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K Y B E R N E T I K A — V O L U M E 4 0 ( 2 0 0 4 ) , N U M B E R 5, P A G E S 6 2 5 - 6 3 8 

ON A P P R O X I M A T I O N I N MULTISTAGE S T O C H A S T I C 
PROGRAMS: MARKOV DEPENDENCE1 

VLASTA KAŇKOVÁ AND MARTIN ŠMÍD 

A general multistage stochastic programming problem can be introduced as a finite 
system of parametric (one-stage) optimization problems with an inner type of dependence. 
Evidently, this type of the problems is rather complicated and, consequently, it can be 
mostly solved only approximately. The aim of the paper is to suggest some approximation 
solution schemes. To this end a restriction to the Markov type of dependence is supposed. 

Keywords: multistage stochastic programming problem, approximation solution scheme, 
deterministic approximation, empirical estimate, Markov dependence 

AMS Subject Classification: 90C15, 90C59 

1. INTRODUCTION 

A general multistage stochastic programming problem can be in a rather general 
form introduced recursively (see e.g. [4, 12, 16]) as the problem: 

Find 
VJr(M) = inf {EF€o0§-(so, €°)| x° e AC0}, (1) 

where the function gjr(x°y z°) is given recursively 

<&(**, zk) -= inf{EFefc+1|ffc=s-fc £ + 1 (2*+\ f^ 1 ) |s f c + 1 e Kk+l(xk, 2*)}, 

Jfc = 0, 1, . . . , M - 1 , 

g¥(xM
yz

M) := g^(xMrzMY (2) 

(i = ^'((j), j = 0, 1, . . . , M are s-dimensional random vectors defined on a pro-
bability space (fl, 5, P), £* = ?(u>) = [£°, . . . , £*], zk = [z\ . . . , z% zi e Rs, 
xieRn,xk = [x°,...,x% j = 0, 1, ...,fc,A; = 0, 1, . . . , ^ V ) , ^ ( ? ) , i = 
0, . . . , M, denote the distribution functions of the & and £\ F^ ^ (z*| if*"1), k = 
1, . . . , M, denotes the conditional distribution function (f* conditioned by £*_1). 

!The research was supported by the Grant Agency of the Czech Republic under Grants 
402/01/0539, 402/02/1015 and 402/04/1294. 
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g$*(xM, zM) is a function defined on R"(M+l) x Rs(M+l\ Kk^l(xk, zk) := 
fc^k+itfkix1*, zk), k = 0, 1, . . . , M - 1, is a multifunction mapping Rn(k+l) x 

fts(k+i) j n | . 0 ^YiG space of (mostly compact) subsets of X. See that for every gi­
ven k G {0, . . . , M — 1} the multifunction K!p~l(xk, zk) can generally depend on 
the probability measure PFik+\^k (-\zk) corresponding to the conditional distribution 

function F^l^h(-\zk). X, K° C Rn are nonempty sets, K° C X. ZJ
T C Rs, j = 

0, 1 , , . . . , M, denote the supports corresponding to F^3 (•), Z£ = Zjr x . . . x Zjr, 
A^ =_ X x . . . x X, k = 0, 1, . . . , M. The symbol EF is reserved for the opera­
tor of mathematical expectation corresponding to the distribution function F(-). 
(Rn, n > 1, denotes the n-dimensional Euclidean space.) 

Evidently, it can be very complicated numerical problem to solve the multistage 
stochastic programming programs exactly. The aim of the paper is to suggest ap­
proximative (deterministic and stochastic) solution schemes. To this end we restrict 
our consideration to the case when the system 

T = {Ft°(z°), F^^'1 (zk\zk~l), k = l,...,M} (3) 

corresponds to special types of the Markov dependence and to the case when there 
exist multifunctions JCk+l(xk, zk), k = 0, . . . , M - 1 defined on R(k+l)n x R(k+1)* 
such that 

Kk+l(xk, zk) = JCk+l(xk, zk) independently of the system T. (4) 

2. PROBLEM ANALYSIS 

If we replace the system (3) by another system 

G={Gt°(z°), G^"~1(zk\zk-1),k=l,...,M} (5) 

we obtain a new multistage stochastic programming problem. 

Of course, the problem (1) (for k = 0) is one-stage (nonparametric) stochastic 
programming problem. Moreover, if we fix successively k G {0, 1, . . . , M — 1}, 
xk £ Xk, zk G Zjr in the relations (2) and set 

x:=xk+l, z:=zk+l, Z := £k+l with F«(.) := Fik+l\?=*\.\zk)9 

g(x,z):=gk/1(xk+\zk+i), X := K,k+l(xk, zk), ZF, := Z ^ ^ , 

then we obtain (also) one-stage (parametric) stochastic programming problems: 

Find 
v(Fl) = mt{EF(g(x,0\xeX}. (6) 

sk + l \Fk -k tk + l\Fk -fc i 

(ZF
 ,c " denotes the measure support corresponding to F*> K -z (-\zk).) 
The system T is determined by M + 1 of (mostly) conditional distribution func­

tions. If T corresponds to a Markov sequence, then under some additional assump­
tions there exists an s-dimensional distribution function Fr(-) that can determine 
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T. Consequently, it is possible to assume that a relationship between two systems T 
and G can be (under the assumption of the Markov dependence) "determined" by 
the relationship between two "corresponding" s-dimensional distribution functions 
F7, G1 (for more details see e.g. [12] or [13]). Consequently, in this case, to investi­
gate the "deterministic" approximation, stability and "statistical" estimates of the 
problem (1), (2) the corresponding results achieved for one-stage problems (see e.g. 
[3, 7, 10, 18, 19, 20, 23, 25, 26]) can be employed. 

3. ONE-STAGE PROBLEMS 

In this section, first, we recall and generalize some auxiliary assertions on the stability 
and empirical estimates achieved for one-stage problems. Employing these results 
we introduce deterministic and empirical approximation schemes. To this end we 
employ the symbols of the problem (6). 

3.1. Stability and "deterministic" approximation 

Proposition 1. Let X be a nonempty, compact set. If 

1. there exist a*, bi G i?1, aj < &*, i = 1, . . . , s such that ZFi C ni=i(ai> &»)> 

2. G is a system of functions defined on X x ZFz such that 

a. g G G => g(x, z) is a uniformly continuous function on X x ZFz, 
b. g G G => g(x, •) is a Lipschitz function on 1^=1 (a*> *̂) Wl^ ^ e 

Lipschitz constant Lg (w.r.t. £2 norm) not depending 

on x G X, 

then for every 5 > 0 there exist a natural number N := N(S) and a discrete 
distribution Gs function with at most iV atoms such that 

\tp(F*) - (p(G5)\ <L98 for every g G Q. 

Proof . Since a very similar results to Proposition 1 has been already proven in 
[8] we can omit the proof. • 

Remark 1. It follows from the proof of Proposition 1 that for every natural 
m there exists a jump distribution function GN(-) with the number of jumps not 
greater then N = ms for which 

lim ml-c\$(Ft) - Cp(GN)\ = 0 for every c> 0 . (7) 
m—*+oo 

To investigate the stability of the problem (6) w.r.t. a probability measures space 
different "distances" in the space of the probability measures can be employed (see 
e. g. [6, 17]). In this paper we focus on the Wasserstein metrics ds

Wi (•,••) in the space 
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of s-dimensional probability measures, especially in the space M\(RS). To this end 
we define the system Mr(Rs), r > 1 by 

Mr(Rs) = ive V(RS) : I \\z\\rv(dz) < o o j , 

where V(RS) denotes the set of all (Borel) probability measures in Rs and the 
symbol || • || denotes a suitable norm in Rs (for more details see e.g. [15] or [24]). 
Employing the Euclidean norm || • H2 we obtain the "classical" Wasserstein metric 
ds

Wi(-, •) (for details see e.g. [17]) that can be defined by the relation 

d^-to/*) = i n f I / \\z-z\\2K(dzxdz) : K 6 % U) \ , v, /J, e M^R8). 

' (8) 
V([i, v) is the set of those probability measures in V(RS x Rs) whose marginal 
distributions are \x and v. 

To obtain the results of Proposition 1 the function g(x, •), x G X was assumed to 
be Lipschitz w.r.t. C2 norm. In [22], the function g(x, •), x G X is considered to be 
Lipschitz w.r.t. C\ norm. We employ this approach to introduce Proposition 2. To 
this end, let m be a natural number; Zij G R1 U {-00} U {+00}, i = I, ..., s, j = 
0, 1, . . . , m fulfil the relations 

-CO = Zi. 0 < Zi. 1 < Zi. 2 < • . . , < Z{. m-i < Zi.m = + 0 0 

and let i y (•), i = 1, 2, . . . , s denote one-dimensional marginal distribution functions 
corresponding to F^(-). If we define the probability Q™tj2....,jai Ji = 1, . . . , m, i = 
1, 2, . . . , 8, m = 1, . . . by the relations 

€,h,...,j, = pF< tie n*=i<-?i.i.-i. ti.»)}, 

(zi,ji, zi,ji+i) '•= (zi,ji, zi,ji+i) everywhere when Zi,^ = - o o , 
(9) 

8-dimensional random vector C with a discrete probability measure PF<(') 

JVC{C = [*I,JI> • • • ^ , j J } = 9j?,i2,...,i-' 
zi,ji = zi,jn Ji = 1? 2, . . . , m — 1, Z = 1, . . . , 5, Q Q \ 

^,jm ^ (*i,m-i, +oo) arbitrary given, i = 1, . . . , s 

and if we denote the corresponding distribution function by the symbol GN(-), N = 
ms, then the following assertion follows from [22, Lemma 2]. 

Proposition 2. Let X be a nonempty compact set, -PFc(-) G M\(Rl), i = 1, ..., s. 

Let, moreover m be a natural number. If 

1. g(x, z) is a uniformly continuous function on X x Rs and, moreover, for every 
x G X a Lipschitz function on Rs with the Lipschitz constant Lg (correspond­
ing to C\ norm) not depending on x G X, 
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2. GN(-), N = ms is an s-dimensional distribution function defined by the pro­
bability measure (10), 

then s 

MF<) - ?(GN)\ < L3 Y,dm(Ff, G?), (11) 
i=l 

where C?™(*)> i = 1, . . . , s denote one-dimensional marginal distribution functions 
corresponding to GN(-). 

Proof. Since it follows from [22, Lemma 2] that under the assumptions 
s 

\EF,g(x, 0 - EGNg(x, 01 < Lg £ ^ ( 2 * , G?) for every xeX 
i=l 

and since X is a compact set the assertion of Proposition 2 is valid. • 

Furthermore, it follows from the relation (11) and from the results of [24] that 

|V>(E<) - <p(GN)\ <LgJ2f \*f{«) ~ G?(zi)\ dzi. (12) 
i=l JR1 

Employing the assertion of Proposition 2 and the relation (12) we can introduce a 
suitable approximative solution scheme. To this end, we follow [22]. First, according 
to [21] we can see that, under the assumptions of Proposition 2 for every e > 0 there 
exist ai < (F$)~1(T}) < bi, i = 1, . . . , s such that 

/

ai _ /«oo -

Ff(Zi)dzi<-, J [l-Ff(zi)]dzi<-,i = l,...,s. 
Furthermore, let a symbol (I7'/)~1(-)> i = 1, . . . , s denote a quantile function 

corresponding to i*f (•) (for the definition see e.g. [1]). We can for every natural m 
and every i G {1, . . . , s} define points Zij G i?1, j = 1, . . . , m — 1 by 

*iJ = (*f)~1(J-)> 3 = l,.-.,rn-lJ<mF(bi), 
m - (13) 

Zij = bi for j G (mF(bi), m) and j = m. 

Since it follows from (12) (for more details see [22]) that there exists m0 := mo(e) 
such that for every m > mo 

/ ' \Ff(zi) - G?(zi)\dzi < | , i = 1, 2, . . . , s 
Jai 6 

and since 

/ \Ff(zi)-G?(zi)\dzi 
JR1 

/

5, rbi roo (14) 

Ff(zi) dzi + / \Ff(Zi) - G?(Zi)\ dzi + [1 - Ff(zi)] dzu 
-co Jai Jbi 
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we can see that 

/ \F?(zi) - Gm(zi)\ dzi < e for every m > m0. 
JR1 

Employing the last relation and the relation (12) we obtain 

Corollary 1. Let X be a nonempty compact set, PFt(-) G M\(Rl), i = 1, . . . , s. 

Let moreover, the assumption 1 of Proposition 2 be fulfilled. If GN(-), N = ms, m = 
1,2 , , . . are defined by (10) with (13), then 

lim \<p(F*)-<p(GN)\ = 0. 
ra—»+oo 

Corollary 2. Let X be a nonempty compact set, PFz(-) G Mr(R
l), i = 1, . . . , s 

for some r > 1. Let, moreover, the assumption 1 of Proposition 2 be fulfilled, then 
there exists GN(-), N = ms, m = 1, 2, . . . such that 

| ^ E ) - ^ ( G , v ) | = 0 ( m - 1 + ^ ) . 

(For every m, GN(•) is defined by (10) with (13) and a* = —m^, bi = m*.) 

Proof . Let the assumptions of Corollary 2 be fulfilled. It was proven in [21] that 
then Iv(zf) = o(|zi|~r) as Zi —> -oo , i = 1, ..., s. Consequently, we can see that 
there exists zf 6 R1 such that for — oo < Zi < zf 

F}(ZÍ) < \zi\-r, í^ F?(t)dt < f" \t\-rdt = -l—U 
J —oo J— co | I ' . 

Zi\ r, i = 1, . . . , S. 

Consequently, there has to exist m0 and a constant cl
r > 0 such that for m > m0, 

z\(m) = —mr we can obtain 

/

z\(m) 
Ff(t)dt < c\mr = c j ;m- 1 + ' , i = l,...,s. 

-CX) 

Evidently, by a very similar way we can see that there exist m°, a point zm(m), 
and a constant cl > 0 such that for m > m° we can obtain 

roo ГOO 

/ [1-Ff(t)]dt< 
2 Íiz-Гì. 2 - 1+ - -
: m. r = ГГГYÌ. ^ r . c^m - = cr.m 

Since, furthermore, there can be found m0 and a constant c® > 0 such that 

fZm(m) 
/ \F(t)-Gm(t)\dt<c°rm-l+r for every m > m0 

J z\(m) 

we can see that the assertion of Corollary 2 is valid. ---

If furthermore we can assume that 
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A.l PFz (•), i = 1, 2, . . . , s are absolutely continuous with respect to one-dimensional 

Lebesgue measure. We denote by /*(•) the probability density corresponding 

to *?(•), 
A.2 there exists constants C\ > 0, Ci > 0 and T{ > 0, i = 1, 2, . . . , s such that 

/ f ( z « ) < C i e x p { - O 2 N } for Zi£(_TuT.^ 

then the following assertion follows immediately from Corollary 2. 

Corollary 3. Let the assumptions of Corollary 2 be fulfilled. If, moreover, the 
assumptions A.l and A.2 are fulfilled, then for an arbitrary c > 0 it holds that 

lim ml~c\(p(FZ) - <p(GN)\ = 0, N = ms. 
m—»+oo 

Proof . The assertion of Corollary 3 follows from the assertion of Corollary 2 and 
the fact that under the assumptions A.l, A.2 the corresponding probability measure 
belongs to the class Ms

r for every r > 1. • 

3.2. Empirical estimates and approximation 

It happens rather often that the theoretical probability measure has to be replaced 
by empirical one. To recall well-known results on empirical estimates we assume. 

i-1 K^JfcL-oo ls a sequence of s-dimensional independent random vectors with a 
common distribution function F^(-); we denote by FN(-) the empirical distri­
bution function determined by {(^k}N

=l, 

i.2 there exist a{, b{ G Rl, a{ < bi such that X C X = Y\i=1(ai, b^. 

Proposition 3. [7] Let A' be a nonempty compact set, t > 0 be arbitrary, i.l and 
i.2 be fulfilled. If 

1. g(x, z) is a uniformly continuous, bounded function on X x ZFi, 

2. for every z G ZFz, g(x, z) is a Lipschitz function on X with the Lipschitz 
constant Lg (corresponding to £2 norm) not depending on z G ZFz, 

then there exist constants K(X , t), k > 0 such that 

P{\(p{F*)-<p(F%)\>t} < K(X',t)exp{-kNt2}, N = l,2,... 

Corollary 4. [9] Let the assumptions of Proposition 3 be fulfilled. If v G (0, | ) , 
then 

P{N"\<p(F*) - ftF*)] > t} - r ^ + o o ) 0. 

It happens rather often that there exist a natural number si and functions 
h*(z), g*(x), i = 1,2, ..., si defined on Rn and Rs fulfilling the relation 

Sl 

g(x, z) = J2h*(z)g*(x), x€Rn,ze Rs. (15) 
i= l 
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Proposition 4. Let X be a nonempty compact set, t > 0 and i.l be fulfilled. If 

1. g(x, z) fulfills (23) with continuous and bounded g\(x), i = 1, 2, . . . , si, 

2. for every i G {1, . . . , s i} there exists 90(i) > 0 and a finite EF* exp{0/i*(f)} 
for all O < 0 <00(i), 

then there exist constant ft := fi(t) > 0 such that 

P{\<p(F*) - <p(Ffr)\ > t} < 2Sl exp{-0(t)N}, N = l,2,... 

Proof . Let t > 0 be arbitrary, M(i) = s u p x G X |^*(x)|, i = 1, . . . , s\. First, it 
follows from the assumptions of Proposition 4 that 

P{\EFzg(x, f) - EFe g(x, (,)\ > t for at least one x G X] 

Sl 

(iб) 
<£p<|E^no-EFa-(oi>d^} 

and, simultaneously, there exists a finite 

EFe exp{0 (/i*(0 - EF</i*(0)} far all 0 < 6 < 90(i). 

Following the first part of the proof of Theorem 3.1 in [2] we can see that (under 
the assumptions of Proposition 4) there exists a constant 0i(s ^ ( i \ ) > 0 such that 

P{|EF</i*(0 - EF«/i?(0| > «} < 2exp{-(3i(jj^)N}, • = 1, . . . . S l , H = 1, . . . 

Setting (5(t) := miniG{1} ...,5l} Pi(s MU\) and employing the relation (16) we can see 

that the assertion of Proposition 4 is valid. O 

It follows from the proof of Theorem 3.1 in [2] that fii(t) can be taken such that 

/3i(t) = - l n { l - ^ T f | f e x p { - ^ ^ } + i e x p { _ t ) } } , bi = EFiexp60h*(0 

i = 1, . . . , s\. 
(17) 

Employing the approach of [7] we can prove also the next assertion. 

Proposition 5. Let X be a nonempty compact set, t > 0, assumptions i.l and i.2 
be fulfilled. If 

1. g(x, z) is a uniformly continuous function on X x ZFt, 

2. there exist a > 0, 90 > 0 and a real-valued function v(-) such that 

\g(x, z)\ < av(z), EF< exp{0i/(f)} < oo for all x G X and all 0 < 0 < 0O, 
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3. the assumption 2 of Proposition 3 is fulfilled, 

then there exist constants ft := (3(t) > 0, a(t) > 0; a(t) := a(t, X) such that 

P{\(p{F<) - </>(F£)| > t} < a(t) exp{-/3(*)1V}, N = 1, 2, . . . 

Proof . Since the main idea of the proof of Proposition 5 is very similar to the 
main idea of the proof of Proposition 3 we omit it. D 

4. MULTISTAGE PROBLEMS 

To apply the assertions of the former section to the multistage case we restrict our 
consideration to the case when 

D.l There exist s-dimensional random vectors f_1 := £_1(u;), rjk := rj(u), k = 
0, . . . , M defined on (£), 5, P) and a continuous, s-dimensional vector function 
/(•) defined on Rs x Rs such that 

a. {rjk}%L0 is a sequence of independent s-dimensional, identically distributed 
random vectors, 

b. Ft°(z°) = F^ ( / ( z° , z'1)) for every z° G R8 and a (known value) f"1 := 
z-1 G Rs, 

c for every zk~x G Zkfx, zk G Rs', F*"^'1 (z^z1*-1) = Fv(f(zk, z*"1)), 
fc = l, . . . M. 

We denote by F71^), PFV(-) and ZFV the distribution function, probability measure 
and the support corresponding to 770 (consequently also 771, . . . , rjM). Evidently, 
Fv(-) corresponding to D.l determines the system (3) T := Tv by 

Ft°(z°) = i™(/(z°, z-1)) for every z° G Rs and known z"1 G Rs, 

F^k^k~1(zk\zk-1) =Fr>(f(zk,zk-1)) for every zk G-Rs(*+1), fc = 1, . . . , M. 

(18) 
Of course, every other s-dimensional distribution function G7?(-) determines an­

other system (5) G := Gv- Sometimes it is "suitable" to assume furthermore. 

D.2 For every zk G Z£, u G Zpv there exists just one zk+1 G Z^1 fulfilling the 
relations u = f(zk+1, zk), k = 0, 1, . . . , M - 1. 

D.3 There exist an s-dimensional random sequence {r/fc}^=_00 and a deterministic 
nonsingular matrix A of the type (s x s) such that 

a- {vk}kL-oo 1S a sequence of independent s-dimensional, identically dis­
tributed random vectors, 

b. f* = .Af*-1 +7/*, fc = . . . , - 1 , 0, 1, . . . ; the value f"1 = z"1, z'1 G Rs 

is known, 

c. f*""1,77*, fc = . . . , - 1 , 0, 1, . . . are stochastically independent. 
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4 .1 . Mul t i s tage analysis 

Employing the triangular inequality and the technique used in [12] we can see that 
(under the assumptions D.l and relation (4)) for every x° G /C° 

\EF,og^(x^e)-^og°G(x^e)\ 

< |EF*o inf3.1^1(3.0^0) EFei,€o gjr(xl, f 1 ) - EG^o h ^ i ^ i ^ o ^ o ) EF C i ko gl
T(xl, cp)| 

+ lEc7*° 'mfxieicl(x°,z°) EFei|e° 'mix2elc2(x1^1) E E ^ u 1 ^ ^ 2 ) £2) 

- EGCo inf3.i€^i(3.0^0) EG€i,co infa.2G^2(Sii/fi) E F € 2 | e i ^ ( x 2 , £ 2) | 

+\EGio infa.iG^i(a.o) £0) EG€i|Co inf3.2G^2(Sit^i) EFe2)€i i n f ^ ^ x 2 , ^ ) E
F ^ U 2 ^ ( x 3 , £3) 

- EG€o i n f . i ^ i ^ o ^ o ) EG€i|€o ^ 3 . 2 ^ 2 ( 2 1 ^ 1 ) EGe2,^i inf3.3G£3(S2?f2) E F e 3 U 2 ^ ( x 3 , f 3 ) | 

+ \EG^o inf^i^/c^x0 ,^) 

infa.M-lG^M-l(sM-2 ^M-2) EGi:M-lUM-2 inf XM e ^M (-M- 1 ^M - 1) B ^ M ^ M - l ^ (x , £ ) 
- EG^o inf3.i6^i(a.o^O) 

mfxM-leJCM-l(xM-2^M-2)EGzM-lUM-2mfxMeJCM(xM-l^M-l)EGzMUM-igg (x , £ )|. 

(19) 
Consequently the "value" \ipjrv(M) — (pgr)(M)\ can be estimated by a suitable 

distance between F77 , G71 (for more details see e.g. [12, 13, 14]). 

4 . 2 . " D e t e r m i n i s t i c " a p p r o x i m a t i o n 

Let m be an arbi t rary na tura l number . It was proven in Section 3 tha t for every s-
dimensional distribution function Fv(-) (with one-dimensional marginals F/ '(-) , i = 
1, . . . , 8 fulfilling the assumptions A. l , A.2 for £ := rj) there exist points Uij G 
Rl, j = 1, . . . , m, i = 1, . . . 5 and one-dimensional j ump distribution functions 
G ? ' m ( . ) , i = l , 2, . . . , s defined by 

^ , i = ( ^ , , ) " 1 ( ^ ) . j = l , - - - , m - l , t = l , . - . , s , 

^i,m = w m (m) corresponding to zm(m) in Corollary 2 

G?' 7 7 1^) = 0 for Zi<Ui,u 

= F?(uij) m G (uij, txt.j+i), j = l , . . . , m - l , (21) 

such that 

lim m 1" 0 ^ dj.,, ( i f , G? ' m ) = 0 for arbitrary c > 0. 
i = l 



On Approximation in Multistage Stochastic Programs 6 3 5 

(The symbol (P1/7)-1 denotes the quantile function corresponding to F?(-),i = 
1, . . . , s.) If we denote the corresponding s-dimensional distribution function by 
the symbol G7?'Ar(-), IV = ms; and by fjN an s-dimensional random vector with the 
distribution function G77,7V(-), then evidently under the assumptions D.l and D.3 
the system T can be approximated by the system G71'N defined by 

Q->N = {G^N(u° - Az~l), GlhN(uk - Azk~l), k = 1, . . . , M), (22) 

where z~l is supposed to be known, zk~l corresponds to random vectors Qk~l de­
termined recursively by C.k = A^"1 +fjk, k = 0, 1, . . . M, C_1 = z~l-

To present the corresponding assertion dealing with an approximation error we 
introduce the following system of the assumptions. 

W.l a. g%(x°, z°) is uniformly continuous function on /C° x Rs and, moreover, 
for every x° G /C° a Lipschitz function on Rs with the Lipschitz constant 
(corresponding to C\ norm) not depending on x° G /C°, 

b. for every k G {1, . . . , M} , ^ ( x * , zk) is a uniformly continuous function 
on Xk x Zjr and, moreover for every xk G Xk, zk~l G Z^~l, ^ ( x ^ , zk) 
is a Lipschitz function on Rs with the Lipschitz constant (corresponding 
to C\ norm) not depending on xk G Xk, zk~l G Z%Tl, 

B.l the probability measures Pp.i(-), i = 1, 2, . . . , s are absolutely continuous 
with respect to one-dimensional Lebesgue measure. We denote by the symbol 
//*(•) the probability density corresponding to Ff1^), 

B.2 there exist constants C\ > 0, G2 > 0 and Ti > 0, i = 1, 2, . . . , s such that 

/ ? ( ^ ) < C i e x p { - C 2 k i | } for Zi£(-Ti,Ti), 

Theorem 1. Let the relations (4), (21) be fulfilled. If 

1. the assumptions D.2, D.3 and W.l are fulfilled and, moreover, PFV G M\(RS), 

2. the system GV'N is defined by the relation (22), N = ms, m = 1, 2, . . . , 

3. K°,iCk+l(xk,zk),k = 0,...,M-l,xkeXk,zkeZk,, k = 0,...,M -I 
are nonempty compact sets, 

then there exists a constant C\yx > 0 such that 
s 

\^{M)-^.N(M)\ < CWlJ2dWl{F?, GfN). 
1 = 1 

If, moreover, the assumptions B.l, B.2 are fulfilled, then also 

lim m1~c\(fjr(M) - c/v;-,, N (M)\ = 0, N = ms for an arbitrary c> 0. 
m—>+oo 

Proof. The proof of Theorem 1 follows from Proposition 2, Corollary 3 and the 
relations (19), (22) (for more details see [14]). E 
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4.3. Empirical approximation 

If -Fjy(-) denotes the empirical distribution function determined by an independent 
random sample {nl(^)}T=-N corresponding to FT'(-), then 

F£(z°) = FZ(f(z°,z-1)), Ff!^'\zk\zk-l) = FJIf(f(z
k
iz

k-l))1 k = l,...,M 

are (for every zk~l G Zkfx) statistical estimates of F^°(z°), F^^'1 ( z * ^ " 1 ) . Con­
sequently, (under the assumptions D.l) a sequence {^z(cj)}°:=_Ar determines an sta­
tistical estimate F(N) of the system (3) by 

F(N) = {FZU(z°,z-1)), F%(f(zk,zk-1)), k = l,...,M}, iV = l (23) 

Replacing the system (3) by the system ^(IV) we obtain an approximating prob­
lem to the multistage problem introduced by (1) and (2). The optimal value of this 
problem is a random variable denoted by <pjr(N)(M). The following Theorem 2 is a 
special case of Theorem 2 and Corollary in [13]. 

Theorem 2. [13] Let t > 0 be arbitrary, the relation (4) be fulfilled. Let, moreover, 
the system F(N), IV = 1, . . . be defined by the relation (25). If 

// , // // // 1. there exist a{ < b'/, di', 6/ G -R1, i = 1, . . . , s such that X = n i _ i ( a i > &i )> 

2. gT(xk, zk), k = 0, 1, . . . , M are uniformly continuous, bounded on Xk x ZT, 

3. for every zk E Zj?, gT(xk, zk), k = 0, 1, . . . , M are Lipschitz functions on Xk 

with the Lipschitz constants (corresponding on £ 2 norm) not depending on 
zk e Zk

T, 

4. K°,K,k+l(xk, zk), k = 0, . . . , M - 1, xk G Xk,zk e Zk
T, k = 0, . . . , M - 1 

are nonempty compact sets, 

5. the systems of the assumptions D.l, D.2 are fulfilled, 

then there exist constants k > 0, Kk(X, t) > 0, k = 0, 1, . . . , M such that 

a. P{\<pr(M) - V>T(N)(M)\ > t] < exp{-Nt2k} Zt'o' K \ * , t),N = l,2,... 

b. P{NV\VJ:(M) - <pj:{N)(M)\ > t) ->(Iv-,+oo) 0 for every v G (0, | ) . 

Proof . The proof of Theorem 2 follows from Proposition 3, Corollary 4 and the 
relations (19), (23) (for more details see [14]). • 

To obtain the assertions of Theorem 2 it was supposed go(xM, zM) to be bounded. 
Following the approach used in [2] and Proposition 5 we can obtain. 
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Theorem 3. Let t > 0 be arbitrary, the relations (4) be fulfilled. Let, moreover, 
the system f(N), IV = 1, . . . be defined by the relation (23). If 

1. the assumptions 1, 3, 4 and 5 of Theorem 2 are fulfilled, 

2. gF(xk, zk), k = 0, 1, . . . , M are uniformly continuous on Xk x Z£, 

3. for every k = 0, . . . , M there exist constants ak > 0, 9Q > 0 and a real-valued 
function vk(-) such that 

\gk
F(xk, zk)\ < akuk(zk), EF„fc e x p { ^ ( ^ ) } < oo for all 0 < 9 < 6k, 

and every xk G Xk, zk~l G Z^~l, 

4. {^}fc^_oo is a sequence of independent random vectors and, moreover, the 
system ^(IV) is determined by independent random sample {ffc}/L_/v 

then there exists a constants (5(t), Kk(X, t) > 0, k = 0, 1, . . . , M such that 
M 

P{\Vr(M)-ipT(N)(M)\>t} < exp{-P(t)N}Y^Kk(X,t), IV = 1,2,... 
k=0 

Proof . The proof of Theorem 3 follows from Proposition 5 and the relations 
(19), (23) (for more details see [14]). • 

Of course, to apply the stability and empirical estimates results achieved for 
one-stage problems to the multistage case the corresponding assumptions must be 
verified. Evidently, the uniform continuity and the Lipschitz property are the crucial 
assumptions. For more information see [11] or [14]. 
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