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A NOTE ON A CLASS OF EQUILIBRIUM PROBLEMS 
WITH EQUILIBRIUM CONSTRAINTS1 

JlRI V. OUTRATA 

This paper is dedicated to Prof. Dr. Dr.h.c Frantisek Nozicka on the occasion 
of his 85th birthday. 

The paper concerns a two-level hierarchical game, where the players on each level behave 
noncooperatively. In this way one can model e. g. an oligopolistic market with several large 
and several small firms. We derive two types of necessary conditions for a solution of this 
game and discuss briefly the possibilities of its computation. 
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1. INTRODUCTION 

The behaviour of firms on an oligopolistic market is usually modeled via the Cournot-
Nash equilibrium concept ([13, 18]). In fact, it is the classical Nash equilibrium, 
where each player (firm) maximizes its profit subject to production constraints. As­
suming that one from the firms has a temporal advantage over the others, this firm 
can increase its profit by replacing a Cournot-Nash strategy by a Stackelberg strat-
egy ([6, 17, 18]). This firm (called Leader) computes its new strategy under the 
assumption that the remaining firms (Followers) will share the rest of the market 
again in the noncooperative way. One obtains a bilevel structure with a Cournot-
Nash equilibrium (parametrized by the Leader's strategy) on the lower level. To 
compute the Leader's strategy, one has thus to solve a so-called mathematical pro­
gram with equilibrium constraints (MPEC) ([8]). It might happen, however, that the 
standard Cournot-Nash strategy is simultaneously deserted by two or more firms. 
In such a case each of them has to make some assumptions not only about the be­
haviour of the Followers, but also about the behaviour of the remaining Leaders. 
Concerning this behaviour, two "extreme" situations can be distinguished: 

(i) All Leaders cooperate; 

^his research was supported by Grant A 1075005 of the Grant Agency of the Academy of 
Sciences of the Czech Republic. 
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(ii) The Leaders act noncooperatively, i. e. their strategies belong to the Cournot-
Nash equilibrium on the upper level. 

In the former case one has to do with a special multiobjective MPEC. Concerning 
necessary optimality conditions, this case has been carefully investigated in [11, 12], 
using the tools of the generalized differential calculus of B. Mordukhovich. The 
latter case arises in [7], where the authors model deregulated electricity markets 
under an independent system operator regime. One obtains a rather complex equi­
librium problem generated by a number of coupled MPECs. In both cases one can 
speak, in accordance with [20], about equilibrium problems with equilibrium con­
straints (EPECs). This terminology could also be used in other situations where, 
for example, the Leaders build some coalitions. 

The aim of this note is to investigate the situation (ii), also using the above 
mentioned generalized differential calculus. The organization is as follows: 

In the next section we give a rigorous definition of a noncooperative solution to 
EPEC. Thereby our model is not necessarily associated with an oligopolistic mar­
ket; we will consider a general game-theoretical framework. We will also pay a small 
attention to the existence of such solutions, which seems to be a very difficult ques­
tion. Section 3 is then devoted to necessary conditions for a vector of strategies to 
be a noncooperative solution to EPEC. We also apply the so-called implicit pro­
gramming approach ([18]) in this context, which leads to another type of necessary 
conditions. At the end we discuss briefly two possible approaches to the computation 
of a noncooperative solution. 

Our notation is basically standard. For a multifunction Q[Rn ~> Rm] , GphQ :-= 
{(x,y) e Rn x Rm \y e Q(x)}. If D is a cone with vertex at the origin, then D° 
is its negative polar cone. For a single-valued locally Lipschitz map /[Rn —> Rm], 
df(x) denotes the Clarke's generalized Jacobian of / at x ([2, Def. 2.6.1]). 

For the reader's convenience, we close this section with three fundamental def­
initions from Mordukhovich's generalized differential calculus used throughout the 
paper. 

Consider a set II C Rp. 

Definition 1.1. Let a G clll. The nonempty cone 

m / x i. U — a 
Tu(a) := hmsup 

tio t 

is called the contingent cone to II at a. The limiting normal cone to II at a, denoted 
Nu(a), is defined by 

IVn(a) =limsup(71n(a /))°. 
,ci n 

a'—>a 

If II is convex, IVn(a) amounts to the standard normal cone to II at a in the sense 
of convex analysis. The cone Nu(a) is generally nonconvex, but the multifunction 
Nu(-) is upper semicontinuous at each point of clll (with respect to clll), which is 
essential in the generalized differential calculus of B. Mordukhovich ([9, 10]). 
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Definition 1.2. Let (p[Rp —•> R] be an arbitrary extended real-valued function and 
a G dom (p. The set 

dip(a) := {a* G IT | (a*, - 1 ) G /Vepi ,,(a,^(a))} 

is called the limiting subdifferential of <p at a. 

Definition 1.3. Let $[1RP -^ Rq] be an arbitrary multifunction and (a,b) G 
clGph$. The multifunction D*$(a,b)[Rq ~> Rp] defined by 

£>*$(a, &)(&*) := {a* G Rp | (a*, -6*) G /VGph * M ) } , 6* G Mg, 

is called the coderivative of $ at (a,b). 

2. PROBLEM FORMULATION 

Consider a game of I players, where the ith player aims to minimize his objective 
/*, i = 1 ,2 , . . . , / , by using a strategy x% from his set of admissible strategies U% C 
IRn. Assume that the set {1 ,2 , . . . ,/} splits into two subsets I\ and I2- If i G Ii, 
we will call the ith player a Leader, otherwise a Follower. It is assumed that for 
each vector of admissible Leaders' strategies x%, i G Ii, the Followers will compute a 
noncooperative (Nash) equilibrium in their own "reduced" game, where the Leaders' 
strategies arise as parameters. To be able to describe mathematically this behaviour 
in a simple form, we will assume that for all i G I2 the objectives fl are continuously 
differentiate and convex in xl for all feasible strategies of the remaining players 
and that the sets U% are nonempty, closed and convex. Then one can describe the 
Followers' behaviour by generalized equations (GEs) 

0eVxif
i(x1,x2,...,zi) + Nui(x>), j e h i ( 1) 

where the Leaders' strategies x%, i G Ii, arise only as parameters ([18]). From the 
point of view of a Leader, relations (1) represent a constraint; the above game be­
longs thus to so-called equilibrium problems with equilibrium constraints (EPECs), 
introduced in [20]. In what follows, we will consequently refer to the above described 
game as to EPEC. As already mentioned in the Introduction, EPEC admits various 
solution concepts, dependent on the behaviour of the Leaders. 

For the sake of simplicity, let us reorganize the players in such a way that 
Ii = {1 ,2 , . . . ,&} and I2 = {A: + 1, k + 2 , . . . , / } . To unburden the notation, 
let xL := (x\x2,... ,xk) G Rnk,xF := (xk+\xk+2,... ,xl) G Rn(l~k) and, for 
i G Ii, x~^% be the subvector of XL from which the strategy x% has been removed. 
Thus, x^1 G Rn(k~lK Further, we denote by F(XL,XF) the vector composed from 
the partial gradients Vxip(xl,x2,... ,xl),j G I2, and put ft := Xjei2U

j. For 
i G Ii, the notation fl(x2\y,z) means the value of the objective of the ith player 
at the point (XL,XF) with xl = y and XF = z. Correspondingly, F(x~[\y,z) is 
composed from the partial gradients of fi(x1%,y,z), j G I2, with respect to the 
appropriate components of z. 
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Definition 2.1. ([20]) The vector of admissible strategies x := (xL,xF), is de­
clared a noncooperative solution to EPEC, provided for all i G I\ the pair (xl,xF) 
belongs to the set of (local) solutions to the MPEC 

minimize fl(xL
l,y, z) 

subject to ( v 
OeF(xli,y,z) + NCi(z) U 

yew 

in variables y,z. 

Each problem (2) is a standard MPEC so that the computation of a noncooper­
ative solution to EPEC amounts to solving of k coupled MPECs. Problems (2) are 
generally nonconvex even if the Leaders' objectives and sets of admissible strategies 
satisfy the convexity assumptions, imposed on fl and Ul for i G t This prevents 
to apply the existence theory of Nash ([14]). To grasp the existence question associ­
ated with a noncooperative solution to EPEC, consider the multifunctions Pl which 
assign to each admissible vector x~l% the set of (local) solutions to (2) with x~[l re­
placed by x~^%. Evidently, GphP 1 C Xi=lU

l. Moreover, (xL,xF) is a noncooperative 
solution to EPEC iff 

(xl^x^xp) e GphP1 ' for all % G h. 

To ensure the existence of a noncooperative solution to EPEC, we have thus to an­
alyze the structure of the maps Px. The local behaviour of these maps has been 
studied in [21] in case of MPECs with equilibria governed by (generalized) com­
plementarity problems. A globalized version of [21, Theorem 11] together with the 
Brouwer's Fixed-Point Theorem create a basis for proving the existence of noncoop­
erative solutions to EPEC. This investigation goes, however, beyond the aims of this 
note and so we turn our attention to conditions which must necessarily be fulfilled 
by each noncooperative solution to EPEC. 

3. NECESSARY CONDITIONS 

Let us posit the following simplifying technical assumptions: 

(Al) For i = 1,2,... ,k the objectives fl are continuously differentiable on an open 
set containing Xl

i=lU
l. 

(A2) For j = fc + l,fc + 2 , . . . ,/ the partial gradients ^xjf
j(') are continuously 

differentiable on an open set containing X\=lU
l. 

This implies in particular that the map 

F(xL,xғ) = 

Vxk+ifk+i(xL,XF) 

^x'fl{XL,XF) 

(1) 



A Note on a Class of Equilibrium Problems with Equilibrium Constraints 589 

possesses continuous partial derivatives with respect to x l , i G Ii, and XF3 whenever 
the pair (XL^XF) is admissible. Observe that VXFF(XL,XF) amounts to the square 
matrix 

V^+lifc+1 fk+1(XL,XF) ^+lxJ
k+1(XL,XF) 

V2,xfc+l f(xL,xF) V2
xtx,f

l(xL,xF) 

Theorem 3.1 . Assume that x = (XL,XF) is a noncooperative solution to EPEC 
and assumptions (A1),(A2) are fulfilled. Further suppose that for all i G I\ the 
qualification conditions 

0 G ( V I Í F ( X L , Ž F ) ) T V + N [ / Í ( Í Í ) 

0 G {VXFF(xL,xF))Tv + D*Nn(xF,-F(xL,xF))(v) 
v = 0 (2) 

hold true. 

Then for all i G h there exist Karush-Kuhn-Tucker (KKT) vectors v1' G Rn('-*) 
such that 

0 G VziPixL^xri + iVxiFixi^xriFV + Nuiix*) 

0 € VXFfi(xF,xF) + (VXFF(xL,xF))Tvi + D*Nn(xF,-F(xL,xF))(vi). 
(3) 

P roof . It suffices to apply [22, Thm. 3.2] to each MPEC (2) separately. Thereby 
xl is the control, xp is the state variable and x~^ is a parameter vector through which 
these MPECs are coupled. Conditions (2) ensure the so-called calmness (pseudo-
upper Lipschitz continuity) of the multifunctions 

p^{(y,z)eUixRnV-V\peF(xZi,y,z) + Nn(z)}, i € h (4) 

at ( £ 1 , £ F ) , which is the property needed for relations (3) to hold. • 

It is easy to see that the multifunctions (4) possess the required calmness property, 
provided F is affine and all sets Ul are convex polyhedral, cf. [19]. In such a case 
conditions (2) can be omitted. 

In what follows, in accordance with the MPEC literature, the points (XL.XF) 

satisfying conditions (3) will be termed M(ordukhovich)-stationary. The statement 
of Theorem 3.1 can be applied only in the case, if we are able to compute the 
coderivative of the normal cone mapping NQ(-)- Let (z,w) G GphNQ and assume 
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that Q is a convex polyhedron. Then by Definition 1.1 and due to the properties of 
NQ(-) one has 

-VGph Nn(z,w) = ( J (TGPhNn(z,w))° (5) 
(z,ti;)GOnGph/Vn 

where O is a sufficiently small neighborhood of (z,w) ([3]). Formula (5) enables 
among others to compute the required coderivative in the case, where Ul,i G h, are 
given by box constraints ([16]). If fi is not a convex polyhedron, one has to apply 
directly Definition 1.1, but this can be a difficult task. 

The monograph [18] deals with MPECs in which the equilibrium constraint ex­
hibits some special properties. They enable to apply the so-called implicit program­
ming approach both to the derivation of optimality conditions as well as to the 
numerical solution of the considered MPECs. Let us investigate the possibilities 
of this approach in the context of EPECs. To this purpose, we denote by S the 
multifunction which assigns an admissible vector xL the set of solutions xF to the 
GE 

0eF(xL,xF) + NQ(xF). (6) 

Moreover, for a given i G I\ and a fixed admissible vector x^1, we define the multi­
function S.-ilU1 -> R('-*)n] by 

^T~* \*̂  / •== *̂  \"^ )•••>«£ , x , x , . . . ,x J. 
L 

By this definition, for all i G I\ one has 

Si-i(x
i) = S(xL). 

The essential assumption for the application of the implicit programming approach 
now reads as follows: 

(A3) For all i G I\ and for all admissible vectors x~l% the map 5--« is single-valued 

and locally Lipschitz on an open set containing U%. 

Under (A3) we can now rewrite the single MPECs (2) to the form 

minimize Q£-<(y) 

subject to (7) 

yeu\ ieh, 

where 

e4-.(y):=/<(*r,y,S4-<(v)). 
L Li 

We face a new game only among the Leaders without any hierarchical structure. Its 
local Nash equilibria (cf. [7]) amount to the Leaders' components of noncooperative 
solutions to EPEC, which facilitates the formulation of corresponding necessary 
conditions. 
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Theorem 3.2. Let the assumptions of Theorem 3.1 be fulfilled with the qualifica­
tion conditions (2) replaced by (A3). Then xF = S(xL) and 

0 G Vxif
l(xL,xF) + D'Sz-i&HV^Mx^xp)) + Nui(x% i G h. (8) 

P roo f . By virtue of the assumptions, the functions Qx-i are locally Lipschitz 

on the respective open sets containing Ul. It suffices thus to apply the optimality 
conditions in [9, Thm. 7.1] combined with the chain rule in [10, Cor. 5.3] to problems 
(7). • 

The coderivatives of the maps Sx-i are generally not easy to compute. If, however, 
fi is given e.g. by means of equalities and inequalities, then one can replace the GE 
(6) by a complementarity problem and invoke the implicit (multi)function theorem 
[10, Thm. 6.10] along with the results from [15]. 

Due to the relation between coderivatives and Clarke's generalized Jacobians, 
relations (8) imply that 

0 G VxiP(xL,xF) + (a5 i- i(x i))TVXF/ i(xL,£F) + NVi(x% ieh. (9) 

In this way we obtain another, less stringent necessary conditions for a noncooper-
ative solution to EPEC. Following the MPEC terminology, the points satisfying (9) 
will be called C(larke)-stationary. 

Assumptions (A3) can be ensured via the following, more easily verifiable require­
ment, cf. [18]: 

(A3)1 S is single-valued and locally Lipschitz on an open set containing u := X »€/-_ C/\ 

Under (A3)' we can now state an existence result at least for Clarke stationary 
points. 

Theorem 3.3. Let assumptions (Al), (A2), (A3)' be fulfilled and suppose that for 
i eh 

(i) The sets Ul are convex and compact; 

(ii) the multifunctions P : xL »-» dSx-i(x
%) are upper semicontinuous on u. 

Then the considered EPEC possesses a Clarke stationary point. 

P roo f . We have to show that the GE 

0eC(xL)+N»(xL) 

with 

(dSx7l(x
l))T 

(Ю) 

C(xL) = 
VxгfҢxL,S(xL)) 

Vxkf
k(xL,S(xL)) 

+ 
(дSx-k(xk)) k\\T 

VXFf(xL,S(xL)) 
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satisfies the assumptions of [1, Thm. 9.9]. Since C is apparently nonempty-, convex-
and compact-valued, it suffices to add assumptions (i),(ii) and we are done. • 

If the multifunctions Tl are not upper semicontinuous on u;, then one can modify 
the definition of the generalized Jacobian following the idea from [2, Section 2.8]. In 
case of the map Sx-i(-) at the point x1 we arrive at the notion 

:= [A € £[Rn,IR ( '-fc)n] | .4 = lim .4^where^ € 8S.x-iv{x%(xL)i 4 xL\ . 
I j—>00 \ L '3 J J 

If we now define Tl by means of dSx-i(x
l) (instead of dSx-i(x

1)), assumption (ii) 
of Theorem 3.3 is fulfilled. Nevertheless, in this way we prove only the existence of 
stationary points in a weaker sense (with respect to Clarke). 

Concerning the computation of noncooperative solutions to EPEC, the procedure 
can be organized in two steps: 

(i) Computation of a (Mordukhovich or Clarke) stationary point; 

(ii) Verification of the minimizing properties required in Definition 2.1. 

We finish the paper with a few concluding remarks regarding mainly the first 
step. Unfortunately, the conditions of Theorem 3.1 do not seem to be suitable for 
construction of a numerical method to the computation of stationary points. So, if 
the implicit programming approach cannot be applied, then it is probably better to 
follow [7] and look at problems (2) as standard nonlinear programs (the equilibrium 
constraint is then replaced by a complementarity problem). In this way one arrives 
at I coupled KKT systems, solvable possibly by existing solvers. The noncooperative 
solution to EPEC, however, need not satisfy these coupled KKT systems (since the 
equilibrium constraint violates standard constraint qualifications), and so the whole 
procedure may fail. Nevertheless, if we obtain a candidate for stationarity in this 
way, the conditions of Theorem 3.1 can be used as a stationarity test. 

Under assumptions of Theorem 3.3 one can invoke an idea from [5] and rewrite 
the GE (10) to the form of a fixed-point problem. Indeed, the GE (10) amounts 
then to the relations 

xL = Proj^xi , - y), ye C(xL). 

In another words. xL is a fixed point of the multifunction \I> := Proju;o(/d—C). Since 
Proj^ is continuous and C is upper semicontinuous with convex and compact values, 
the multifunction ^ is also upper semicontinuous and convex- and compact-valued. 
Consequently, there is a number of available numerical methods which compute the 
fixed points of $ , cf. [4] and the references therein. 

Concerning the step (ii), it requires generally rather advanced tools from the 2nd-
order nonsmooth analysis. The situation becomes, however, substantially simpler 
provided the assumptions of Theorem 3.3 are fulfilled, Q is given by inequalities, and 
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the strict complementarity holds for the GE (6) at (x£,,xjr). In such a case all maps 
5^-. are differentiable at xl, which facilitates the analysis of programs (7). Another 
simplifying assumptions are discussed in [7], 

(Received September 29, 2003.) 
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