1 < j < k ---.> rij+i > nj, and nk = n. 

Let us have m tuples U of various dimensionalities, where di is the dimension of 
the tuple U, 1 < i < m. Then tuple U is indexed by such BUB-tree BTj(nj) for 
which di < nj A j > 1 => di > nj-i, for 1 < i < m, 1 < j < k. If d* < nj then 
dimension of ti is increased to nj and values tik = blank value G D,di < k < nj. 

In other words, the BUB-forest indexes each tuple U using such BUB-tree BTj(nj) 
the dimension of which is the lowest but greater or equal to the dimension of U. The 
blank value is often zero. An example of BUB-forest BF2, i.e. consisting of two 
BUB-trees, is presented in Figure 4. In this example, the BUB-trees are of the same 
heights but that is not a rule. 
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4.1 . Opera t ions on BUB-forest 

Basic operations, i.e. insertion, deletion and point query, are performed by such a 
BUB-tree BTj to which the argument tuple is assigned. 

íгя^ 
F i g . 4 . Examp le of BUB-forest BF2. 

Definition 5. (BUB-forest range query.) Let a query box QB is defined by 
two n^-dimensional boundary points QL and QH, nqb < n. The range query 
is in the BUB-forest BFk{n\,n2,... ,ny,. . . , n*) processed as a sequence of range 
queries QBj, defined by n^-dimensional boundary points QLj and QHj, on BUB-
trees I?Ti(n;), for which nqi < ni, 1 < i < k. Let 1 < / < ny. If / < nqi then 
QLjt = QLi and QHjt = QHi, else QLjt = QHjt = blank value. Query result of 
the BUB-forest range query is the union of the particular BUB-tree query results. 

Notes: In similar way there could be defined forests also for other existing data 
structures, e. g. the B-tree or the R-tree. In the case of B-tree, there is only one 
dimension but the use of forest could serve as a compression tool since keys of 
variable lengths are stored in multiple B-trees. The forest data structure has been 
already applied to S-trees [6] (signature trees). 

Since BUB-forest is a persistent data structure we can further consider two vari­
ants of disk cache. First, the BUB-trees of a BUB-forest share a single disk man­
agement and thus single disk cache. Second, each BUB-tree has its own disk cache. 
The latter possibility is obviously more efficient. 

Each BUB-tree of a BUB-forest can index different number of tuples thus the 
tree heights can differ. 

4.2. Storage volume r e d u c t i o n 

Let us now compare the storage volume required when indexing variously dimen­
sional tuple sets using a single BUB-tree and using a BUB-forest. Let the tuple set 
consists of m tuples, where m* is the number of di-dimensional tuples, Y^=i m * = m > 
1 < i < n. 

The following calculations are only auxiliary since the disk management of BUB-
tree as well as of BUB-forest produces some additional storage overhead. Suppose 
that single coordinate of a tuple requires b bytes for storage. 

When using a single space for indexing, the number of bytes Vtt required to store 
the whole tuple set is Vtt = m x n x b. When using k spaces of dimensionalities 
n\, ni,... , n& for indexing, the number of bytes Vbf required for the tuple set storage 
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IS 
k ni 

vbf = j 2 J2 (mj x n*x b)-
i=\ j=ni-i 

Thus the number of saved bytes (when using k spaces) is 

k ni ni 

Vbt - Vbf = ^ ( ^2 m3 X U X ^ ~ ^Z mj X ni x b) 
i= l j=m-i j=ni-i 

where no = 1. If we consider the minimal storage volume V for the tuple set 
V = Y^i=\mi x i x b bytes, then obviously V < Vbf < Vbt- Equality V = Vbf 
can be achieved if we increase the number of BUB-trees in BUB-forest to k = n. 
Simultaneously, we must realize that greater number of BUB-trees in BUB-forest 
leads to greater number of range query executions. Thus, the number of BUB-trees 
should be chosen heuristically, following the statistical distribution of tuples. In 
general, the lower-dimensional BUB-trees should index major part of the tuple set. 

Example 2. (Storage volume reduction for term index.) Let us take the term 
dataset used in Figure 3. Let the maximal term length be n = 40. When using 
40-dimensional space, the storage volume will be Vbt = 816, 716 x 40 x 1 = 31.2 MB. 

If we use A: spaces of dimensionalities 9, 17 and 40, we will get storage volume 
Vbf = 509,258 x 9 x 1 + 280,050 x 17 x 1 + 27,408 x 40 x 1 = 10 MB. The smallest pos­
sible storage volume is V = 7.1 MB. This simple example shows that the BUB-forest 
saves (theoretically) 68 % of the single BUB-tree's storage volume. Furthermore, the 
storage overhead is still about 41 % higher when compared with the ideal case. 

Usage of BUB-forest significantly reduces the storage volume and it can be calcu­
lated that the additional BUB-forest overhead is relatively low (thanks to the node 
utilization over 50%). The number of BUB-trees in BUB-forest was chosen in or­
der to maximize the range query efficiency. Section 6 presents experimental results 
which prove the above mentioned auxiliary outcomes. 

5. COST ANALYSIS 

A simple range query is processed by retrieval of those Z-regions (BUB-tree nodes 
respectively) that intersect a given query box. Let r be the number of such Z-
regions and m be the number of indexed tuples. Then complexity of the range 
query is 0(logc(ra) x r) , where c is a fixed node capacity (tree arity respectively). If 
a complex range query is processed, the complexity is 0 ( X ^ = 1 logc(m) x r*), where 
q is the number of range queries and r* is the number of Z-regions intersecting the 
ith query box. In the case of BUB-forest BFk, the complexity of a particular range 
query is 0(X)i=i l°6c(m») x r*)> where ri is the number of Z-regions intersecting the 
ith query box (i.e. query box constructed for the BUB-tree BTi). 

In the case of term indexing, the blank value = 0. Let qbt be the number of 
range queries required for realization of a regular expression query using a single 
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high-dimensional BUB-tree. Then (according to Definition 5), the number of range 
queries required for performance of the regular expression query using BUB-forest 
can be smaller than k x qbi. 

Example 3. (Term indexing and querying in BUB-forest.) Let us take term 
dataset from the Example 1. We want to index this dataset in the BUB-forest 
Z?A/T2(2,3) consisting of one 2-dimensional BUB-tree and one 3-dimensional BUB-
tree. Tuples of length 2 are modelled in 2-dimensional space (see Figure 5 a) while 
tuples of length 3 are modelled in 3-dimensional space (see Figure 5 b). 

Query box 1 -2 

J-
Query box 1-1 

\ 

Б< > 

^ л / e 

І 
i 

I 
t(116) w(119) 

1s t character 

(a) 

1 s t character 

(b) 
Fig. 5. Spaces of BUB-forest BMT2(2}3) and query boxes for processing of query ( t * ) . 

For regular expression query t * , the appropriate range query in the 3-dimensional 
term space will be (code('£'),0,0) : (code('£'),maxD,niax£>) (see Section 2). Execu­
tion of this query will retrieve all the tuples beginning with character ' t \ 

When using the BUB-forest, two query boxes must be constructed. The first one, 
for the 2-dimensional BUB-tree, will be (code('£'),0) : (code('t'), max£>). The second 
one, for the 3-dimensional BUB-tree, will be (code('£'), 0,0) : (corJe('t'),maxn,maxr;). 
These query boxes, labelled as 1-1 (1-2 respectively), are depicted in Figure 5. The 
1-1 query will retrieve term t o while the 1-2 query will retrieve terms tab and ten. 

As we can see, the coordinates of query boxes constructed for regular expression 
queries often contain either the same values or the minimal or maximal value, see 
Section 2 and Example 3. Our experiments have shown that such range queries 
(so-called narrow range queries) process only a small part of the BUB-tree which 
means the query boxes intersect only a small number of Z-regions during the range 
query execution. 

6. EXPERIMENTAL RESULTS 

In our experiments3, we used terms from the TREC's document collections (see 
Figure 3), including 816,716 unique terms. Several regular expression queries were 

3The experiments were executed on an Intel Pentium ®4 2.4Ghz, 512MB DDR333, under Win­
dows XP. 
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processed, each by the classical B-tree-based inverted list as well as by the multi­
dimensional approach - using UB-tree, BUB-tree, and BUB-forest. Several term 
datasets were created, according to choice of the maximal allowed term lengths. 
The size of a dataset in the case of maximal term length 9 was 509,258, in the case 
maximal term length 40 it was dataset consisting of 816,716 terms. All the term 
datasets were indexed by B-tree, UB-tree, BUB-tree and BUB-forest. 

The following tables summarize the index characteristics: 

B-tree characteris t ics 

tree height 4 nodes 27,857-46,494 utilization 73-68% 
node capacity 26 index file 9.5-52.9 MB 

9-40 tree height 4 
27,182-43,594 utilization 71.3-71.2% 
355-1192B index file 9.9-53MB 

UB-t ree character is t ics 

\D\ 28 dimension 
nodes 29,121-46,657 Z-regions 
node capacity 26 node size 

BUB- t ree character is t ics 

\D\ 28 dimension 9-40 tree height 4 
nodes 26,358-37,027 Z-regions 24,322-34,180 utilization 66.9-66.6% 
leaf capacity 31-36 node capacity 19 
node size 422-1600B index file 10.6-56.5MB 

According to the maximal allowed term lengths, BUB-forests 
BFi(9) - BF4(9,13,17,40) were used. 

BUB-forest -9F4(9,13,17,40) character is t ics 

\D\ 28 

BTi: 
nodes 26,358 
node capacity 19 

BT4: 
nodes 1,252 
node capacity 19 

index file 20.8MB 
dimension 9 
Z-regions 24,322 
leaf capacity 31 

dimension 40 
Z-regions 1,159 
leaf capacity 36 

tree height 4 
utilization 67.8% 
node size 422B 

tree height 3 
utilization 68.2% 
node size 1600B 

items 509,258 

items 27,408 

The left, right and left-right extensions were tested. For the left extension, ex­
pressions soft*, atom*, and sub* were specified, for the right extension, expressions 
*sof t , * less , and *sess ion were specified, and for the left-right extension, expres­
sions *machine*, *na l i s t* , and *sc ien t* were specified. In all cases, disk access 
costs (DAC), number of compared terms, and query processing realtimes were ob­
served with respect to increasing length of terms. The values of particular results 
were averaged. The DAC was computed as the number of logical accesses to disk 
pages times the size of disk page (which is fixed). In order to particular regular 
expression query and the maximal length of terms, the number of retrieved terms 
(i.e. the query selectivity) was between 0 and 1182. 
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Fig. 6. Statistics of right extension test. 

Results of the right extension query are presented in Figure 6. In the case of 
B-tree, this query was performed very efficiently since the disk access costs and the 
number of compared terms are lowest. This fact is also reflected by the achieved real 
times. When compared with UB-tree and BUB-tree, the BUB-forest stores shorter 
Z-addresses which is reflected by lower disk access costs and the query processing 
times (see Figure 6 a and 6 c). 

Results of the left-right extension query and the left extension query are presented 
in Figures 7 and 8. For processing of the queries by B-tree, all the terms must 
be sequentially retrieved and compared against the query (see Figure 7 b). The 
costs are thus linear according to the number of terms. For the multidimensional 
approach, the number of compared terms (Figures 7 b and 8 b) as well as the number 
of disk access costs (see Figure 7 a and 8 a) are lower than by the B-tree. For 
the multidimensional approach, the efficiency significantly decreases with growing 
dimension since for dimensionalities 9 and 15 the number of indexed terms increased 
by 50% but the number of compared terms increased up to 32 times during the 
queries execution. 
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Fig. 7. Statistics of left-right extension test. 

The results show that the BUB-forest does not solve the problem of curse of 
dimensionality itself. However, storage of shorter Z-addresses is beneficial as we 
can observe from the disk access costs (see Figure 7 a and 8 a) as well as from the 
query processing realtimes (see Figure 7 c and 8 c). The efficiency improvement of 
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the BUB-forest over the UB-tree or the BUB-tree is up to 50%. 
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Fig. 8. Statistics of left extension test. 

If we take into account that most of the real-world terms are shorter than 15 
characters (see the term length distribution in Figure 3), we could claim that mul­
tidimensional approach is very efficient. 

7. CONCLUSION 

The paper described a multidimensional approach for an efficient term indexing for 
complex queries processing. The multidimensional approach provides broad usabil­
ity for efficient term retrieval, especially in the sense of regular expression queries. 
When compared with the B-tree-based inverted list, for some types of regular expres­
sion queries the multidimensional approach offers much better efficiency. Regular 
expression queries are processed using UB-tree or BUB-tree by a single range query 
or by a complex range query (a sequence of range queries). This paper introduced a 
new indexing structure, the BUB-forest, even more reducing the storage and retrieval 
costs of the multidimensional approach. 

In our future work, we would like to further improve the abilities and the efficiency 
of the multidimensional approach. In particular, we are going to develop method for 
a range query construction supporting all (or at least a significant subset) of regular 
expression queries. Furthermore, at the current state a single disk page can be 
retrieved and processed multiple times during the complex range query processing 
consisting of several simple range queries. For that reason, it could be useful to 
develop an algorithm executing the complex range query more efficiently. Basics of 
such algorithm were proposed in [10]. 

The boundary points of query boxes often have fixed coordinates when construct­
ing regular expression queries and this fact negatively reflects in higher number of 
non-relevant Z-regions processing. Thus we want to enhance the index structures to 
better support this narrow range query. 
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