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OPTIMALITY OF THE LEAST WEIGHTED 
SQUARES ESTIMATOR1 

LIBOR MASÍČEK 

The present paper deals with least weighted squares estimator which is a robust estima­
tor and generalizes the classical least trimmed squares. We will prove ^/^-consistency and 
asymptotic normality for any sequence of roots of normal equation for location model. The 
influence function for the general case is calculated. Finally optimality of this estimator is 
discussed and a formula for the most B-robust and most V-robust weights is derived. 
Keywords: robust regression, least trimmed squares, least weighted squares, influence func­

tion, \/n-consistency, asymptotic normality, B-robustness, V-robustness 
AMS Subject Classification: 62F35, 62J05 

1. INTRODUCTION 

Let us consider the following regression model 

Yi = XfPo + Zi for i = 1, . . . , n (1.1) 

where Xi = (Xn,..., Xip)
T is the px 1 column vector of explanatory variables, which 

are random, /3n is the p x 1 column vector of unknown regression coefficients and Zi 
are random fluctuations with continuous distribution and EZ; = 0. Moreover, the 
sequence of random vectors X\,..., Xn is independent and identically distributed 
(i.i.d.), the sequence of random variables Z i , . . . , Zn is i.i.d. and the sequences are 
mutually independent. For the choice p = 1 and Xn = 1 we obtain 

Yi = p0 + Zi for i = l , . . . , n , (1.2) 

where /?o G E is an unknown parameter. This is known as the location model. 
In general regression model we denote the ith residuum for any /3 G W by 

n((3) := Y - Xjp = Zi- XT(/3 - fa) (1.3) 

and the /ith order statistics of squared residuals by r?hJ/3), i.e. 

O<r2
{1)(/3)<rl2)(0)<...<rfn)(f3). (1.4) 

1Some results from this paper were presented at 24th European Meeting of Statisticians held 
on August 19-23, 2002 in Prague. 
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Similarly for any (3 £ 1RP we denote order statistics of absolute value of residuals 

by f\h\(P) : = \lrlh)(P) (*,e- a^ s o square root of the /ith order statistics of squared 

residuals). 

Now we can define the least weighted squares estimator (LWS) as 

1П > W [ 

- £i -v n 1 
Pn = PLZ$ ••= argmin J > - - _ - rfft)(B) (1.5) 

where w : [0,1] —> [0, oo) is a given weight function. Typically we suppose, that w is 
nonincreasing (i. e. observations with larger residuals have smaller weight). Without 
loss of generality we suppose w(l) = 0. 

This estimator was developed by Visek (see [7] and [8]) and it generalizes classical 
least trimmed squares (LTS) proposed by Rousseeuw (see [6]) which we get for the 
choice w(x) = I {x < a} where I {... } is an indicator function and a G (0,1). The 
main reason for developing this estimator was to improve applicability. In the LTS 
estimator one can adjust just one constant but in the LWS estimator we can choose 
the entire weight function. This gives a chance to increase efficiency or decrease 
gross error sensitivity. 

This estimator has some nice properties. First of all the breakdown point comes 
immediately from the weight function. If w(a) > 0 for a < a and w(a) = 0 for a > a 
then the LWS estimator has breakdown point equal to min {1 — a , a } . This means 
that we have the breakdown point under control and we can choose it arbitrary up 
to 0.5. 

The most important property of this estimator is the regression and scale equiv-
ariance. This is an advantage w.r.t. M-estimators which are regression equivariant 
but not scale equivariant hence some studentisation of residuals by some robust 
estimator of scale is needed. 

Finally we can multiply the weight function by an arbitrary positive constant and 
our estimator remains unchanged. 

But there are some open questions about the LWS estimator. Under what condi­
tions is this estimator consistent or *yn-consistent? What is its asymptotic variance? 
What is its influence function? And presumably the most important question: What 
is the optimal choice of weights? We will answer some of these questions in this pa­
per. 

In the next section we derive the normal equations for the LWS estimator and we 
rewrite them as a statistical functional (i. e. as a function of empirical distribution 
function). In Section 3 we restrict ourselves to the case of location model and 
we provide conditions for v^consistency and asymptotic normality of the LWS 
estimator for location model. In Section 4 we expresses the influence function of 
the LWS estimator for general regression. Section 5 combines results of Sections 3 
and 4 and the most B-robust and V-robust LWS estimators for location model are 
expressed. Section 6 provides detailed proofs. 
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2. NORMAL EQUATIONS 

Denote the function that is minimized in (1.5) by 

MF„(/J) := f > ( - - = - - ) rfh)(/3) (2.1) 

for P G Rp. Now we define random variables 7To(i,/J) for i = l , . . . , n and (3 G 
Rp in such a way that r?(/J) = r^o ( i / 3 ) )(/3), i.e. for any ^ G Rp is TT0(/3) = 
{7To(l,/3),... ,7To(n,/3)} the random permutation on { l , . . . , n } which converts the 
ranks of the observations ordered by the squared residuals. Hence we can reorder 
the summation in (2.1) and rewrite it as 

MFB(/J) = | > (n0(i,^~1) rl(0). (2.2) 

We see that the MF n is the same as the minimized function of classical least squares 
with weights (i.e. weighted least squares, WLS) but in this case weights in (2.2) 
are not fixed since they depend on 7To(i,P) and hence on the observations. We can 
suppose the LWS estimator should satisfy the normal equations of WLS estimator 
with corresponding weights as follows. 

L e m m a 1. Let us denote 

NRn(j3) := J2 « f * 0 ^ " 1 ) (X?0 - Yi) X> (2.3) 
i=i v n / 

for any (3 £ W. Hence the LWS estimator is a solution of equations NR„(/3) = 0, 
i.e. 

N R n ( « S ) = 0 . (2.4) 

P r o o f of Lemma 1. Because the weight function w is nonincreasing we can 
rewrite MF n in (2.2) as 

MFn(/3) = m i n f > ( ! - - ^ ) r?(/3) (2.5) 

where minimization is taken over all permutations 7r on the set { 1 , . . . ,n} (solving 
minimization in (2.5) leads (2.2), i.e. to give smaller weights to larger squared 
residuals). Suppose NRn(/9n

y!^s) ^ 0 and denote 

oW . V^ (nOV'>0nyw ) ~ M 2fo\ /o a\ 
K,w ~ argmin > w '• rj(/J), (2.6) 



718 L. MASICEK 

i.e. J3%w is equal to WLS with weights given by P^s. Notice N R n ( / 3 ^ 5 ) 7- 0 

implies Pn^
s does not satisfy normal equations of WLS with weights given by (2.6). 

Hence Pn™
s is not solution of minimization (2.6) and we obtain 

rU&S) = MFn(«5) 
(2-7) 

where the first inequality comes from (2.5) and the second one from definition of 
J3™w. Hence we have MFn(y9n^u.) < M F n ( / 3 ^ 5 ) which is in contradiction with 
definition of P^s and thus N R n ( / 3 ^ s ) = 0 . • 

Denote by F(x, z) the distribution function (d.f.) of (p + l)-dimensional vector 
(Xi,Zi) = (Xj i , . . . ,XipjZi) and F n (x ,z ) the corresponding empirical distribution 
function (e.d.f.) obtained from random vectors (X\, Z\),..., (Xn, Zn). In this paper 
we suppose distribution functions to be left continuous. Now we rewrite the LWS 
estimator in the form of statistical functional, i.e. as a function of e.d.f. 

Denote by Ft(y) the d.f. of random variable \ri(f$o + t)\ = \XTt — Zi\ and cor­
responding e.d.f. as Fn,t(y). We see that Fn,t(\X

Tt — Zi\) = (7r0(i,/3o + t) — l ) /n . 
Hence we can rewrite the function NRn(/3) (see (2.3)) as follows 

iNlW/?) = I ± v, ( " ( ' 'A- 1 ) {XT0 - Yt) x. 
n n f—' V n J 

= - J « ; (Fnit (\XTt - Zi\)) (XTt - Zi)Xi (2.8) 
n i=\ 

where t := (3 — fa. Clearly the last term in (2.8) can be rewritten as an integral with 
respect to e.d.f. Fn. So we define for an arbitrary (p + l)-dimensional d.f. G(x,z) 
(where x G Rp and z G R) the following statistical functional 

NR(/?0 + t,G):= I w (Gt (\x
Tt - z\)) (xTt - z)xdG(x,z) (2.9) 

where Gt is d.f. of random variable l-Y^J - ZQ\ and vector (XQ,ZG) hats d.f. G. 
Note that NR(/?o + t, G) is p-dimensional vector. 

It is easily seen that for G := Fn the integral in (2.9) is equal to (2.8) and then 

-NRn(p)=NR(^Fn). (2.10) 
n 

Another very useful way how to rewrite NRn(/3) is the following. We can reorder 
the summation in the second term in (2.8) 

^W = ̂ Êw(^)Ż(xTß-Yi)xiП\Уi-xTß\ = rw{ß)} 
n nњ \ n 1èí (: (2-11) 
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and hence rewrite it 

ÍNRn(/?) = f>,, ,n ±J2{X?t-Zi)Xil{\Zi-XTt\<rw(0o+t)} 
fc=i Ln »=i J (2.12) 

where t := /3 — /30 and 

W * - = I " ( V ) - Ҷ . Î ) ( 2 л з ) 

(recall that w(l) = 0). Since we are working with continuous random errors (see 
(1.1)) we need not take into account the case r\h\(/3) = r\i\(/3) for h ̂  /. 

Now in the same way as in the previous situation we define for any d.f. G(x, z) 
(where x G Rp and z G R) the following statistical functional 

NRa(p0+ t,G):= f(xTt-z)xI{\z-xTt\<Gtl(a)} dG(x,z) 
J (2.14) 

where Gt is defined as before. If we choose G equal to e.d.f. Fn we get G^l(a) = 
Fn,ti<*) = rw(Po + t) for a G (*=±, £] and then 

NR;(/30 + t,Fn) = -T (X?1 ~Z0X<7( lZ* ~ X ^ l ^rW(A + 0} 
n *=i (2.15) 

for a G (*7p, £ ] , which is the term in the brackets in (2.12). Define for any d.f. 
G(x, z) (where x G Rp and z G R) 

NR(/3,G):= / NRa(0,G)dw*(a) (2.16) 
Jo 

where w*(a) := w(0) - w(a). Hence for G := F n (2.16) is equal to (2.12). This is 
because NR*(/?,Fn) is piecewise constant with respect to a and therefore 

n 

NR(/3,Fn) = £ wMNRfc/„ ( / W (2.17) 

which is equal to (2.12) (see (2.15)). 
Finally define the statistical functional T(G) as a solution of normal equations 

NR(/3, G) = 0, i. e. it holds NR(T(G), G) = 0 for any d.f. G(x, z) (where x G Rp and 
2 6 1). Functional T is not explicitly defined and generally there are more solutions 
to the normal equations. But we can choose T in such a way, that 

T(Fn)=ftws, (2.18) 

i. e. the statistical functional T represents the LWS estimator. 
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3. ASYMPTOTIC PROPERTIES OF LWS FOR LOCATION MODEL 

Let us restrict ourselves to the location model (1.2) in this section. The following 
assumptions will be needed throughout the paper. 

A l : The weight function w is nonincreasing and bounded with derivative existing 
almost everywhere. Moreover, it is positive on some neighbourhood of zero, w(a) == 0 
for a G (a, 1) where 0 < a < 1 and JQ w(a) da > 0. 

A2: Random errors Z i , . . . , Zn are i.i.d. and have continuous distribution with dis­
tribution function Fz and density fz- This density is bounded, symmetric, strictly 
decreasing on (0,oo) and fz(x) > 0 for x G R Random errors have finite second 
moments and f'z exists everywhere. 

The substantial condition is A2. Symmetric and unimodal density is a very 
important condition for consistency. The counter example is obvious. Suppose just 
one dimensional data with symmetric density of observations which have two sharp 
peaks - one around —1 and one around 1. I.e. approximately one half of data is 
around —1 and one half around 1. Hence the LTS with a = 0.5 estimates value close 
to —1 or 1 because the LTS tries to fit 50% of data. But we expect the value around 
zero, which is the expectation value of observations. Classical least squares will be 
consistent - it estimates value close to zero. 

Under the proposed conditions we will prove not only ^/^-consistency of the LWS 
estimator for the location model but also v^-consistency of any sequence of solutions 
of normal equation. We will prove asymptotic normality under stronger conditions. 

T h e o r e m 1. Let /3* be an arbitrary sequence of solutions of normal equations for 
the location model (i.e. NRn(/3*) = 0). Then under A l and A2 this sequence is a 
>/n-consistent estimator of fio • 

Moreover, if the weight function is piece wise constant, i.e. 

J 

i i ; ( a ) = ^ A i / { a < a i } (3.1) 
i = i 

for some J G {1, 2, . . . }, Xj > 0 and aj G (0,1) then 

yfr(fa-0o)-+DN{O,Vl) (3.2) 

where the asymptotic variance is 

/ x V ( F | Z | ( | x | ) ) / z ( x ) d x 
Vl = -k rr (3-3) 

( | x u , ( E | Z | ( | x | ) ) / ^ ( x ) d x ) 

and F\z\ is the distribution function of \Z\\ 
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The proof of Theorem 1 is provided in Section 6. Theorem 1 obviously implies 
^/n-consistency and asymptotic normality of LWS for the location model. 

4. INFLUENCE FUNCTION FOR GENERAL REGRESSION 

In this section we derive the influence function of the LWS estimator for a general 
regression model (1.1). Recall that the influence function is defined as the directional 
derivative of statistical functional T(F) at F in the direction of one-point distribution 
function AX0}20 (i.e. the Dirac measure at point (xo,zo)) 

lF(x0,Z0;T,F) = lim T((l - e)F+ eAXQ>20)-T(F) 
e->0+ € 

Influence function describes the effect of a contamination at the point (xo,zo) on 
the estimate, standardized by the mass of the contamination. 

Theorem 2. Let conditions A l and A2 be satisfied. Moreover, suppose that 
the p x p matrix EX\X^ is positive definite. Then the influence function of LWS 
estimator defined in (4.1) is 

T F ^ y . T P \ - [FY Y^'1 r * 0 - w ( * | Z | ( M ) ) 
I* ( x 0 , z0; 1, r) - [ t A i X x J • x 0 ^T , v— -

- } [z • w (F\Z\(\z\)) • f'z(z)\ dz ( 4 2 ) 

where XQ € W and zo € R. 

The proof of Theorem 2 is provided in Section 6. It immediately follows that 
under conditions of Theorem 2 the right hand side of (4.2) is well defined and that 
similarly as for M-estimators the influence function of the LWS estimator can be 
bounded with respect to zo> but it cannot be bounded with respect to rro-

5. OPTIMALITY FOR THE LOCATION MODEL 

In this section we want to answer the question: How shall we choose the weights? 
Theorems 1 and 2 indicate a close relation between LWS estimator and M-estimators 
for location model (1.2). This is because LWS for the location model has the same 
asymptotic variance V^ and similarly the influence function as M-estimator for the 
location model with score function (i.e. the function which generates the normal 
equation of M-estimator) 

iP(x)=x-w(F\Zl(\x\)). (5.1) 

Both estimators are, of course, different, they have, however, just the same asymp­
totic variance and influence function. In some cases we can also find an inverse 
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formula to (5.1), i.e. we can calculate weight function w from a given ^|). If ty is an 
antisymmetric function then the weight function w which satisfies equation (5.1) is 

_ ^ _ _ _ ) 
w(a) = _V / . (5.2) 

F\z\(<*) 

This relation together with results for optimality of redescending M-estimators 
helps us in expressing the optimal weight functions. Recall that the score function of 
redescending M-estimators satisfies ^p(x) = 0 for \x\ > r where r is a given constant. 
Noticing (5.2) we obtain w(a) = 0 for a > a where a = -F]z|(r), i.e. we have 
relation between LWS estimators with a given breakdown point (i. e. given a) and 
redescending M-estimators with a given r. 

Now under conditions A l and A2 we can easily express the most B-robust es­
timator. Recall that the most B-robust estimator minimizes gross error sensitivity 
which is supremum of absolute value of the influence function. The most B-robust 
redescending M-estimator with given r > 0 is the skipped median (see Lemma A2) 

VWd(r)(z) := sign(x) • / {|x| < r} . (5.3) 

Noticing (5.2) we realize that the most B-robust LWS estimator in the set of all 
LWS estimators with given a (recall w(a) = 0 for a > a) has weight function 

™i(<*) := --i, , -I{a<a}, (5.4) 
F\z\ (<*) 

where min{a, I —a} represents the breakdown point. This is because LWS estimator 
with weight function w\ and M-estimator with score function i/Wd(r) have the same 
influence function and hence the same gross error sensitivity. For any other weight 
function w with given a the LWS estimator has the gross error sensitivity the same 
as redescending M-estimator with ip given by (5.1) which is larger than the gross 
error sensitivity of M-estimator with VWd(r)- Hence for the weight function w\ the 
LWS estimator has minimal gross error sensitivity. 

Unfortunately, the function w\ is unbounded and hence for this type of weight 
function consistency can not be proven by our method (Al is not satisfied). But we 
can take min{t0i(a), K} where K is any given positive constant. For large K we get 
an estimator which has the gross error sensitivity very close to the minimal value. 

The next problem is that w\ depends on the distribution of random errors, which 
is of course typically unknown. But on the other hand it does not change if we 
multiply random errors by some positive constant. Hence for normally distributed 
errors it does not depend on variance (if we change variance we only multiply w\ 
by some positive constant). Figure 1 (left figure) shows w\ for normally distributed 
errors and a = 1. For a < 1 we just cut the weight function at an appropriate point, 
i.e. we multiply it by / {a < a} (see (5.4)). 

Next we will minimize asymptotic variance under conditions A l and A2. The 
redescending M-estimator (with given r G R) which minimizes asymptotic variance 
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Fig. 1. Weight function ivi for a = 1 (left) and tD3 for a = 0.5 (right). 

has ^-function (see Lemma A2) 

**>—ш 
fz(x) 

I{\x\<r}. (5.5) 

For r = oo we get the maximum likelihood estimator. Using (5.2) we obtain the 
weight function of the corresponding LWS estimator (with given a) which minimizes 
the asymptotic variance 

u)2(FlZ\(x)) := f'z(*) 
" • fz(x) 

I {x < r} (5.6) 

where r > 0. This follows by the same method as for the most B-robust LWS 
estimator. 

For normally distributed errors is fz(x)/fz(x) = —z and we obtain W2(a) = 
I {a < a } , i. e. the weight function of the LTS estimator. Hence the LTS estimator 
minimizes asymptotic variance in the group of LWS estimators with given breakdown 
point for normally distributed errors. 

The last case is the most V-robust LWS estimator, i. e. we minimize the maximum 
of change of variance function divided by asymptotic variance. Recall that the change 
of variance function is the directional derivative of asymptotic variance V^ at F in 
the direction of one-point distribution function (i. e. it is an analogue of influence 
function in case of the asymptotic variance). For detailed definition of the change of 
variance function see [1], Section 2.5. The most V-robust redescending M-estimator 
(with given r £ R) has the score function (see Lemma A2) 

Vw.(r)(z) := («- - 1)2 tanh - ( « - - l)*Br(r - \x\) sign(x) • I {\x\ < r} 
(5.7) 

where nr and Br are appropriate constants (see Lemma A2). Using (5.2) we get the 
weight function of the most V-robust LWS estimator 

wз(a) := 
tanh \Ca 

17— l t л Л ^ J 
*$(«) 

(5.8) 
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where Ca is an appropriate constant. Some values of Ca for normally distributed 
errors are in Table 1. Estimator generated by w$ has continuous weight function. 
For this type of weight function we have not proved asymptotic normality, but we 
can take piecewise constant weight function which is close to W3. For normally 
distributed errors and a = 0.5 is w$ shown in Figure 1 (right figure). 

Table 1. Values of C5- for normally distributed errors. 

a 
Ca 

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 
0.507 0.500 0.496 0.494 0.493 0.491 ' 0.489 0.486 0.482 0.475 

Let us now compare three types of optimal weight functions. We will examine 
them from three points of view: breakdown point, asymptotic efficiency and gross 
error sensitivity. We denote the limit of variance of least squares estimator divided 
by variance of corresponding estimator as asymptotic efficiency. 

In Tables 2 and 3 asymptotic efficiency and gross error sensitivity depending on a 
for the LWS estimator with weight functions w\, w<i and w$ and normally distributed 
errors are given. In the last column there are limit values for a -> 1. 

Table 2. Asymptotic efficiency [%]. 

ã 0.50 0.60 0.70 0.80 0.90 1 
W\ 

W<i 

w3 

5.3 
7.1 
1.8 

9.4 
12.9 
3.4 

15.7 
21.7 
6.0 

25.0 
35.0 
10.2 

38.9 
56.1 
17.9 

63.7 
100.0 
63.7 

Table 3. Gross error sensitivity. 

ã 0.50 0.60 0.70 0.80 0.90 1 
W\ 6.2 4.2 3.0 2.2 1.7 1.3 
w2 9.5 6.5 4.8 3.7 2.9 0 0 

w3 19.0 11.4 7.7 5.3 3.6 1.3 

We see that for weight functions w\ and W2 asymptotic efficiency and gross error 
sensitivity are similar. Estimator with w\ is of course better with respect to the 
gross error sensitivity and with w% in the asymptotic efficiency. 

We can also use a combination of these weight functions. For example for 

w(x) = min{гi;i(:r),.ftr} (5.9) 

we get an estimator which has the gross error sensitivity and asymptotic efficiency 
between values for w\ and W2- For large K the weight function is close to w\, for 
small K it is constant on (0,a) and hence equal to w<i-

Finally, recall that these three types of weight functions give possibilities which 
are optimal from different points of view. In real life situation we should use one of 
them or a combination of them (for example (5.9)) depending on the data set. 
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6. PROOFS 

This section contains proofs of Theorems 1 and 2. First we prove Theorem 2. 
Particularly we derive the influence function for general regression. In the next 
part we restrict ourselves to the location model and we prove Theorem 1 (i. e. -in­
consistency and asymptotic normality). 

P r o o f of Theorem 2. The proof follows the lines of an analogous proof for 
M-estimator (see [1]). Namely, we plug into the normal equations (2.9) instead of 
G the contaminated distribution F£ := (1 - e)F + eAXOiZQJ where e > 0, x0 G Rp, 
zo G R and denote by AXO)Zo the d.f. of Dirac measure at point (xo,zo)- Now we 
differentiate the equation with respect to € in e = 0+ and calculate the influence 
function. Let us do this process step by step. 

The normal equations for contaminated distribution F£ are (see (2.9)) 

0 = (1 - e) [w(Fj- (\z - xTT\)) (xTT - z)xdF(x,z) 

+ ew (Ff. (|z0 - xTT\)) (xTT - z0)x0 (6.1) 

where 0 G Rp and T = T(Fe) is the solution of normal equations. Notice that 
symmetry of random errors implies T(F£) = T(F) = 0 for e = 0. The Ff. can be 
rewritten as follows (see (2.9), definition of Gt) 

F^(u)= (l{\xTT-z\<u} dF£(xuz) 

= (1 - e) J [Fz(x
TT + ti) - Fz(x

TT - u)] dFx(xx) 

+ e-l{\xTT-z0\<u} (6.2) 

for ix > 0 where Fz and Fx are marginal d.f. from F. For e = 0 is Ff = F\z\-
Let us now differentiate (6.1) with respect to e and then put e = 04" and recall 

that the definition of influence function implies 

§-єт(ғ<) (6.3) 
£=0+ 

lF(x0, z0;T,F):= 

Finally we obtain 

0 = f w (F|Z |(|~|)) • x • xT • lF(x0,z0;T, F) dF(x,z) 

-jw'(F\Z\(\z\))-z-x 

- w (F\z\(\z0\)) z0x0. (6.4) 

dF(x, z) 
. e=0+ 

To finish our proof we should calculate corresponding derivative in the second term 
on the right hand side of (6.4). This we get by differentiating (6.2) for u := \xTT — z\ 
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and putting e = 0. Finally we obtain 

= - 2 sign(2)L j( |z |)xTIF(x 0, z0; T, F) 

-F\Z\(\z\) + I{\z0\<\z\}. 

ÍÍFi(\xTT - z\) 
Je=0+ 

(6.5) 

Substituting (6.5) into (6.4) the second and third term in (6.5) vanish because they 
are symmetric functions with respect to z. Hence we obtain 

W (F\z\(\z0\)) z0xo = í [w (E | Z | ( |z | )) • z]' • xxт • IF(x0, z0;T,F) dF(x,z) 
(6.6) 

because 

[w (F\Z[(\z\)) -z]' = w (F, Z | ( |z | )) + w' (F{z[(\z\))2sign(z)fz(\z\)z. 
(6.7) 

Using independency of random errors and regressors together with integration by 
parts implies 

w (F| Z | ( |zb |))*o*o = [EXrf^W^zo^F) J w (Flz](\z\)) zf'z(x)dz. 

Now we can easily express IF(xo,zo; T,F) and finish the proof. 

(6.8) 

D 

Next we prove Theorem 1, first v^n-consistency, next asymptotic normality. To 
prove v^-consistency we approximate the function NR(/3,Fn) by NR(/3,F). If we 
knew that the only solution of NR(/3, F) = 0 is /? = /30 and NR(/9,Fn) is close to 
NR(/3,F) for large n, then we would get that solution of NR(/3,Fn) = 0 is close to 
/9o- The following lemma shows that NR(/3, F) = 0 has the only solution for /3 — fio 
and that NR(/3, F) is increasing at least linearly in some neighbourhood of /3o-

L e m m a 2. Under conditions A l and A2 for any K > 0 there exist S\ > 0 and 
62 > 0 such that 

|NR(/?0 + t,F)\ > mm{51\t\,ó2} for t € [-K,K]. (6.9) 

P r o o f of Lemma 2. For simplicity denote the distribution function and density 
of random variables Z{ by F and / respectively. By symmetry of density of random 
errors Zi we get NR(/30,F) = 0 immediately. To finish the proof it suffices to show 

Ш(ß0 + t,F) > 0 (6.10) 
Jí=0 

and 

Ш(ß0 + t,F)фO f o r ř # 0 . (6.11) 
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Since NR(/3o,-F) = 0 (6.10) implies existence of constants e > 0 and S\ > 0 such 
that 

|NR(/?o + t,F)\ > Sx\t\ for |*| < e. (6.12) 

Because the set M := [-K, -e] U [e, K] is a compact subset of 1R and NR(A) + t, F) 
is continuous with respect to t (moreover, it is differentiate) then |NR(/?o + * ,F) | 
(restricted to M) attains minimum at some point t0 € M. 

Define S2 := |NR(/30 + *o,^) | . Because t0 7- 0 we get from (6.11) that S2 > 0. 
Hence 

|NR(/30 + t,F)\ > |NR(/30 + t0,F)\ = S2 > 0 for e < \t\ < K. 
(6.13) 

Inequality (6.12) together with (6.13) imply (6.9). 
Let us now prove (6.10) and (6.11). Noticing (2.9) and using substitution z := t—y 

we realize that (6.10) follows from 

^ N R ( A + «,F) _ =[J°° w(Ft(\t-z\))(t-z)dF(z) 

/

CO "I /.QO 

w(Ft(\y\))yf(t-y)dy\ = / w(Fz(\y\))(-yf'(y))dy > 0. 
°° -U=o J-00 (6.14) 

Finally, we prove (6.11). Suppose t > 0. Equation (2.9) and the same substitution 
yields 

/

co 
w(Ft(\t-z\))(t-z)dF(z) 

-CO 

/ C O /.QO 

w(Ft(\y\)) yf(t -y)dy= w(Ft(y)) y [f(t - y) - f(t + y)] dy. • 
-70 (6.15) 

Notice [/(* - 2/) - / (* + y)] > 0 for t > 0 and y > 0. This is because | t - y | < |*+y| for 
t > 0 and y > 0 and because density / is symmetric and decreasing on (0,00). The 
weight function is nonnegative and on some neighbourhood of zero positive, hence 
the integrand in (6.15) is nonnegative and on some interval positive which implies 
NR(/?0 + t, F) > 0 for t > 0. In the same way we can prove NR(/?0 + t,F) <0 for 
t < 0 and so we omit it here. • 

Now we can make the first step in proving Theorem 1, i.e. v ^ - c o n s i s t e n c y - The 
proof of n 4 -consistency of LWS for location model was shown in [5]. We will use 
the same method but instead of working with function MF (which is statistical 
functional based on MF n defined in an analogical way like NR) we will use function 
NR. The function MF is quadratic in the neighbourhood of /?o for the theoretical 
distribution F . Hence proving 

sup{|MF(/J,Fn) - MF(/?,F)|f |/3| < K} = Op(n^) (6.16) 
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gives just n 4-consistency. Because the function NR is linear in a neighbourhood 
of fio for the theoretical distribution, analogous approximation for normal equation 
gives the v^n-consistency. 

P r o o f of Theorem 1 - v^n-consistency. For simplicity let us denote the dis­
tribution function and density of random variables Z{ by F and / respectively. We 
denote the empirical distribution function based on Z i , . . . , Zn by Fn. 

To prove consistency we will use the following invariance principle result 

V^ | |F„ - EHoo = Op(l) (6.17) 

where H.Hoo is the supremum norm (for details see [3], Section 2.5.13). 
Fix e > 0 and a probability space (!T2,>t, V). Equality (6.17) together with the 

weak law of large numbers gives the following. There exist positive constants K\, 
K2 and n\ (depending on e) such that for any n > n\ is 

F(Bn)>l-є (6.18) 

where 

вn = 
1 " 
- V \Zi\ < Ri and \Fn(z) - F(z)\ < n~^K2 for z G 

i = l 

Cӣ. 
(6.19) 

Now we find constants K3 and no such that for any sequence /3n which satisfies 
_ ! • This NRn(/?*) = 0 the inequality |/3n - #>| < n~$K3 holds on Bn for n > n0 . 

implies the ^/n-consistency of sequence /3*. Let us do so and find K$. 
First we find constants K\ and n2 such that for any t G 1R, \t\ > K4 and n > n2 

it holds NR(/?o 4- £, Fn) 7-= 0 on Bn. I. e. for any u G Bn and large n all solutions t 
of the normal equation NR(/?o + t, Fn) — 0 are in the interval [—K^^K^]. 

Combining definition (2.3) and equality (2.10) gives 

NR(/Jo + t,Fn) = - N R n ( ^ 0 + t) = - T w (*oihí3) M (í - Zi) 
n n r-f V n I 

i=i N ' (6.20) 

and hence 

ш^^-ţ^yit^Љñziү. 
(6.21) 

We find upper bound for the absolute value of the second summand of (6.21) and 
lower bound for the absolute value of the first one. Because the weight function is 
nonincreasing we can write 

Š2w(Mi'n l ) Z i <^)IÍL\ZÍ\<W^)K^ («•--) 
1 = 1 ^ ' 1 = 1 
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where the last inequality holds on Bn. By condition A l 

~ 5Z w ( ^ r O ~> / ™(a) d a = ^5 > 0 (6.23) 

therefore there exists n2 such that 

st-fc1)-.* <*«> 
for any n > n2. Combining (6.21), (6.22) and (6.24) we have that for n > n2 and 
\t\>2w(0)Kx/K5 

|NR(A> + i, F n ) | > i |t |tf5 - w(0)#1 > 0 (6.25) 

on Bn. So the desired constant is AT4 := 2w(0)Ki/K^. 
Now we will look at the behaviour of the function NR(,/3o+£, Fn) for £ £ [—-fC*, K4]. 

Suppose that there exists a constant KQ such that on Bn for NR* (see (2.14)) the 
inequality 

|NR;(/?o + t,Fn) - NR*(A) +t,F)\ < n-±K6 (6.26) 

holds for |t| < K4 and a 6 (0,a) . Formula (2.16) implies 

|NR(/30 + t,Fn) - NR(/3b + t , F ) | < n~±K6w(0) (6.27) 

(notice NR does not depend on NR* for a > a because w(a) = 0 for a > 57). By 
Lemma 2 (for K := R4) there exist Sy > 0 and 62 > 0 such that 

|NR(/?0 + t \F ) | > min{e5i|i|,&} (6.28) 

for \t\ < K4. Combining (6.27) with (6.28) yields 

|NR(/?0 + t,Fn)\ > |NR(/?0 + t,F)\- |NR(/?o + t,Fn) - NR(/?0 + t, F)\ 

>min{<5!|f:|,($2}-n-2R6w(0) (6.29) 

where the last inequality holds on Bn for |i | < K4. Let us define K7 := w(0)K6/S\ 
and n3 := (w(0)K6/S2)2. We see that 

mm{S1\t\,S2} -n'±K6w(0) > 0 (6.30) 

for \t\ > n~2R7 and n > n3. Now (6.29) together with (6.30) imply that on Bn 

there is no solution of normal equation NR(/30 + 1 , Fn) = 0 for which it would hold 
n-*K7< |*| < R 4 -

Putting together the results for \t\ > K4 and for t G [-K4,K4] we obtain 

NR(A) + * , E n ) # 0 (6.31) 
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on Bn for \t\ > n~*Ki and n > no := max{ni,n2,n3}. Hence we see that any 
solution of normal equation is close to /?n on Bn and the desired constant is K% := K-j. 

To finish the proof we have to find a constant K$ such that (6.26) holds. The 
rest of the proof follows the lines of a similar proof in [5]. Since \t\ < K4 and on Bn 

the empirical distribution is approximated by theoretical one, we have existence of 
constant K$ such that 

\F-l(a)\<K8, \FTH<*)\<Ks (6-32) 

for a < a and n > n\ and existence of Kg such that 

| E - i ( a ) - E r V ) l < n - * K 9 (6.33) 

for a < a and n > n§. Since the theoretical d.f. F and the e.d.f. Fn are close, 
the theoretical d.f. F is strictly increasing (density / is positive) and t is bounded 
(\t\ < K4). Hence the quantiles in (6.33) are close for a G (0,a). That is since a is 
not close to 1 (a < a < 1). 

Denote for simplicity un := F~}(a) and u := Ffx(a) and rewrite the definition 
(2.14) of NR; f o r a < a 

NR*Q(t,Fn)-NR*a(t,F)= [ Un(t-z)dFn(z)- f U(t-z)dF(z) 
J t—un Jt—u 

= [ U(t-z)dF(z)+ I Un(t-z)dF(z)+ f U\t-z)d(Fn-F)(z). 
Jt-un Jt+u Jt-un (6.34) 

Now we find an upper bound for each of the three terms in (6.34). Using (6.32) and 
(6.33) the first term can be bounded as 

ft — U I pt — U 

I (t-z) dF(z) \< í \t - z\f(z) dz 
Jt—Un I Jt—un 

_ 1 < \un — u\ max{un, u)Mf < n 2 K9KsMf (6.35) 

where Mf := sup{/(x),x G M} < 00. The same upper bound can be used for the 
second term. 

Finally, we find an upper bound for the third term in (6.34). We use the following 
general formula which holds for any d.f. G and a, b G IK 

/ zdG(z)= I fZ ldydG(z) + a(G(b)-G(a)) 
Ja Ja J a 

= I (G(b) - G(y)) dy + a(G(b) - G(a)) = bG(b) - aG(a) - f G(y) dy. 
J» Ja (6.36) 

Taking difference of equation (6.36) for G := G\ and G := G2 implies 

rb 

I 
Ja 

гdtGi-GзXz) < 2(|6| + \a\)s\ip{\Gi(x) - G2(x)\ : i € l ) . 
(6.37) 
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Using (6.37) for Ox := Fn and G2 := F in the third term in (6.34) implies (remind 
\t\ <K4,u< Ks, un < Ks and \\F - F-U-, < n~il<2) 

гt+un 

Jt-un 

(t-z)d(Fn-F)(z) 

<\t í " ld(Fn-F)(z)\ + \f ^ zd(Fn-F)(z) 
I Jt—un I \Jt—un 

< 2|í| \\F - Fn||oo + 2(|ř + un\ + \t- un\)\\F - F„||oo 
_ i 

<(6KA+4Kя)n-tK2 
(6.38) 

on Bn. Now we put together the upper bounds of all three terms in (6.34) (see (6.35) 
and (6.38)) and obtain 

|NR;( í ,F n ) - NR*(Í,F) | < n-H2K9K8Mf + K2(6K4 + 4_f8)). 
(6.39) 

Hence we can take K6 := 2K9KsMf + K2(6KA + 4KH) in (6.26) which finishes the 
proof. • 

To prove asymptotic normality we will use the same method as was used for M-
estimators in [2]. We will use asymptotic linearity which was provided in [5] (see 
Lemma Al). Asymptotic linearity together with ^/^-consistency gives us asymptotic 
normality. 

P r o o f of Theorem 1 - asymptotic normality. Fix e > 0. Because the sequence 
/?* is i/n-consistent there exist constants K\ and n\ such that 

v(s/n~(pn-Po)>K1)<e (6.40) 

for n > Til. By Lemma Al for M := K\ there exist constants K2 and n2 such that 

P [ n ^ s u p n NR(j_o+n--t,Fn) -nNR(ßQ,Fn)-nhRtl > K2 < є 
\ M<Ki 

for n > n2. Now we choose 

t . - t n = ̂  (/3n - ^ 0 ) • 

Combining (6.40), (6.41), (6.42) and N R ^ . E n ) = 0 gives 

P ( n " 4 InNR(/30, E„) + n (p*n - (30) Rw\ > K2) < 2e 

for n > no : = max{ni,n2}. 

Because e > 0 was arbitrary we obtain 

n NR(/3o, En) + n (/3n - Po) Rw = Op ( n * ) . 

(6.41) 

(6.42) 

(6.43) 

(6.44) 
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The last equation can be rewritten as 

y/K (fa - A>) = - ^ V n N R G f t . F n ) + Op ( n " i ) . (6.45) 

Hence asymptotic behaviour of the left hand side of (6.45) depends only on behaviour 
of random variable v/nNR(/?o, Fn). 

Denote Z\h\ := r\h\(Po) for h = 1 , . . . ,n (i.e. the order statistics of \Z\\,..., \Zn\) 
and Si := sign(Zi) for i = 1 , . . . ,n. Notice that random variables Si and \Zi\ are 
independent because distribution of Zi is symmetric. Hence by (2.10) and (2.12) we 
have 

~ n n 

V^NR(/3o,F„) = — 7 = Y , Y * > h . n S i \ Z i \ l { \ Z i \ < ZW}. (6.46) 

Because sequences S i , . . . , Sn and | Z i | , . . . , \Zn\ are independent we can order ran­
dom variables \Zi\ in the inner summation (i.e. replace |Z»| by Z\i\) and the distri­
bution of the right hand side of (6.46) remains unchanged. Finally we obtain (see 
also (2.13), denote =& equation of distributions) 

~ n n 

VnNR(fl>.F„) =D —j=YY*>h,nSiZwl{Zw < Z H } 
^ n ft=i i=i 

= ~^ltY,W^SiZ\i\ = -^lLW{-^)SiZ\i\- , s 

Define a a-algebra «4z := o-{|Z.|,i = 1 ,2 , . . .} . Notice that the summands in (6.47) 
are conditionally independent therefore we can use central limit theorem 

^ NR(A>,Fn)\Az\ -> N(0,1) (6.48) 
iy».« 

where 

Vlw := var (v^NR( /3 0 ,E„ )Uz) = - f > 2 ( — ) Zj^,. (6.49) 
* • ' 71 . . \ 71 / 

1=1 x ' 

Using the same method as in the proof of ^/^-consistency (i. e. (6.17) and consecutive 
steps) we obtain 

Vlw = fx2w2 (Fn
z\(x)) dFn(x) ->P V2 := f x2w2 (F,z |(x)) dF(x) 

J V J J (6.50) 

where Fn ' is e.d.f. based on random variables | Z i | , . . . , \Zn\ and -»p denotes con­
vergence in probability. 

Because the limit distribution in (6.48) does not depend on Az the convergence 
(6.48) together with (6.50) imply 

VnNR(ft, .Fn) -> A f ( 0 , O - (6-51) 

The last convergence together with (6.45) finish the proof and give us the formula 
for the asymptotic variance V£ = R~2 • V2 (see (3.3)). • 
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APPENDIX 

Lemma A l . Under conditions A l and A2 for piecewise constant weight function 
the normal equation of LWS estimator for the location model is asymptotically linear 
in the following sense: For any M G (0, oo) it holds 

n 4 sup 
| í |<M 

where 

nNR(A, + n--t,F„) -nNR(p0,Fn)-nURw = Op(\) 

Rw= í [a- 2Fl-\(a) • fz (^ j (a ) ) ] dw*(a) 

«/0 

/
oo 

xw{F]z](\x\))f'z(x)dx 
-OO 

(A.l) 

(A.2) 

and w*(a) = w(0) — w(a). 

P r o o f of Lemma Al is based on the following principle. We split the main term 
in (A.l) into several parts that can be written as stochastic processes in t. For each 
part the convergence in distribution is proved. The result was presented in [5] and 
a detailed proof can be found in [4]. 

Lemma A2. a) The most B-robust (i.e. minimizing gross error sensitivity) re-
descending M-estimator is 

V>med(r)(*) - = sign(rr) • I {\x\ < r} . (A .3 ) 

b) The redescending M-estimator which minimizes asymptotic variance is 

Mx):=-^-I{\x\<r} (A.4) 

c) The most V-robust (i. e. minimizes maximum of change of variance function 
divided by asymptotic variance) redescending M-estimator is 

t̂anh(r)(-0 •= («r - l ) * tanh -(KT - l)*£r(r - M) sign(x) • / { | x | < r} 
(A.5) 

where Kr and Br are given constants such that 

J^lnh{r)(x)dF(x) = 1, Ji;'t&nHr)(x)dF(x) = Br. (A.6) 

For proof of Lemma A2 see [1], Section 2.6. 
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