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ON APPROXIMATION IN MULTISTAGE STOCHASTIC
PROGRAMS: MARKOV DEPENDENCE!

VLASTA KANKOVA AND MARTIN SMiD

A general multistage stochastic programming problem can be introduced as a finite
system of parametric (one-stage) optimization problems with an inner type of dependence.
Evidently, this type of the problems is rather complicated and, consequently, it can be
mostly solved only epproximately. The aim of the paper is to suggest some approximation
solution schemes. To this end a restriction to the Markov type of dependence is supposed.

Keywords: multistage stochastic programming problem, approximation solution scheme,
deterministic approximation, empirical estimate, Markov dependence

AMS Subject Classification: 90C15, 90C59

1. INTRODUCTION

A general multistage stochastic programming problem can be in a rather general
form introduced recursively (see e.g. [4, 12, 16]) as the problem:

Find
@r(M) = inf {Epeo gF(2°, €°)] 2° € K°}, (1)

where the function g%(z°, 2°) is given recursively

gf».(:i:k, Zk) — inf{Epek+1|E'¢=zk g_’;_—+l(.’l_:k+1, Ek+l) |$k+l € K:_I;:+l(:i‘k, Zk)},
k=0,1,...,M -1,
gM@EM, M) = g™, ZM). (2)

¢ =¢w), j=0,1,..., M are s-dimensional random vectors defined on a pro-
bability space (R, S, P), & = &¥(w) = [¢°, ..., &¥], 2F = [2°, ..., 2%), 27 € R?,
P eRM E=[2%...,2F],i=0,1,...,k k=0,1,..., M, F€ (29), F¥ (39), j =
0, ..., M, denote the distribution functions of the & and &, F&"1€" 7" (zk| zF-1), k =
1,..., M, denotes the conditional distribution function (¢* conditioned by £*—1).

!The research was supported by the Grant Agency of the Czech Republic under Grants
402/01/0539, 402/02/1015 and 402/04/1294.
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g (z™, zM) is a function defined on RMM+1) x Rs(M+1) - gcht1(zk zky .-

K’;:tl}+1|€—k (z*, 2¥), k = 0,1, ..., M — 1, is a multifunction mapping R"(*+1) x
R*(*+1) into the space of (mostly compact) subsets of X. See that for every gi-
ven k € {0, ..., M — 1} the multifunction /C}“(a':’“, z%) can generally depend on

the probability measurc Ppex+1,¢x (+|2*) corresponding to the conditional distribution
function F&""'1€"(||z%). X, K° C R™ are nonempty sets, K° C X. ZL C R j=
0,1,,..., M, denote the supports corresponding to F¢' (-), Z% = Z% x ... x Zk,
X¥=Xx...xX, k=0,1,..., M. The symbol Ep is reserved for the opera-
tor of mathematical expectation corresponding to the distribution function F(-).
(R™, n > 1, denotes the n-dimensional Euclidean space.)

Evidently, it can be very complicated numerical problem to solve the multistage
stochastic programming programs exactly. The aim of the paper is to suggest ap-
proximative (deterministic and stochastic) solution schemes. To this end we restrict
our consideration to the case when the system

F={F(%), FEET @Rz k=1,..., M) (3)

corresponds to special types of the Markov dependence and to the case when there
exist multifunctions K*¥+1(z*, z¥), k = 0, ..., M — 1 defined on R*=+1)n x R(k+1)s
such that

K (zk| z%) = Kk (z*, 2*) independently of the system F. 4
_r

2. PROBLEM ANALYSIS
If we replace the system (3) by another system
G ={G°(2%), G (k) k=1,..., M} (5)

we obtain a new multistage stochastic programming problem.

Of course, the problem (1) (for ¥ = 0) is one-stage (nonparametric) stochastic
programming problem. Moreover, if we fix successively k € {0,1,..., M — 1},
z* € Xk, z* € Z% in the relations (2) and set

£h+1jgh=s

zi= bt zim Rl g ghHl yith  FE() = FETIEN=ER (k)
g(z, z) := ghFi @k, ZHHY), X = KMHY(3h, 2F),  Zpe := Z5 ,

then we obtain (also) one-stage (parametric) stochastic programming problems:
Find ]
@(F¢) = inf{Epeg(z, £)|z € X}. (6)
k__sk ,  _
=2 (12%).)
The system F is determined by M + 1 of (mostly) conditional distribution func-

tions. If F corresponds to a Markov sequence, then under some additional assump-
tions there exists an s-dimensional distribution function F/(-) that can determine

k41)5k_ sk _
(Zf, €= Jenotes the measure support corresponding to F¢ ' 1€
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F. Consequently, it is possible to assume that a relationship between two systems F
and G can be (under the assumption of the Markov dependence) “determined” by
the relationship between two “corresponding” s-dimensional distribution functions
F!, GT (for more details see e.g. [12] or [13]). Consequently, in this case, to investi-
gate the “deterministic” approximation, stability and “statistical” estimates of the
problem (1), (2) the corresponding results achieved for one-stage problems (see e.g.
[3, 7, 10, 18, 19, 20, 23, 25, 26]) can be employed.

3. ONE-STAGE PROBLEMS

In this section, first, we recall and generalize some auxiliary assertions on the stability
and empirical estimates achieved for one-stage problems. Employing these results
we introduce deterministic and empirical approximation schemes. To this end we
employ the symbols of the problem (6).

3.1. Stability and “deterministic” approximation

Proposition 1. Let X be a nonempty, compact set. If
1. thereexist a;, b; € R', a; <b;,;i=1,...,s suchthat Zpe C[[;_,(ai, bs),

2. G is a system of functions defined on X x Zg¢ such that

a. g€G =  g(z, 2) is a uniformly continuous function on X x Zg¢,

b. g€G = g(=, ) is a Lipschitz function on []7_,(a:, b;) with the
Lipschitz constant L, (w.r.t. £2 norm) not depending
on € X,

then for every § > 0 there exist a natural number N := N(§) and a discrete
distribution G function with at most N atoms such that

|G(F¢) — ¢(Gs)| < Ly6 for every ge€G.

Proof. Since a very similar results to Proposition 1 has been already proven in
[8] we can omit the proof. O

Remark 1. It follows from the proof of Proposition 1 that for every natural
m there exists a jump distribution function GV(-) with the number of jumps not
greater then N = m?® for which

lim m!~%|@g(F¢) —@(GN) =0  for every ¢ > 0. (7
m—+00

To investigate the stability of the problem (6) w.r.t. a probability measures space
different “distances” in the space of the probability measures can be employed (see
e.g. [6,17]). In this paper we focus on the Wasserstein metrics djy, (-,*) in the space
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of s-dimensional probability measures, especially in the space M;(R?). To this end
we define the system M, (R?®), r > 1 by

M) = {veP): [ lalrua) < oo},

where P(R®) denotes the set of all (Borel) probability measures in R® and the

symbol || - || denotes a suitable norm in R® (for more details see e.g. [15] or [24]).

Employing the Euclidean norm || - || we obtain the “classical” Wasserstein metric
W, (-, -) (for details see e.g. [17]) that can be defined by the relation

dyy, (v, p) = inf {/R . l|z = 2||2 & (dz x dZ) : &k € D(u, V)} , U, € Mi(R®).
- (8)

D(u, v) is the set of those probability measures in P(R® x R®) whose marginal
distributions are p and v.

To obtain the results of Proposition 1 the function g(z, -), £ € X was assumed to
be Lipschitz w.r.t. £, norm. In [22], the function g(z, -), £ € X is considered to be
Lipschitz w.r.t. £, norm. We employ this approach to introduce Proposition 2. To

this end, let m be a natural number; z; j € R' U {-oo}U{+o0},i=1,...,s, j=
0,1, ..., m fulfil the relations
—00=240<2i1<2,25 .., < 2i,m-1 < 2Ziym = +00

andlet Ff(-),i=1,2, ..., s denote one-dimensional marginal distribution functions
corresponding to Fé(-). If we define the probability @t gay g Ji=1, 0, m, 1=
1,2,...,s,m=1,... by the relations

QG das o = Pre{€ H::l(ziyji—h zi i)},

9
(2i,ji5 2i,ji+1) = (2Zi,ji» 2i,ji+1) everywhere when z; j, = —oo, ©)

s-dimensional random vector ¢ with a discrete probability measure Pp¢(-)
PF({C:[Zl,j‘,'iizs‘j’]}= q.;Tlluj2v--')j3’
Zi ji = Zi,ji» ji=1L2,....m-1, i=1,...,s, (10)
Zi,jm € (2i,m—1, +00) arbitrary given, i=1,...,s

and if we denote the corresponding distribution function by the symbol GV (-), N =
m?, then the following assertion follows from [22, Lemma 2].

Proposition 2. Let X be a nonempty compact set, Ppe(-) € Mi(R'),i=1,...,s.
Let, moreover m be a natural number. If
1. g(z, z) is a uniformly continuous function on X x R* and, moreover, for every

z € X a Lipschitz function on R® with the Lipschitz constant L, (correspond-
ing to £, norm) not depending on z € X,
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2. GN(), N = m® is an s-dimensional distribution function defined by the pro-
bability measure (10),

then s
[p(F¢) = 3(GM)| < Ly D diy, (FF, G, (11)

i=1
where GI*(+), 1 = 1, ..., s denote one-dimensional marginal distribution functions

corresponding to G (-).

Proof. Since it follows from [22, Lemma 2] that under the assumptions
[Ereg(z, €) — Egng(a, O < Ly 3 _diy, (Ff, G") forevery z € X
i=1

and since X is a compact set the assertion of Proposition 2 is valid. ]

Furthermore, it follows from the relation (11) and from the results of [24] that
P(F) = PG| < L Y [ IFf(e) - Gr(an) d (12)
i=1

Employing the assertion of Proposition 2 and the relation (12) we can introduce a
suitable approximative solution scheme. To this end, we follow [22]. First, according
to [21] we can see that, under the assumptions of Proposition 2 for every € > 0 there
exist @; < (FF)~'(3) <bi,i=1,..., s such that

a; ¢ € [e¢] ¢ € )
Fi (zi)dzi<§, [1—Fi (zi)]dzi<§, 1i=1,...,s.
—00 b

Furthermore, let a symbol (Ff)'l(-),i = 1, ..., s denote a quantile function
corresponding to F(-) (for the definition see e.g. [1]). We can for every natural m

and every i € {1, ..., s} define points z;,; € R, j=1,...,m—1by
Zi,j = (Fii)_l(#)) .7 = 11 ey M — 1’ .7 S mF(Et),

) . A | (13)
zj="b; for je(mF(b;),m) and j=m.

Since it follows from (12) (for more details see [22]) that there exists mq := mq(€)
such that for every m > my

b;
/ |Ff(2:) = G (2:)|dzi < %, i=1,2...,s
ai

1

and since

[ 1FE @) - 67 e as
R!

a;

T)" oo}
< [ FGyds+ [ IFG) - GP@lds + [ (1= F)d,
ai b;

—00

(14)
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we can see that

/ |F&(2:) — G™(2:)|dz; <€ for every m > my.
R!
Employing the last relation and the relation (12) we obtain

Corollary 1. Let X be a nonempty compact set, Pre(-) € My(R!),i=1,...,s.

Let moreover, the assumption 1 of Proposition 2 be fulfilled. If GN(-), N = m®, m =
1, 2, ... are defined by (10) with (13), then

H S(FEY — (N =
Lm[p(F2) = (G = 0.
Corollary 2. Let X be a nonempty compact set, Ppe(:) € M (R),i=1,...,s

for some r > 1. Let, moreover, the assumption 1 of Prbposition 2 be fulfilled, then
there exists GN(-), N =m®, m =1, 2, ... such that

|B(F) = $(GN)| = O(m~1+7).

(For every m, GV (-) is defined by (10) with (13) and a; = —m~, b; = m+.)

Proof. Let the assumptions of Corollary 2 be fulfilled. It was proven in [21] that
then F*(z;) = o(|z:|™") as z; = —o0, i = 1, ..., s. Consequently, we can see that
there exists 22 € R! such that for —oco < 2; < 2?

Zi

It|~"dt =
oo

lz:)' ", i=1,...,s.

ﬁmsmw,/'ﬁmmg/

1
17
Consequently, there has to exist mo and a constant ¢ > 0 such that for m > my,

z(m) = —m* we can obtain

Zl(m) 1—~r
[ F@ar < am®F = dmet, i1

—00
Evidently, by a very similar way we can see that there exist m®, a point 2™(m),
and a constant ¢2 > 0 such that for m > m® we can obtain
it '3 9 (1-7) 2 141
/ I-Fp@)dt <cim v =cim™Tr.
z1(m)
Since, furthermore, there can be found mg and a constant ¢ > 0 such that
Zm(m) 1
/ |F(t) = G™(t)|dt < dm~'*+ for every m > mg
z1(m)
we can see that the assertion of Corollary 2 is valid. O

If furthermore we can assume that
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Al Pge(-),i=1,2,..., sareabsolutely continuous with respect to one-dimensional
Lebesgue measure. We denote by ff() the probability density corresponding
to Fig(')!

A.2 there exists constants C; >0, Cy >0and T3 >0, i =1, 2, ..., s such that

fi(zi) < Crexp{~Cslzi|} for z ¢ (-Ti, T3,
then the following assertion follows immediately from Corollary 2.

Corollary 3. Let the assumptions of Corollary 2 be fulfilled. If, moreover, the
assumptions A.1 and A.2 are fulfilled, then for an arbitrary ¢ > 0 it holds that

lim m!~¢|p(F¢) - g(GM)| = 0, N=m".

m—+

Proof. The assertion of Corollary 3 follows from the assertion of Corollary 2 and
the fact that under the assumptions A.1, A.2 the corresponding probability measure
belongs to the class M for every r > 1. a

3.2. Empirical estimates and approximation

It happens rather often that the theoretical probability measure has to be replaced
by empirical one. To recall well-known results on empirical estimates we assume.

i.1 {¢*}%2 _, is a sequence of s-dimensional independent random vectors with a

common distribution function Fé(-); we denote by Ff\,() the empirical distri-
bution function determined by {¢*}_,,

i.2 there exist a;, b; € R', a; < b; such that X € X' =[], (a;, b;).
Proposition 3. (7] Let X be a nonempty compact set, ¢ > 0 be arbitrary, i.1 and
1.2 be fulfilled. If

1. g(z, 2) is a uniformly continuous, bounded function on X' % Zpe,

2. for every z € Zpe, g(z, z) is a Lipschitz function on X' with the Lipschitz
constant Ly (corresponding to L3 norm) not depending on z € Zpe,

then there exist constants K (X', t), k > 0 such that
P{|p(F¢) — p(F§)| > t} < K(X', t)exp{—kNt*}, N=1,2,...
Corollary 4. [9] Let the assumptions of Proposition 3 be fulfilled. If v € (0, 1),
then
P{N*|p(F*) — 3(F,)| > t} =(N-s+c0) 0.

It happens rather often that there exist a natural number s; and functions
ki (z), g7 (z),i=1,2, ..., s1 defined on R™ and R?® fulfilling the relation

81
9(z, 2) =Y _hi(2)gi(z), s €R", z € R’ (15)
i=1
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Proposition 4. Let X be a nonempty compact set, t > 0 and i.1 be fulfilled. If
1. g(z, z) fulfills (23) with continuous and bounded ¢} (z),i=1, 2, ..., s1,

2. for every i € {1, ..., s1} there exists 6y(¢) > 0 and a finite Ere exp{0 h}(£)}
for all 0 <0 <6y(3),

then there exist constant 3 := 8(t) > 0 such that
P{IB(F€) — 3(F§)| > t} < 2s1exp{-BHN}, N=1,2,...
Proof. Let ¢t > 0 be arbitrary, M(i) = sup,¢x |gi (z)|,% =1, ..., s1. First, it
follows from the assumptions of Proposition 4 that

P{|Epeg(z, &) — Epﬁg(z, €)| >t for at least one z € X'}

= eier . t (16)
< EP{IEFeh,- © ~ Epghi (O] > 7 )

and, simultaneously, there exists a finite
Ere exp{0 (h} (&) — Ereh}(£))} far all 0< 6 < 6(2).

Following the first part of the proof of Theorem 3.1 in [2] we can see that (under
the assumptions of Proposition 4) there exists a constant ﬁi(sl_nf!(ﬁ) > 0 such that

t
SlM(Z)

P{IEF{h:(g) - EFﬁh’:(e)l > t} < 2exp{—ﬂi( )N}) i=1,...,8, N=1,...

Setting B(t) := min;e(y, ..., 5} ﬁi(sl—AfIm) and employing the relation (16) we can see
that the assertion of Proposition 4 is valid. O
It follows from the proof of Theorem 3.1 in [2] that f3;(t) can be taken such that

Bi(t) = —In {1 - ’—;— T%é? exp{—%%} + %exp{—t)}} , bi = EpeexpOoh}(€)
1= 1, ceey S1.

(17)
Employing the approach of [7] we can prove also the next assertion.

Proposition 5. Let X be a nonempty compact set, ¢ > 0, assumptions i.1 and i.2
be fulfilled. If

1. g(z, z) is a uniformly continuous function on X "' X Zpe,

2. there exist a > 0, 8p > 0 and a real-valued function v(-) such that

lg(z, 2)| < av(z), Epeexp{Ov(§)} < oo forallz € X' andall 0<6 <6,
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3. the assumption 2 of Proposition 3 is fulfilled,
then there exist constants 3 := B(t) > 0, a(t) > 0; a(t) := a(t, X) such that

P{|a(F¢) — (Ff)| > t} < a(t)exp{-B({)N}, N=1,2,...

Proof. Since the main idea of the proof of Proposition 5 is very similar to the
main idea of the proof of Proposition 3 we omit it. 0O

4. MULTISTAGE PROBLEMS

To apply the assertions of the former section to the multistage case we restrict our
consideration to the case when

D.1 There exist s-dimensional random vectors ¢! := ¢~ 1(w), n* = n(w), k =
0, ..., M defined on (2, S, P) and a continuous, s-dimensional vector function
f(-) defined on R® x R*® such that

a. {n*¥}M, is a sequence of independent s-dimensional, identically distributed
random vectors,

b. F&(2%) = F1(f(2°, 271)) for every z° € R® and a (known value) £~! :=

z71 e R?,
c. for every z¥-! € Z&71, zF € R®, FEIET (Rzh=1y = F(f(2k, 241Y),
k=1,... M.

We denote by F7(-), Prn(-) and Zp» the distribution function, probability measure
and the support corresponding to 7° (consequently also 7', ..., ™). Evidently,
F7(-) corresponding to D.1 determines the system (3) F := F7 by

F&(2°) = F(f(2% z71)) for everyz® € R® and known 27! € R®,
FEIET (gk|zk-1y = Fn(f(2*%, zk=1)) for every z* € R*®H)) k=1, ..., M.
(18)

Of course, every other s-dimensional distribution function G"(-) determines an-
other system (5) G := G". Sometimes it is “suitable” to assume furthermore.

D.2 For every z* € Z%, u € Zpn there exists just one z*+! € Z}*! fulfilling the
relations u = f(z*¥*!, 2%), k=0,1,..., M - 1.

D.3 There exist an s-dimensional random sequence {7*}$2__ and a deterministic
nonsingular matrix A of the type (s x s) such that

a. {n*}2_., is a sequence of independent s-dimensional, identically dis-
tributed random vectors,

b. ¢ = AgF-14qk, k=...,-1,0,1,...;thevalue{' =271, 271 € R*
is known,

c. &1 npF k=...,-1,0,1,... are stochastically independent.
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4.1. Multistage analysis

Employing the triangular inequality and the technique used in [12] we can see that
(under the assumptions D.1 and relation (4)) for every z° € K°

[Epeo 95(2°, £°) — Egeo 9g(2°, €°)
S |EFf° infz1€)31(zo,§0) EF51|50 g_17_-(.’i‘1, f—l) - EG£0 inleel@(zo,g)) EFEIIEO g;_—(:i‘l, f_l)|
+ |EG€0 inleeltl(zo’EO) EF€'|€° infz2€}€2(il’£—l) EFlefl g%_-(:z':Q, {?2)

— Egeoinfoiggizo, ¢0) Egerjeo inf12€,€2(jl,£_l) Epe2jan g;_-(iz, )|
+]EG€° inlee,al(zo’ €0) EG£1I£° infz2e,€2(il,£'1) Epe2ja infz3e}€3(a':2,£_2) EF£3|52g‘37:(a_;3, 53)

- EG'EO inleek:l(ZD’EO) Ece‘leo infzze,@(a—;l,gx) EG€2|€1 infzseﬁa(jz,gz) EF53|Ezg§_-(f}3, E3)|

+ IEGEO infxle,@(zo,{o) ......
insz—leiaM—l(jM—2,§'M—2) EGEM—IIEM—2 inszeﬁM(iM—l’éM—l) EFEM|EM—1 g_{,\_-/l(.’i‘M, f—M)

— Lgeo inleegl(zo,EO) ......
ianM—le}aM—l(iM——2'EM—-2) EGEM-1|5M-2 inf M ERM(zM—1 §M-1) EG5M|5M—1 ggl(iM, EM)|.
(19)
Consequently the “value” |@zn(M) — @gn(M)| can be estimated by a suitable
distance between F7, G" (for more details see e.g. [12, 13, 14]).

4.2. “Deterministic” approximation

Let m be an arbitrary natural number. It was proven in Section 3 that for every s-
dimensional distribution function F7(-) (with one-dimensional marginals F}'(-), i =
1, ..., s fulfilling the assumptions A.1, A.2 for £ := 7)) there exist points u; ; €
R j=1,...,m,i =1, ...s and one-dimensional jump distribution functions
GIr™(-),i=1,2,..., s defined by

uij=FNNL), j=1,...,m-1,i=1,...,s,

Ui, m = u™(m) corresponding to z™(m) in Corollary 2 (20)
GP™(uwi) = 0 for 2 < ui 1,
= F(ui;j) u; € (wij, wij41), j=1,...,m—=1, (21)
=1 Ui > Ui m-
such that

m—+00

S
lim m!'~¢ Z diy, (F', GI"'™) = 0 for arbitrary ¢ > 0.
i=1



On Approximation in Multistage Stochastic Programs 635

(The symbol (F)~! denotes the quantile function corresponding to F'(-), i =
1,...,s) If we denote the corresponding s-dimensional distribution function by
the symbol G™ N (:), N =m?®; and by 7" an s-dimensional random vector with the
distribution function G™ ™ (-), then evidently under the assumptions D.1 and D.3

the system F can be approximated by the system G™ " defined by

GPN ={G" N (W® - Az7Y), GPN(F - AN, k=1,..., M},  (22)

where 27! is supposed to be known, z¥~! corresponds to random vectors ¢¥~1 de-

termined recursively by ¢¥ = AC*~' +q7*, k=0,1,...M, (" '=z"L
To present the corresponding assertion dealing with an approximation error we
introduce the following system of the assumptions.

W.1 a. ¢g%(2° 2°%) is uniformly continuous function on K° x R® and, moreover,
for every z° € K° a Lipschitz function on R® with the Lipschitz constant
(corresponding to £; norm) not depending on z° € X°,

b. for every k € {1, ..., M}, gk(z*, z*) is a uniformly continuous function
on X* x Z% and, moreover for every zF € X*, zk=1 € Zh1| gk (3, zF)
is a Lipschitz function on R® with the Lipschitz constant (corresponding
to £, norm) not depending on z* € X*, zk=1 ¢ Zk~1,

B.1 the probability measures Ppn(-), i = 1,2, ..., s are absolutely continuous
with respect to one-dimensional Lebesgue measure. We denote by the symbol
f{(-) the probability density corresponding to F/'(-),

B.2 there exist constants C; > 0,Co >0and T; >0, i=1,2, ..., s such that

f(zi) < Crexp{—=Csl|zi|} for 2z ¢ (=T, T3),

Theorem 1. Let the relations (4), (21) be fulfilled. If
1. the assumptions D.2, D.3 and W.1 are fulfilled and, moreover, Pp» € M;(R?®),
2. the system G™ ¥ is defined by the relation (22), N=m®, m=1,2, ...,

3. KO, KMtl(zk 2%), k=0,..., M -1,z € X*, z* € Zk, k=0,..., M -1
are nonempty compact sets,

then there exists a constant Cy, > 0 such that

loF(M) = pgn.n (M) < Cw, Y diy, (F7, GI'™).

i=1
If, moreover, the assumptions B.1, B.2 are fulfilled, then also

lim m!'~¢|pxr(M) — pgn.~n(M)| =0, N =m® for an arbitrary ¢ > 0.

m—+00

Proof. The proof of Theorem 1 follows from Proposition 2, Corollary 3 and the
relations (19), (22) (for more details see [14]). O
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4.3. Empirical approximation
If F7(-) denotes the empirical distribution function determined by an independent

random sample {n’(w)};.}_ 5 corresponding to F7(-), then

F§ (%) = FR(f(2, 27Y), F&W 7 (2K 1260) = FR(F(e5, 24Y), k=1,..., M

are (for every 281 € Zk~1) statistical estimates of F€’ (2°), F€1€"™" (zk|zk=1). Con-
sequently, (under the assumptions D.1) a sequence {n*(w)}?__p determines an sta-
tistical estimate F(IN) of the system (3) by

F(N) = {FR(f(z° z7Y), FR(f(z*, 2*Y), k=1,..., M}, N=1,.... (23)

Replacing the system (3) by the system F(IN) we obtain an approximating prob-
lem to the multistage problem introduced by (1) and (2). The optimal value of this
problem is a random variable denoted by ¢ z(n)(M). The following Theorem 2 is a
special case of Theorem 2 and Corollary in [13].

Theorem 2. [13] Let ¢t > 0 be arbitrary, the relation (4) be fulfilled. Let, moreover,
the system F(N), N =1, ... be defined by the relation (25). If

" "

1. there exist a; <b;, a;,b; € R',i=1,..., s such that X = [T (a;, b; ),
2. gk(z*, z%),k =0, 1, ..., M are uniformly continuous, bounded on X* x Z&,

3. for every z* € Z%, gk (z*, %), k=0, 1, ..., M are Lipschitz functions on X'*
with the Lipschitz constants (corresponding on L; norm) not depending on
sk k
Zr € Z%,

4. KO, KH+(zk 28 k=0,...,. M -1, zF e X* 2k € Zk, k=0,...,M -1
are nonempty compact sets,

5. the systems of the assumptions D.1, D.2 are fulfilled,

then there exist constants k > 0, K*¥(X,t) >0,k =0, 1, ..., M such that

a. P{lor(M) — or(n)(M)| > t} < exp{—Nt?k} Sy KF(X, 1), N=1,2, ...

b. P{N’|pr(M) — oxrn)(M)| >t} —(N-s4o0) 0 for every v € (0, 1).

Proof. The proof of Theorem 2 follows from Proposition 3, Corollary 4 and the
relations (19), (23) (for more details see [14]). a

To obtain the assertions of Theorem 2 it was supposed go(Z™, 2M) to be bounded.
Following the approach used in [2] and Proposition 5 we can obtain.
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Theorem 3. Let ¢t > 0 be arbitrary, the relations (4) be fulfilled. Let, moreover,
the system F(N), N =1, ... be defined by the relation (23). If

1. the assumptions 1, 3, 4 and 5 of Theorem 2 are fulfilled,
2. gk(z*, z¥), k=0, 1, ..., M are uniformly continuous on X* x Zk,

3. forevery k=0, ..., M there exist constants a* > 0, % > 0 and a real-valued
function v*(-) such that

lgk.(z*, %) < a*V*(2%), E e exp{605(€¥)} < 0o for all 0 < 6 < 6§,

and every zF € Xk, zk-1 ¢ Zh1,

4. {€k}}  is a sequence of independent random vectors and, moreover, the

system F(N) is determined by independent random sample {€*}9_ .

then there exists a constants 8(t), K*(X,t) >0,k=0,1, ..., M such that

M
Pllos(M) - oran(M)] > t} < exp{-BEON} S KHX, 1), N=1,2,...
k=0

Proof. The proof of Theorem 3 follows from Proposition 5 and the relations
(19), (23) (for more details see [14]). m]

Of course, to apply the stability and empirical estimates results achieved for
one-stage problems to the multistage case the corresponding assumptions must be
verified. Evidently, the uniform continuity and the Lipschitz property are the crucial
assumptions. For more information see [11] or [14].
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