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MULTIPLICATION, DISTRIBUTIVITY 
AND FUZZY-INTEGRAL II1 

WOLFGANG SANDER AND JENS SlEDEKUM 

Based on results of generalized additions and generalized multiplications, proven in 
Part I, we first show a structure theorem on two generalized additions which do not coin
cide. Then we prove structure and representation theorems for generalized multiplications 
which are connected by a strong and weak distributivity law, respectively. Finally - as a 
last preparation for the introduction of a framework for a fuzzy integral - we introduce 
generalized differences with respect to t-conorms (which are not necessarily Archimedean) 
and prove their essential properties. 
Keywords: fuzzy measures, distributivity law, restricted domain, pseudo-addition, pseudo-

multiplication, Choquet integral, Sugeno integral 

AMS Subject Classification: 28A25, 20M30 

7. INTRODUCTION 

We assume that the reader is familiar with the notations and results in Part I of 
this paper where we have introduced generalized additions and multiplications which 
we called pseudo-additions and pseudo-multiplications, respectively together with a 
strong and a weak distributivity law. 

If we now weaken appropriately the existence of a unit element then we can show 
that under weak assumptions the structure of the ordinal sum of A is 'finer' than 
the corresponding structure of II, which means, that 

Archimedean t-conorms of II are also Archimedean t-conorms of A. 

In addition, strict t-conorms of II are also strict t-conorms of A. 

We start with the definition of an 'individual unit'. 

Definition 5. Let o be a pseudo-multiplication. 

(RU*) For all a G (A, B] there is e(a) G (-4,-5] such that: aoe(a) = a. 
(individual right unit) 

1This paper is a continuation of our paper Multiplication, Distributivity and Fuzzy-Integral I 
in Kybernetika No. 3/2005. We continue the enumeration of formulas, definitions, lemmas and 
theorems. 
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(LU*) For all a G (A,B] there is e(a) G (A,B] such that: e(a) oa = a 
(individual left unit). 

In the case of (RU*) we define E(a) := sup{e G [A, B] : a o e = a} 
(maximal right unit for a). 

In the case of (LU*) we define E(a) := sup{e G [A,B] : eoa = a} 
(maximal left unit for a). 

It is easy to show that E(a) and E(a) are individual right units and individual 
left units for a, respectively. 

Moreover, there is the following connection with boundary conditions: 

If o satisfies (Z) and (CRZ), then: 

(RU*) <=> aoB > a for all a G (A,B]. 

If o satisfies (Z) and (CLZ), then: 

(LU*) <=> _B o a > a for all a G (A,B]. 

We prove only the first statement. If (RU*) is valid then we get aoB > aoe(a) = a. 
If a = B then BoB>B implies BoB = B. 
If a G (A, B] then we have that aoA = A<a<aoB , and by the intermediate 

value theorem there is e(a) G (A, B] with a o e(a) = a. 

Some often used results are contained in the following Lemma. 

Lemma 4. Let A, II be pseudo-additions, and let o be a pseudomultiplication 
satisfying (DL*) and (RU*). 

Let m G K& and let b G (a^,&ml be II—idempotent. Then we have: 

(a) f\ f\ aox>b. 

aG(a^,b^]xG(E(6),B] 

(b) btoE(b) = b. 

(c) E(b) <B=> / \ a o £7(6) = b. 
aG(am,6m] 

(d) b € (at b*) => E(b) < E(b*) A / \ a o E(b) = b. 

P r o o f , (a) Let us assume Vae(a£,&£] Vxe(E(6),B]a°x — b- Then Lemma 2(d) 
and (RU*) imply 

6 = boE(b) < box <b£.ox< Ufl^aox) < lim (U^=16) = b, 
n—>oo 

so that box = b contradicts the maximality of E(b). 
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(b) Again, using Lemma 2(d) and (RU*) the following inequalities imply the 
desired result: 

b = b o E(b) <b*o E(b) < I I~ (b o E(b)) = lim (U?=lb) = b. 
n—>oo 

(c) W.l.o.g. let a 6 (a£,&£) (see (b)). Then we get by (a) and (b) 

b = b*oE(b) >aoE(b)= lim ( a o a : ) > 6 . 
x—+E(b)+ 

(d) Because of (c) we have only to show that E(b) < E(b^). We assume E(b^) < 
E(b) and get the contradiction (using (b) and (RU*)) 

bt o E(b%) < bt o E(b) = b<b%o E(bfc). 

This proves Lemma 4. • 

Let us now present the following structure theorem for two pseudo-additions, 
which do not coincide, but which have at least the same structure of ordinal sums. 
Again, the proof for this result is very technically, but it seems to be a completely 
unknown result. 

Theorem 5. Let A and II be pseudo-additions, and let o be a pseudo-multiplication 
satisfying (DL*) and (RU*). 

(I) If I G -f-ri and if we have 

(aY > A V [(Z) A (CLZ)]) A (6? < B V [(DL) A (CRB)]) (78) 

then 

(a) A and II have the same structure on [af 1 ,^ ] 2 , that is, A]rau)bui2 is 

Archimedean, and [af",bf*] = [ap,bP] = [a/,b/]. 

(b) Axe(A,B]aiOx = ai. 

(c) Axe(A,B]bi<>x = bi-

(d) Aae[aiM] A*e(A ,B ] a 0 : r € Hbil 

(e) If Ill^&j]2 is strict, then A|[az,bz]2 is also strict. 

(II) Let 

( [ / \ af > A] V [(Z) A (CLZ)]) A ( [ / \ bf < B] V [(DL) A (CRB)]). 
leKu leKu 

Then the structure of the ordinal sum of A is 'finer' than the corresponding structure 
of U, which means, that 
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max 

max 

Archimedean t-conorms of II are also Archimedean t-conorms of A. 

In addition, strict t-conorms of II are also strict t-conorms of A. 

The above two pictures, where the left one represents A and the right one repre
sents II, give an interpretation of the relation 'finer'. 

Note also, that the condition (78) in (I) of Theorem 5 and the corresponding 
condition in (II) of Theorem 5 are rather weak assumptions. 

Now we present the proof of Theorem 5. 

P r o o f of T h e o r e m 5 . (a) To prove (a) we show 3 statements: 

(al) /\aGrA BJaA—idempotent =-> a l l —idempotent]. 

(a2) If m G K^,a^ = A then we have: (Z) A(CLZ) => U L A ^ A ^ is Archimedean. 

(a3) If m G KA,a^ > A then we have: 

&£ < B V[(DL) A(CRB)] -=> (u|[aA6A]2 is Archimedean) V ( u | [ a £ i C ] 2 = v ) . 

Proof of (al). Again, w.l.o.g. we may assume a G (A,B) (since AAA = A = 
AUA,BAB = B = BUB). But then the first statement of Lemma 2 (a) yields that 
a = aoE(a) is II—idempotent. 

Proof of (a2). Let us assume that IIIr A ,A12 is not Archimedean. Then there is 
v ' llaTn.°mJ 

a II-idempotent element b G (am,&m) and Lemma 4(d), (Z) and (CLZ) yield the 
contradiction b = lima_^a A _,_ (a o E(b)) =a^o E(b) = A o E(b) = A. 

Proof of (a3). Let ( A L A 6A,2 Archimedean) A(ILaAj6Ai2 ^ V). 

Using (al) we get: VzGxu[am>&m] C [am ,6m] . We are done, if we show 

(a) af = a* and bf =b*. 
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At first we prove: 

((3) a*>A=*b? = b*. 

If we assume in contrary that b}1 G (a^, b^), then Lemma 4 (d) and (RU*) show 
that E(b?) G (A,B) and thus a^oE(bf) = l i m 0 ^ + [ a < > £(&")] = bf > a* = 
a*oE(a%). 

We choose now a := a^ G (A,B) as A-idempotent element, xn := E(b^),x := 
E(a^) G (A, B]. Then the last inequality together with the monotonicity of o leads 
to (a o xo = bY > a o x) A (x < x0). 

This contradicts the third statement of Lemma 3 (a) and proves (/?). 

To prove (a) we still show: 

(7) &£ < B V [(DL) A (CRB)] => a? = at 

Again we assume that a^ G (a^ ,b^) and get by Lemma 4(d) and (RU*) b^ o 
E(a)1) = a}1<b*=b*oE(b*). 

Choosing now a := b^ as A—idempotent element, xo := E(a)*) G (A,B],x := 
E(bm) the last inequality yields (a o xo = a]1 < a o x) A (x > xo). 

This contradicts the second statement of Lemma 3 (a) (if b^ < B) and the second 
statement of Lemma 1 (if (DL) A (CRB)), respectively. Thus (7) is proven. 

Now we can show (a). 

Let n|[ajif6u]a be Archimedean. Then (al) implies Vm€KA-am>6m] C [a£,6£]. 

Case 1: If a £ > A then (/?) yields (6* = 6?) A (6* < BV[(DL) A(CRB)]). Moreover, 
(7) now gives (a£ = a}1). 

Case 2: If a^ = A A [(Z) A (CLZ)] then (a2) shows that LIL .^?6^i2 is Archimedean. 

Since U|[ap,6u]2 1s Archimedean, (a3) leads to (a), and (a) is proven. 

(b) To prove (b) we consider 2 cases. If a/ = J 4 A [ ( Z ) A ( C L Z ] then (b) is obviously 
satisfied. 

Let us now consider the case a\ > A. In this case we show at first 4 statements: 

(bl) at > A =» E(at) = B, 

(b2) ai > A V [(Z) A (CLZ)] => E(bt) = B, 

(b3) bt<BV [(DL) A (CRB)] =* A*€(A,E(60] »ioa; = bu 

(b4) (a/ > A) A (bt < B V [(DL) A (CRB)]) => A^(A,E(a,)] a< o x = a«-

To prove (bl) it is sufficient to prove a\ o B = a\. We put a := a/ G (A,B) as 
A-idempotent element, x0 := E(a\) G (-4,5] and apply the second statement of 
Lemma 3 (a) to get A*G[E(aO,B] aiOx = at. 
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Proof of (b2). We assume that E(b{) < B. Then Lemma 4(c) gives /\ae,ai 6.i o o 
E(bi) = bt. 

If a/ > A then we arrive at the contradiction (using (bl)) bi = lima_>a,+(a o 
E(bt)) = atoE(b{) <atoB = at. 

If a; = _4A(Z) A(CLZ) then (bl) again leads to the contradiction bi = lima_+a,_|_(ao 
E(bi)) = aloE(bl)=al. 

(b3) To show (b3) we choose a :=bi G (A, B] as A—idempotent element and put 
#o := E(bi) G (A,B]. Then the third statement of Lemma 3 (a) (if bi < B) and the 
third statement of Lemma 1 (a) (if (DL) A (CRB)) yield AxG(A,E(bi)] ^ 0X = ^ ' 

The proof for (b4) is similar to the proof of statement (IV) in the proof of 
Lemma 3. Assume that (b4) is not true, then we have VxG(A E(<n)) a\ox^ a\. 

Using (RU*) we get a* o x < a\ o E(a\) = ai. Because of the monotonicity of o 
we may assume that x G (A, E(bi)) Using (b3) we get a\ o x < a\ < b\ = b\ o x, and 
by the intermediate value theorem there exists a G (a/,6/) with aox = a\. Now we 
again apply Lemma 2 (d) to get the contradiction 
ai<b\ox< I l g ^ d o x ) = l i m ^ o ^ I I ^ a f ) = a\. 

Now we prove the second case of (b), where a\ > A. But then (bl) and (b4) result 
in (b). 

(c) Statement (c) follows directly from (b2) and (b3). 

(d) We use the following implication: 

(a? > A V [(Z) A (CLZ)]) A (bf < B V [(DL) A (CRB)]) 

=» [at>AA(bi<BV[ (DL) A (CRB)]) ] V [ax = A A (Z) A (CLZ)]. 

To prove (d) we get in the case a* > A A (bi < B V [ (DL) A (CRB)]): 
a\ = a\Ox <aox <b\Ox = b\ (here we have used (bl) and (b4) in the first equality 
and (b2) and (b3) in the last equality). 

In the case 0 | = A A ( Z ) A (CLZ) we get by (b2): a\ = A < a o x < b\ o B = b\. 

To prove (e), we first show: 

(el) (A|[a,)6.]2 not strict) A(bz < B V [(DL) A (CRB)]) =-» II|Ioi|6l]2 not strict. 

We assume that II|[a,jb.]2 is strict. Let a G (a/,b\) be fixed. Then (55) gives: 
/ \ n G NU^= 1a < b\. Now we use the assumption that A|[ai>5.]2 is not strict by ap
plying Lemma 2 (e) to get: \/s£N bi o E(a) < Uf=1(a o E(a)) = IIf=1a. 

Thus we arrive on the one hand at bi o E(a) < Uf=1a < bi = bi o E(b{). By 
monotonicity we may assume that E(a) G (A,E(bi)) and so we get on the other 
hand (using (b3)) bioE(a) = 6/, which is impossible. 

Now (e) follows from (el) by contraposition and (f) is a consequence of of (I), (a) 
and (e). Thus Theorem 5 is proven. • 

We remark that the properties of o are also valid if (RU*) is replaced by (RU). 
Moreover, the following problem is unsolved: 
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Present assumptions for the implication: A|[a.jfe.p strict => II|[0|l6i]a strict. 

We believe that the assumptions must be so strong, that already A = II holds. 

8. PSEUDO-MULTIPLICATIONS 

After these considerations concerning pseudo-additions we now show a general rep
resentation theorem for pseudo-multiplications. The only assumption is the weak 
distributivity, but no unit element, no zero element is required. 

We here give the left distributivity version of the result, but there is also a right 
distributivity version. 

Theorem 6. Let A and II be pseudo-additions. 
Let o satisfy the weak left distributivity law (DL*). 
Then there exists for all m G K& and for all / G Ku a monotone increasing, 

continuous function gm^\ : (A, B] —• [0, oo] satisfying 

/ \ / \ [aoxe[a?Jb]1}=^aox = h\-1\km(a)-gm,l(x))}. (79) 

ae(a£,&£]x€(A,B] 

P r o o f . We choose an arbitrary but fixed m G K& and denote temporarily km 

and (aA , 6A) (cf. (50)) by k = km and (aA , bA) = (aA , 6A). In a first step we show 

A V A A [aoxe[aY,bY} 
leKu gi:(A,B)—»[0,oo],siT.Si continuous a€(aA ,bA) z€ (A, B) 

= * a o x = /i{"1)(fc(a)-s.(a;))']. (80) 

(1) This first result (80) will be proven in several steps. We define 

' ° i f Aae(a^ 16A )aox<a /
u 

^ if V. 6 ( t v- ,^) -»0-5€(a? ,6?) 

0 0 i f A a e ( a A , 6 A ) a o j ; > & p . 

A A 9i{x):=< 
leKu x€(A,B) 

(2) We remark that in (1) the subcases are complete, for otherwise, if we assume 
that none of the three cases occur, then there exist ai , a2 G (aA , bA) satisfying 
a\ o x < a)1 < a* l"6* < bP < a2 o x. But then the intermediate value theorem 

a u , b u 
shows that there is a G (ai,a2) with aox = l

 2
 l , and the second case 

occurs, which is a contradiction. 

(3) Now we investigate the second case in (1) and show, that it is well-defined. 
Let us consider from now on an arbitrary, but fixed / G -f-ri-

Let x G (-4, JB), and the second case in (1) occurs, that is VaG(aA,6A) a<>x € 

(o^ib)1). Let us define 
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(7) Mx := {a G (aA,bA)\aoxe (af^)} + 0, ax := supMx G ( a A , 6 A ] . 

(3a) Obviously A a G M , ^ ^ € (0,oo), since a G ( a A , b A ) , a o x G (a?^)1), and 
thus k(a),hi(aox) G (0,oo). 

(3b) We prove AaG(aA,ax) a < > * G (aP,bP). 

Using the definition of ax and a < ax we get VbG(a,6A) ^ o a ; ^ (aj1,6p)- The mono-
tonicity of o gives a o x < bp. We Still have to show a o x > a]1. In contrary, 
we assume a o x < a}1- But then the assumptions of Lemma 2 are satisfied and 
Lemma 2(b) gives \JseNbox < U f = 1 ( aox ) . so we arrive at the contradiction 
af <box<U3

i=1(aox) <U3
i=1aY =af. 

(3C) We Show Va € ( 0 | O O , A a G ( a ^ ] n ( a A , 6 A ) ^ = «• 

Let u, v G (0,00) with ix + f G (0, k(ax)). Using k(aA) = 0 < u,v < u + v < k(ax) 
and the intermediate value theorem we get: Va6e(aA ax)(^(a) = u) ^ (k(b) = v). 
Thus k(a) + k(b) G (0,k(ax)) and aA = k^l\0) < aAb = ^ " ^ ( a ) + k(b)) < 
ax < 6A , so that (DL**) and (3b) imply bP > (aA6) o x = (a o x) II (b o x) = 
h\~ (hi[a ox] + hi[b o x]) > a]1 and so hi[(aAb) o x] = hi[a o x] + hi[b o x] (note 
that here / i j _ 1 ) = / if1) . This implies hi[kt~V(k(a) + k(b)) o x] = h^-Vk(a) o 
x] + hi[k(-1*k(b)ox], or hi[k(-V(u + v) ox] = hl[k(-Vuox] + hl[k(-1hox]. This 
means, that the function hi[k^~^(-)ox] is additive on the restricted domain {(u, v) G 
(0, oo)2\u + v < k(ax)} satisfying AWG(O,OO) hi[k^~^(u)ox] > 0, the solution of which 
is given by Vae[o,oo] Au€(o,*(a«)) M ^ " 1 ^ ) * * ] = a - tx (see [1], p. 48). 

Because k is strictly monotonic increasing and satisfies k(aA) = 0 we get 
Aae(a

A,ax) hi[k^~^k(a) ox] = a - k(a) and using the continuity of (•) o x we arrive 
at Aae(aA ax]n(aA feA) M a ° x\ = a ' k(a). Because of k(a) G (0,oo) and (3a) we get 

AaG(aA,ax]n(aA,bA) ^ g f 1 = <* G (0,OO). 

(3d) Thus we have shown that the second case in (1) is well-defined, and 

A.6 (a-^]n(.-s6->) ^ g f 1 = 9l(x) (see (3c) and Mx C (a*,ax] n ( a - \ 6 * ) ) . 

Before we show (80) we still prove: 

(3e) ax < bA => ax o x = bp. 

By (7) there exists a sequence (an) C (aA,ax) with an ] ax, and (3b) implies 
ax o x = supn € N(an ox ) G (aP,bP). If we suppose that ax o x < bP then by the 
continuity of (•) o x there is a G (ax, 6A) such that bP > a o x > ax o x > a^, which 
is a contradiction to the definition of ax = supMx . 

(4) Now we prove (80) (but first without the properties of gi). 

We distinguish 3 subcases. 
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Case 1. Aae(oAf6A) aox < a)1 : 

Let a G (a A ,b A ) be arbitrary. Because of a o x G [aP,bP] we have of course 

aox = a]1, and thus (1) implies h\~l\k(a)gi(x)) = h\~ \k(a)-0) = ai = aox. 

Case 2. Vo€(a-\b*) a o x G (a]1^?) : 

Case 2a: If a G ( a A , a x ) , then ^ " ^ ( a ) ^ ) ) = hf^a) • ̂ g ^ ] = a o x . 

Case 2b: If a G [ax, bA) , then 3e) gives (because of a o x G [aP, bP]) 
bP > a o x > a^ o x = bp. Thus we obtain, using (3d): 

hi^ikiaMx)) = hr\k(a)^f) = hrHHa)!^) = bf = aoX. 

Here we have used that k(a) ^a
l J > /i/(bP). 

Case 3. Ao€(a-\6*) a o x > bp. 

If a G (a A ,6 A ) is arbitrary, then now (because of a o x G [a?,&?]) we have 

a o x = &P, and thus we obtain from (1) h\~ \k(a)gi(x)) = h\~ \k(a) • oo) = 

h\~1](oo) = bY = aox. 
To prove the monotonicity of #/, we further fix I G Ku and introduce J/, the set 

of all x, for which the second case in the definition of g\ (see (1)) is valid. 

(5) J. := {x € (A,B)\ V ^ A ^ a o x G (af,bf)}. 

(6) We show: x,y e Ji A x < y => ay < ax. 

Assume that ax < ay. By the definition of ay there is a\ G (ax,ay) such that 
aioye («?,&?)• Because of xG J\ we get: Va2e(aA,bA) a2 o x € (aP>&?)- But then 
we obtain a2 < ax < ai and aP < a<iox < a\ ox < a\ oy < bp. But this means that 
a\ G Mx , which contradicts ax < a\. 

(7) We prove that g\ is monotonic increasing. 

Let x, y G (A, .B) and let x <y. 

Case 1: If Aae(A,B) a ° 2/ < a p then the monotonicity of o yields a o x < a o ? / < a P 
and (1) leads to g\(x) = 0. 

Case 2: If Aa€(A,£) a o x > &P then we get in the same manner (using again (1)) 
9i(y) = oo. 

Case 3: Let x,y e J\ (note that because of (2) all possible cases are covered). By 
y G Ji we obtain Vai€(aA,6A) a i <> V € (ap>&?) a n d «1 £ (aA>ay] n ( a A ,b A ) . 
But (6) and (3d) imply 9l(x) = ^ ^ < bjgSfl = P l(„). 

The continuity of gtJ G .Ku will be proved in several steps. 
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(8) J, = 0 =.> [Axe(a-\6*)0-(x) = °°] V [Ax(=(a-\6* )#<(*) = °1. s o t h a t 5/ i s o b v i" 
ously continuous. Let us suppose \fXiy^a^ibA)(gi(x) < oo) A (gt(y) > 0). 

Using (1) and J\ = 0 we get Aae(a-\6A) a o a; < a? < 6? < a o t/. 
By the intermediate value theorem we have AXG(OA ,6A) Vx(a)e(A,B) a o x ( a ) £ (aP»6?), 
which gives the contradiction J\ ^ 0. 

(9) Let now / G i^ii be fixed with J\ ^ 0. We define rcm := inf J/ G \A,B) and 
XM := sup Ji G (A-9]. 

(10) We show xm < XM- Indeed, because of J\ ^ 0 we know: Vxie(A,B) V^( a A &A) ao 
xi G (a?, 6?). The continuity of ao(- ) implies VX2G(XI,B)

 a o x 2 £ (a?>&?) so 
that {xi,x2} C J/. 

(11) Let us prove Axe(xm,xM) x e J<-

Let xm < x < XMI SO that by (9): Vy.zeJi 2/ < x < z. Choose now a G 
(a^,az) C (aA,ay) (see (6)) to get by (3b): aoy,aoz G (a?,6?). But this 
implies a\ <aoy<aox<aoz<b}1 so that by definition x G J*. 

(12) We show: z G ( x m , x M ) =* Aa€(a-\a,]n(a*,b*) Ax€(xm,z] 9i(x) = ^ g f 1 . 

Note, that z E Ji (see 11)) so that az > aA is valid. 

Now let a G (a A , a z ] fl ( a A , 6 A ) and x G (xm,z] be arbitrarily chosen. Then 
(11), (6) and (3d) imply x G Ji,(az < ax => a G (a A , a x ] fl (a A ,6 A ) ) and 

(13) Now we conclude that #; is continuous on (xm,XM)-

Let z G ( x m , x M ) so that (12) shows: Vae(a-\az) Ax€(xm,z]0-(aO = H^sf*-
But a o (•) and hi are continuous, so that g\ is continuous at first on (xm,z] 
and then also on (xm,xM) = Uz€(xm,*M)(Xm'*--

(14) We prove: xm > A => Axe(a-\xm) 0-0*) = °-

Let x G ( a A , x m ) . By J{ ^ 0 we see: VxieJ, Va€(a-\6*) a ° x - G (aP>6?)-
Because of x < xm < x\ we have a ox < &?. Since x ^ J\ and since the third 
case in (1) doesn't occur we get g\(x) = 0. 

In completely the same manner we can show: 

(15) xm < B =» Axe(xm,6A)0.(*) = oo. 

(16) Let us prove: xm > A =-> limx->xm+ 9i(x) = 0. 

Choose z G (-rm ,xM) so that again Va€(a-V,) AxG(xm,2]5/(^) = ^ ^ ( s e e 

(12)). 

But (6) and (3b) give a < az < ax and Axe(xm,z] a ° x G (a?>&?)- T h u s 

a o x m > a? and 14) implies f\xe(a*,xm)9i(x) = 0- BY U) a n d t h e continuity 
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of a o (•) we get Ax_(aA,xm) a ° x < a]1 and a o xm < a}1 so that we arrive at 

lim , m(r\ — lim , Moo*) — Mao-Cm) _ M*-!1) _ n 
iimx_>Xm+#/<x; - nmx_,X m + fc

v
(a) - fc(a) - fc(o) - u. 

(17) We show: „ M < B => l im x _ X M + ^ (x ) = co. 

Let us assume in contrary limx_>XM+<7/(:E) < oo (by (7) this limit exists). We 
prove first: 

(17a) limx_+XM+ax = aA (the ax exist by (11) for x G (xmyXM), the limit exists 
by (6)). We assume in contrary that limx_fXM4.ax > aA , so that we have 
V c > 0 Axe(xm,xM)a* > a A + e- N o w (3b) a n d t h e c o n t i n n i t y o f a o (•) im-
P!y AxG(xm,xM)(aA + * ) • * < - (aP,6P) and (aA + e) o x M < &P- By (18) 
we have Axe(xM,bA)^(a ') = °°- Thus (1) and the continuity of a o (•) yield 
Ax€(xM,^)(aA + f ) ° x ^ 6 / 1 a n d 

(*) bf < (aA + f) o x M < (aA + c) oxM < bf. 

Using (3d) we get Ax€(xm,xM) 1 ^ = " ' t ^ = « W w h i c h 

leads to (using our above assumption) hl^J^M) = hlll£at\!Z)M) = 

limx_>XM+ gi(x) < oo, that is (see (*)) ^ ^ = j $ ^ < <»• But /*,(&?) > 0 

implies fc(aA + e) = fc(aA + f), which contradicts the strict monotonicity of k. 

Thus (17a) is proven. 

If we now show 

(17b) limx_>XM+#/(£) = oo, then this is a contradiction to our above assumption, 
and (17) is shown. 

Let (xn) C (xm,XM) be an arbitrary sequence satisfying limn->oo^n = XM- By 
(17a) we get VnoeN An0<n<ENa*n < &A, and (3d), (3e), (17a) and k(aA) = 0 imply 

r , x r ht(aXn<>xn) ht((bY) ht((bY) 
hm gi(xn) = hm —— r— = lim " l ' = —-—----- = oo. 

n - o o n->oo k(axJ n->oo A;(aXn) fc(limn_>00 a X n ) 

Now the continuity of g\ on the open interval (.A, B) is shown: 

— (14), (16) and (7) imply: xm > A =» limx_>Xm #(_) = 0 = # (x m ) -

— (15), (17) and (7) imply: xM < B => limx_>XM gt(x) = oo = gi(xM). 

— By (14), (13) and (15) we get: J\ ^ 0 =.> gl is continuous. 

Thus (80) is proven. 

Now we let vary m G K& and get (79) for all a G (aA , 6A) and for all x G (A, B). 
In the next step we show 

(18) A0G(am,6m] A_€(A,_)( a ° * E [ aP'6Pl =^ «OX = ^ ( f c ^ a ) ' <?m,j(*)) )-

Let a = 6A , „ G (.A, B) and a ox G [a^, &pj. By (80) we have only to show that 

6 A o „ = /i i-1 )(fcm(^) 'Pm,K^))-
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Case 1: Let 6A o x = aP. Then we get gt(x) = 0 by (1) which results in 

^ ( M & m W * ) ) = M_1)(0) = a? = b*»x. 
Case 2: b^ox e (aP,bP] : By the continuity of (•) o x there exists a sequence 

(an) C (am1bm) satisfying an | bm and f\nGNanox G (aP,&P] so that 
(using (80)) bmox = limn^oo(ano.x) = limn-.>00 /ij

_1)(fcm(a) -#m,Kz)) = 

h\-l)(krn(b*)9rnAx))-

(19) Now we extend #m / by gmti(B) := l i m x ^ B - (flwfa))-

This limit exists, since gmj is monotonic increasing. Finally we prove 

(20) AaG(a^,6^] A*€(-4,B]( a<>* € [aP,&P] => aoa; = fcj"1}(km(a) • sm,*(V)) ). 

Let a G (a A ,b A ] ,x = JB and let a ox G [aP,frP]. We have to show aoB = 

h\-l)(km(a)^gmil(B)). 

Case 1. Let a o B = a]*. Then Lemma 2 (d) implies bf o B < I I £ l v a o B) = 
limn_,c>b(IIn

:= xaP) = a]1, and the monotonicity of o yields 

f\ f\ aox<aP. 
a€(a* f&£)*€(.4,B) 

Thus (1) and (19) lead to Axe(A,B) 9m,i(x) = 0 a n d 9m,l(B) = 0 so that 

^ " " ( M " ) • <7m,t(-3)) = ^ ( O ) = aP = a o R 

Case 2. Let ao B E (aP,bPJ. Since a o (•) is continuous on (-4, £?] there is a 

sequence (xn) C (A,B) satisfying xn ] B and AneNao : r™ ^ (ap»^p]-

Thus we obtain (using (18) and (19)) 

aoB = lim ( a o x n ) = lim h\-l)(km(a) • gmti(xn)) = /i[_1)(A:m(a) • gmyl(B)). 
n—KX) n—•oo 

Thus Theorem 6 is proven. • 

Let us add some remarks and examples. 

(I) In the proof of Theorem 6 we have actually shown a more general result: 

For the representation of o on the open intervals in (80) only the following 
property of o was used: (•) ox is continuous and monotonic increasing on 
(a A ,b A ) for all xG (A,B). 

(II) If in addition (Z) is supposed, then we can extend gmt\ by gmti(A) = 0. This 
extension is monotonic increasing, but not necessarily continuous.Moreover the 
representation (79) is valid also for x = A: 

aoAe [aY,bY\ =>aoA = A = af = h\~l)(Q) = h{-l)(km(a) • gm,i(A)). 
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(III) If the ordinal sum for II contains at least two Archimedean parts, then an 
extension of the representation (79) to a = am is not possible: 

Consider A = U,b\[_1 = a}1 and let e be a right unit for o. Then 

a £ o e = a r
, = 6F_16[aF_1,6{i1], 

but 
hti(^(^)9m,i-i(e)) = h£?{0) = af_v 

(IV) Using the right distributivity version of Theorem 6 we can deduce the following 
result, which is contained in [20] (see Theorem 5.1): 

Let _L= II = + : [0, oo]2 —> [0, oo] be a pseudo-addition with generator set 
{gk - [ttfc,6fc] —* [0,oo] | k G K±}, and let : : [0,oo]2 —> [0,oo] be a pseudo-
multiplication, which satisfies the right distributivity law (DR) (with respect to 
(+, +) and (CLB), (LU), (Z) and (CRZ). Then there exist monotonic increasing 
and continuous functions Hk : (0, oo] —> (0, oo], k G K^ with i/fc(0, oo] C (0, oo] 
satisfying 

Hk(e) = l and / \ / \ a*x = gj-1){Hk(a). gk{x)). 
aG(0,oo] x£[aklbk] 

The following example will be needed for our next main result and gives the 
representation of a pseudo-multiplication, if in Theorem 6 the two pseudo-additions 
coincide and if the pseudo-additions are Archimedean t-conorms. 

Corollary 1. Let A = II be continuous, Archimedean t-conorms (on [A, -B]2), and 
let o be a pseudo-multiplication satisfying the weak left distributivity law (DL*) and 
(LU). Then the following is valid: 

(a) A strict => e< B. 

(b) There exists exactly one generator k of A with k(e) = 1 and 

/ \ [(Z) V (a,x) <£ {(A,B\ (B,A)} V (A not strict) => aox = fc(-1}(fc(a)fc(x))]. 
a,a;G[A,B] 

(c) If [ (Z) A (A strict ) ] V [e = B] then we have: 

A aox = k~l(k(a)k(x)). 
a,xG[A,B] 

Thus, if e = B, then o is a strict t-norm on [A, B]2 with multiplicative generator k. 

P r o o f . Let k : [A, B] —> [0, oo] be a generator of A = U. By Theorem 6 there is a 
continuous, monotonic increasing function g : (A, B] —> [0, oo] with Aa,xe(A,£] a o x = 

k(-V(k(a)g(x)). 
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To prove (a) let us assume that A is strict, but e = B. By (55) we have k(e) = 
k(B) = oo, and we get the contradiction 

/ \ x = eox = kt-V(k(e)g(x)) G {A,B} 
xe(A,B] 

(since k(e)g(x) G {0, oo}). Thus e < B. 

(b) By (a) we have k(e) < oo, and since a generator is determined up to a 
multiplicative constant we may choose k(e) = 1. But then we obtain AxG(A B)X ~ 
eox = k(~V(k(e)g(x)) = k"1(g(x)Ak(B)). Thus the strict monotonicity of A; implies 
AxG(A,B) k(B) > k(x) = g(x) A k(B), or k(x) = g(x) for all x G (A,B). Since k,g 
are continuous we have k = g on (A,B\ and thus aox = k^"l\k(a)k(x)) for all 
a,x G (-4,5]. 

To prove (b) we still have to show that the last equality holds for (a = A) V (x = A). 

Case 1: (Z): This case is obvious because of k(A) = 0. 

Case 2: (a,x) (£ *{(A, B), (B, A)} V (A not strict): By (55) we have k(a),k(x) G 
[0,oo). 

Case 2a: If (o = A) Ax G (A, B] then we obtain: A < Aox < \imb-+A+ (box) = 
lim6_A+ k^\k(b)k(x)) = k^MA^x)) = A. 

Case 2b: The case a G (A, B] A (x = A) is similar to Case 2a. 

Case 2c: If (a = A) A (x = A) the case 2a implies 
A < AoA < limy^A+(Aoy) = A = k^x\k(A)k(A)). 

(c) If (Z) A (A strict) then k(B) = oo and fc(_1) = fc"1, and (b) implies the 
representation of o. Finally, if e = B, then A is not strict (see (a)). 

Thus (b) gives /\a X£[A,B]
 a o x = k^~l\k(a)k(x)). But now k(a)k(x) remains in 

the range of k because of k(a) < k(B) = k(e) = 1. 

This finishes the proof of Corollary 1. D 

If the pseudo-addition has a unit element then we combine Theorem 6 with The
orem 3, Theorem 4 and Corollary 1 to get more information on the pseudo-additions 
and pseudo-multiplications under consideration. Thus the following result looks a 
little bit complicated for the first moment, but it is helpful, since it covers and gen
eralizes many recent results of the literature (see for example the last statement (h) 
of the following Theorem 7). 

Theorem 7. Let A and II be pseudo-additions. 
Let o satisfy the weak left distributivity law (DL*) and (RU) and (LU) (existence 

of a unit e). 
We assume that A = II = V is not valid. Then we have: 

(a) A = II|.fiTA| = 1, e G (a i ,6 i ] , a o x G [ax,6i] for all a,x G [ai,&i] 
(multiplication is compatible with the structure of A). 



Multiplication, Distributiv.ity and Fuzzy-Integral II 483 

(b) There exists exactly one generator fc of A with fc(e) = 1 and A0 l € [ a b i [(a, x) £ 

{ ( a i , 6 i ) , ( 6 i , a i ) } = i > a o x = fc(-1)(fc(o)-fc(.t))]. . 

(c) [ai = -4A(Z)] V[ A| [ a i ) 6 l ] 2 not strict] --=> Aa,,^. . ,*] aox = fc(--)(fc(a)-fc(.t)). 

(d) [01 = A A (Z) A A| [ a i i 6 l ] 2 strict ] V [e = &i] ==> Aa,xe[ai>6i] aox = k~l(k(a) 

•fc(x)), 

(e) [61 < B] V [(DL) A (CRB)] = > (01 = A) A (A| [o i i6 l ]- strict.) 

(f) [ai > A] V [(Z) A (CLZ)] ==> 61 = B. 

(g) [01 > A A (CRB)] V [e = 61] => (61 = B) A (A| [ a i )6 l ]2 not strict.) 

(h) Assuming in addition (CRB) and (Z) we get the following representation the
orem. 

Theorem. 

(I) If e = B then: (A| [ a i ) B ] 2 is not strict) A(/\a>l€[aiiB]3 a<>x = fc-1(fc(a) • k(x))) 
(here ai G [0,B); the assumptions (CRB),(Z) are not needed for statement 
(I))-

(II) If e < JB, then e G (ai, 61), and there are only 3 possibilities: 

— A|[v4)51]2 is strict and o satisfies (d) with ai = A, b\ G (A,B), 

— A|[ai..B]2 is not strict and o satisfies (c) with ai G (A, U), b\ = B, (here 
(Z) is not needed), 

— A is an Archimedean pseudo-addition and o satisfies (c) with ai = 
A, 61 = B. 

P r o o f . Statement (a) follows from Theorem 4 (b), (c) (and thus Corollary 1 can 
be applied to o|[ai j6l]2 : [ai,&i]2 -> [ai,bi]). 

The statements (b) and (c) follow from Corollary 1(c), whereas statement (d) 
follows from Corollary 1 (c). 

If 61 < B in (e) then the result follows from Theorem 4, and if (DL) A (CRB) in 
(e) then Theorem 3 (b) gives the result. 

Statement (f) results from Theorem 4. 
In the case (a\ > A A (CRB) Theorem 4(c) implies (g). If e = 61 then Corol

lary 1 (a) shows that A|[ai)6l]2 is not strict. The contraposition of (e) yields b\ = B. 
To prove (h), (I) let first e = B. Because of e G (ai, bi] (see (a)) we get 61 = B = e. 

Now (g) implies: A|[ a i 6 lp is not strict. Finally (b) and (d) imply the representation 
o f k i n ( h ) . 

(II) Now let e < B. If we assume that e = b\ then (g) gives the contradiction 
61 = B = e. Thus we obtain e G (ai, 61). 

We distinguish the two cases (ai > A) V (bi < B) and (ai = A) A (b\ = B). 
Ub\ < B then (e) implies that a\= A and A l ^ - p is strict. 
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If ai > A then (g) shows that bi = B and A|[ai)B]2 is not strict (only here (CRB) 
is used). 

If (ai > A) A (61 < B) then (f) implies the contradiction 61 = B. 
Finally, the statement in the case (ai = A) A (61 = B) is obvious. 
This finishes the proof of Theorem 7. • 

Example 3. We remark that Example 2 with B = 2 shows that the associativity 
of o doesn't follow in general from the representation aox = k^~x\k(a)'k(x)), a, x 6 
[A, B]: In the example we have k(x) = x for all x G [0,2], but (2 o 2) o | = 2 o | = 
1 ^ 2 = 2 o l = 2 o ( 2 o | ) . 

Theorem 7 means that, if we assume only a weak distributivity law (which is for 
example satisfied if the conditionally distributivity (74) is assumed) and the existence 
of a unit element e, then the pseudo-multiplication o is completely determined on the 
only Archimedean square (ai, &1]2 by means of the uniquely determined generator k 
(with k(e) = 1) of the pseudo-addition A (A ^ V). If (CRB) and (Z) are satisfied 
then o is completely determined on [ai,&i]2. 

Especially the representation result (h) of Theorem 7 can be applied to each 
pseudo-addition A and to each pseudo-multiplication o (satisfying (DL*), (LU), (RU), 
(CRB) and (Z)). 

For example, statement (h) (I) implies immediately the following result, which is 
Theorem 5.21 in [11]. 

Theo rem 8. Let T : [0, l ] 2 -» [0,1] be a continuous t-norm, and let S : [0, l ] 2 -» 
[0,1] be a continuous t-conorm with S 7-= V, satisfying the conditionally distributivity 
(74). Then there exists c € [0,1) such that -5|[C)i]2 is Archimedean and non strict. 
For the additive generator s of S^cA]2 with 8(1) = 1 we have: /\ax£\c ^T(a,x) = 
s~1(s(a) • s(x)), that is, T|[C)i]2 is a strict t-norm on [c, l ] 2 . 

non 

strict 

max 

c 

strict 

c 



Multiplication, Distributivity and Fuzzy-Integral II 485 

An additional advantage of Theorem 7 is that in many cases Theorem 7 implies 
the associativity and commutativity of the pseudo-multiplication: 

Theorem 9. Let A and II be pseudo-additions. 
Let o satisfy the left distributivity law (DL), and in addition (CRB), (CLZ), (RU), 

(LU) and (Z). We assume that A = II = V is not valid. 
Then A = II is a strict (Archimedean) t-conorm on [.A, £?]2, and there is exactly 

one generator A; of A satisfying k(e) = 1, k(B) = co and 

/ \ aox = k~\k(a) • k(x)). (81) 
a,rr€[-4,B] 

Moreover, o is strictly monotone increasing in each place on (A,B)2, and o is asso
ciative and commutative. 

P r o o f . The proof is an immediate application of Theorem 7. Theorem 7(a) 
implies (A = U) and \K&\ = 1. 

Theorem 7 (f) gives b\ = B and Theorem 7(e) implies a\ = A and A I ^ B ] 2 is 
strict. 

Theorem 7(d) implies (81). 
This last result is an extension of a result of [13] where more assumptions were 

needed (A = II, the condition a o x = A =-> (a = A) V (x = A), associativity and 
commutativity of o, and thus both distributivity laws (DL) and (DR)). • 

The following result gives the representation of pseudo-multiplications if we re
quire both weak left distributivity (DL*) and weak right distributivity (DR*). 

Theorem 10. Let A, J_ and II be pseudo-additions. 
Let o be a pseudo-multiplication satisfying (DL*) and (DR*). Moreover let m G 

K& and k G K±. 
Then there are only two possibilities: 

(I) 
V f\ f\ aox = d. (82) 

d idempotent of LI a € ( a A 6 A ] x G ( a i . 6 ± ] 

(II) There exist exactly one I G Ku and Cm,*, € (0, oo) satisfying 

f\ f\ aox = fcj"1^^,* • km(a) .gk(x)) G (o? f6?]. (83) 
o€(a£,6&]*€(ai- fb£] 

P r o o f . We start the proof by proving first 2 preliminary statements (1) and (2). 
Let us fix m G K& and k G K±. Then we show: If an G (a£, 6^], x G (A, B] and 

if d G (-4, B] is U-idempotent then we have: 
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(1) (a0ox < d =!> / \ aox <dj A (a0ox > d=> / \ aox>dj. 

a€ (am ,6m ] aG(am,bm] 

The first statement in (1) follows from Lemma 2 (d): aox < b^ox < I lg 1 (aoox) < 
limn_00IIJ l

=1d = d. 
Let us assume \l„<-,„& hA, a o x < d. Then Lemma 2 (d) leads to the contradiction 

atv.am,omj v ' 
d<a0ox<b£lox < U g ^ a o ox) < limn_>ooU-Lid = d. 

In exactly the same manner we prove: 
If xo G (ajjj-, b£], a G (A, JB] and if d G (A, B] is II—idempotent then we have: 

(2) faoxn < d => / \ a o x < dj A ( a o x 0 > d => / \ a o x > d j . 
*<-(aJ-,bjL] xG(a^,6^-] 

Now we distinguish two cases which will lead to (I) and (II) of Theorem 10. 

Case (I): Aa€(am,bm) /\xe(a±ib±) a o x is II-idempotent. 

Case (II): \JleKu Va o G ( aA ) 6 m ) V*0<E(a^) «o ox 0 G (a?,b?). 

We treat case (I) and note: [aox is II—idempotent ] <& [aox G [A, B]\\JleKu (a]*, &P) ]. 

Since (•) o x and a o (•) are left-continuous on (A,B) we get: 
Aae(am,6m] Axe{a±,H]aox is II-idempotent. 

We choose d := b^o b-j: as II—idempotent element and get for arbitrary a G 
(am>^m] a n d arbitrary x G (a^,b^] by applying (1) and (2): aox <b^ob^ = d < 
aobjj- < aox so that aox = d. Thus (I) is proven. 

We now assume case (II). By applying (1) and (2) we obtain 

(3) / \ a o x 0 G (a?,bP] and AaG(am,6m] f\xe{a±ib±] a ox G (a^rf], 

a£(am ,bm] 

and thus / G Ku is uniquely determined. But now we can apply Theorem 6 and 
the right distributivity version of Theorem 6 to get that there are continuous and 
strictly increasing functions gm,i,Kk,i : (A,B) —> oo satisfying 

(4) f\ f\ [ a o x G [ a P , b P ] - ^ a o x = /i!-1)(fcm(a).^m,Kx))] 

ae (a m , 6 m ]*e (A , £ ] 

and 

(5) [\ / \ [aoxe[aY,b?}^aox = h\-l){Kktl{a)-9k{x))} 

x&(A,B]a£(a£,b£] 

so that 

(6) l \ f\ aox = h\-1\krn{a)-gm,i{x)) = h\-l\Kk<l{a)-gk{x)). 
a€(a%,b%]a€(a£,b£] 

We now define 
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(7) I:={x<=(a£,b£)\ \ / aox € (o,u,6P)} and xM := s u p / G (o^.&j1]. 
aG(am ,6m) 

Then 7 ^ 0 , and we prove as next step 

(8) A V A A aosGfaP-fc?). 
z€(a£,xM) azG(am ,6m) a£(a^,az) x€(a£tz] 

If z G (flfc-XAf) 1s arbitrary then (7) implies 

V V azoxze(af,bY). 

x^G(z,x M )a z G(a m ,6 m ) 

Now let a G (a^ , a z ) and x G (ak,z] be arbitrary elements. Using (3) we arrive at 
a? < aox < azoxz < b?, and (8) is shown. But (8) and (6) imply that for all 
z G (a£,XM) there exists az G ( a ^ , a m ) with 

A f\ aox = h\-l)(km(a)9m^(x)) = /i{"1)(Kfcli(a)»fc(x)) G (a?,6?) . 

aG(am ,a z)xG(a^,z] 

But this implies (since here we have h\~ — hf1) 

A A krn(a>)gm,i(x) = Kkii(a)gk(x) G (0,oo) or 

aG(am ,a z)x€(a^-,z] 

A A £m , /(z) ^ k , / ( a ) , . ,. , n N 

!} j/\,^w" = 'U ; ; )>= ( '• 
aG(a m , a z )^ (a f c

L ,z ] 

These constants are equal for all z G (a^, % ) because of (a^,XM) = UZ^^^M)^> Z1 
Using also the continuity of <7m.j and #fc we arrive at: 

(9) V A 9mAx) = cm,k-gk(x). 
Cm,fcG(0,oo) XG(O^ ,XM] 

(10) We now prove XM = &fc • 

Let us assume that XM < bk. Now let x G ( X M , ^ ) be arbitrary. By definition 
of I and xM we get first Aae(am,6m) a o x £ (°p>&?)> a n d t h e n (using (3) and (6)) 

Aa€(am,6m) &P = a ° X = ^ ( M ^ • Sm.lfr)). 
But this means that Aae(am,6m) &m (a) • Pm,.^) > M&P)-
Thus we obtain gm}i(x) = oo (because of limo_+aA fcm(a) = 0) and gmti(xM) = oo, 

since gmj is continuous. By (9) we have the contradiction gk(xM) = oo, that is 
XM = & f c -

Because of (6), (9) and (10) the second statement (II) is proven. This finishes the 
proof. ----

We remark that in case (II) of Theorem 10, cmyk-km(a) is a generator of A\^b^2. 
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Thus there is (in dependence of gk and hi) a generator km of A L A 6A,2 fulfilling 

/ \ f\ aox = h\-l)(krn(a)-gk(x)). (84) 
ae(a*,b£] xe(a£,b£] 

Let us still mention the following Corollary, which is a generalization of Proposi
tion 2.2 in [15]. 

Corollary 2. Let A,_L and II be continuous, Archimedean t-conorms on [A, B]2 

with generators fc, g and /i, respectively. 
Let the pseudo-multiplication o satisfy (Z) and the weak left distributivity (DL*) 

and the weak right distributivity (DR*). 

(a) Then there are only two possible cases: 

(I) / \ a o x = B or / \ a o x = A. 
a,xe[A,B] a,x£[A,B] 

(II) There exists a generator g of JL with 

/ \ a o x = / ^ ( f c f a ) - g(x)). (85) 
a,xG[A,B] 

(b) If A =_L, then o is commutative. 

(c) If A =_L= II is strict, then o is associative and commutative. 

P r o o f , (a) We apply Theorem 10: 

(I) There is an II—idempotent element d with / \ a xGMt£i ao x = d. Since II is 
Archimedean we have d G {A, B}. 

( n ) Vce(o,oo)/\a,xe(A,B]a<>x = h(<~1\ck(a)g(x)). But then g(x) := cg(x) is a 
generator of _L. Because of (Z) and k(A) = g(A) = h(A) = 0 the representation 
is also valid for (a = A) V (x = A). 

(b) In case (I) the statement is obvious, and in case (II) we have g = c • k in (5), 
so that commutativity is clear. 

(c) In case (I) the statement is again obvious, and in case (II) we have g = k = h 
and A;(-1) = fc""1. Thus the corollary is proven. • 

9. PSEUDO-DIFFERENCES 

We assume that the reader is familiar with the notions and results presented in 
Part I of this paper. 

We remember the fact that it is essentially to have a "generalized difference" 
(which we denote from now on by pseudo-difference) for the introduction of an 
integral which leads in special cases to the Choquet integral (see Section 2). 

In this section we introduce pseudo-differences —A of pseudo-additions A on ar
bitrary intervals which generalize pseudo-differences —A of Archimedean t-conorms 
A o n [0,1] (see (20)). 
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Definition 6. Let A be a pseudo-addition. Then the mapping —A : [A, B]2 —> 
[A, B] is called a A-pseudo-difference (or a pseudo-difference with respect to A) iff 

/ \ a - A 6 = inf{c e [A, B] : bAc > a}. (86) 
a,6G[A,B] 

Thus the definition is formally the same like in (20), and can be interpreted as 
coimplication with respect to a residuated implication Ir{x,y) = sup{z : T(x,z) < 
T/}, where T is the associated t-norm (see [7]). 

Because of this correspondence, the following results have applications for fuzzy 
logical connectives. 

Note that a - A b G [A, B] since bAB = B > a. 
If A = V then a —A b = a if a > & and a —A 6 -=- .A if a < 6 (for all a,6G [A,B]). 
Moreover —A is monotonic increasing in the first place and monotonic decreasing 

in the second place. 
It is clear that some further properties of —A are already known (but sometimes 

only in the Archimedean case of A). Nevertheless, we give in the next Lemma a 
longer list of important properties because we think they are worth while to be 
included for handy reference in the future. The statements (a) - (o) concern pseudo-
differences in general (for example (f) is the residual property and (g) the "exchange 
principle"), whereas the statements (p)-(s) show the connection of right boundary 
points of "Archimedean intervals" of a pseudo-addition with some properties of 
the corresponding pseudo-difference. These results become important when - like 
in Theorem 11 - pseudo-multiplications satisfying the weak left distributivity law 
(DL*) occur. 

Lemma 5. Let A be a pseudo-addition. Then the following statements are valid: 

(a) / \ a - A A = a. 
a€[A,B] 

(b) f\ [a>b=>a>b-Ac]. 
a,6,cG[A,B] 

(c) / \ / \ [a>b=>a-Ab = k-1(km(a)-km(b))e(am)<i]]. 
m£KAa,be{a%,b%] 

(d) A K V M€(a*e£])A(a>&)-*a-A& = a]. 
a€[A,B] m€K& 

(e) / \ [a<b&a-Ab = A]. 
a,6€[A,B] 

(0 f\ [c>a-Ab&bAc>a]. 
a,6,cG[A,B] 
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(g) A [(« - A t) " A C = O - A (l)Ac) = (fl - A c) - A 6]. 
a,6,cG[A,B] 

(h) f\ (a - A b)Ab = a V b. 
a,6G[A,B] 

(1) / \ [a > b > c => (a - A C) - A (b -&c) = a - A b}. 
a,6,cG[A,B] 

(j) / \ [ a > b>c==> ( a - A b)A(b-Ac) = a-Ac}. 
a,6,cG[A,B] 

(k) f\ (aAb)-Ab<a. 
a,6G[A,B] 

(1) / \ ( a A b ) - A C < o A ( b - A c ) . 
a,6,cG[A,B] 

(m) If a, 6 G [.4, .B] A -. ( \/ a, be (am, bm]) then we have: 
m6I-*A 

(oA6) - A b = a *-> (a > b) V (a = A). 

(n) If \ / a, b G (am, bm] then: [ (aAb) - A b) = a * Ace[A,a) bAc < bm ]. 

(o) / \ (aA6) - A (dAc) < (a - A d)A(6 - A c). 
a,6,c,d€[>.,B] 

(p) / \ [ a - A 6 G DA =^6< a - A 6 = a = aA6G DA]. 
a,6e[A,B] 

(q) / \ [oA6 ^ DA A (aA6 > 6) => (aA6) - A 6 = a]. 
a,6€[A,B] 

(r) / \ [ a A 6 ^ D A A(6>c)==> ( o A 6 ) - A c = a A ( 6 - A c ) ] . 
a,6,c€[>l,B] 

(s) / \ [ aA6 i DA A (a > d) A (6 > c) => (aA6) - A (dAc) 
a,b,c,de[A,B] 

= ( a - A d ) A ( 6 - A c ) ] . 

Proof. 

(a) o - A A = inf{c € [A, JB] : <4Ac > a} = inf{c € [A,B] : c > o} = o. 

(b) Using (a) we get 6 —A c < 6 —A A < a. 
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(c) Using that A^fe" 1 are continuous and strictly monotonic increasing, that 
km(a) - km(b) G (0, km(a)] and that bAam = b < a and bAbm = b£ > a we 
obtain: 

a _ A b = inf{c G [A, B] : bAc >a}= inf{c G [am, bm] : bAc > a} 

= inf{c G [am, 6m] : fc^MO A ( M * ) + M c ) ) ] > a} 

= inf {c G [am, bm] : km(bm) A (fcm(b) + fcm(c)) > km(a)} 

= ^ f{c G [am, bm] : fcm(b) + km(c) > km(a)} 

= ini{km
l(km(c)) G [am, bm] : fcm(c) > km(a) - km(b)} 

= i nf ikm(u) : (u > km(a) - km(b)) Aue [fcm(am), fcm(6m)]} 

= fcm
x inf {u G [0, km(bm)] : u > km(a) - km(b)} 

= km(km(a) - km(b)) G (am,a]. 

(d) To prove (d) we first show: (*) Va€(6,a) Ace(a,a) ^ ( Vm€/cA
 c>b € (am , 6m]). 

Case 1: If Am€KA ^ ^ (am>&ml then we choose a G (6, a) to satisfy (*). 

Case 2: If Vme/c & ^ (am»^ml then (because of a > b and thus a > bm) we 

choose a G (bm,a) to fulfil (*). Thus (*) is valid. 

Because of (*) we have Ace(a,a) bAc = b V c < a, and the monotonicity of A 
implies Ace[A,a) bAc < a, so that by definition 6 a —A b > a. On the other 
hand 6Aa = (b V a) = a so that a —A b < a. Thus (d) is shown. 

(e) Using (c) and (d) we get: a > b =$> a —A b > A. By contraposition one 
implication is shown. Conversely, if a < b then &A.A = b > a, and by definition 
6 we obtain a —A b = A. 

(f) If bAc > a then we get c > inf{x G [A, B] : bAx >a}=a - A b. To prove the 
converse, we consider first the case c = B. But then obviously bAB = B > a. 
If now c < J3, let d be an arbitrary element in (c, 5 ] , Then d > c > a —A b = 
inf{x G [A,B] : bAx > a} implies: VxG[A,d)a -̂  &-̂ -x < bAd. Thus we have 
6Ac = \imd-+c+(bAd) > a. 

(g) Using (f) in the following second equality we arrive at the desired result: 

(a - A b) - A c = inf {x G [A, B] : cAx >a-Ab} = inf {x G [.A, £] : 6A(cA.x) > a} 

= inf {x G [A, B] : (bAc)Ax >a} = a-A (bAc) 

= a - A (cAb) = (a —A C) - A 6. 

(h) If a < b then (a —A &) Ab = AAb = b = a V b (here we have used (e)). Now we 

treat the case a > b. We apply (f) two times to obtain: ( Ac>a-A& ^ c -̂  a ) 

A ( Ac<a-A6 ^ C < a)' Since A is continuous in each place we get 6A(a—A&) > 
a > 6A(a —A b) (note that a —A b = A implies a > 6A(a —A b)). Thus we 
arrive at (a —A &) Ab = a = aV b. 
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(i) In the case a = 6 we have (by (e)): (a —A c) —A (b —A c) = A = a —A 6, 
whereas the case 6 = c yields (using (e) and (a)): (a —A c) —A (b —A c) = 
(a —A c) —A A = a —A c = a —A 6. 
Now we treat the main case a > b > c where we distinguish three subcases: 

(I) \lmeK±a>b)c e [am»^m] : Since fcm and fc"1 are strictly monotonic in
creasing we get, using (c) a-Ac = fcm

1(fcm(a) - fcm(c)) > fcm
1(fcm(6) -

fcm(c)) = 6 - A c and then: (a - A c) - A (6 - A c) = fc"1(fcmfcm
1[fcm(a) -

km(c)] - fcmfcm
1[fcm(6) - km(c)]) = fcm

1(fcm(a) - fcm(6)) = a - A 6. 

(II) (Vme* A be G [am ,6m]) A a £ [am,6m] : (c) and (d) imply 6 - A c G 

(a£, 6m] so that (a - A c) - A (6 - A C ) = O - A ( 1 - A C ) = O = O - A 6. 

(HI) - , ( V m € * A 6 ' c G [am>bm]) ' Here a > 6 > c yields - ( V m G * A
a > c G 

[am> &m]) a n d t h us (by (d)) (a - A c) - A (6 - A C) = a - A 6. 

r(j) In the case a = 6 we get (using (e)) (a—Ab)A(b—Ac) = AA(b—Ac) = b—Ac = 
a —A c. The case b = c leads again because of (e) to (a —A b)A(b —A c) = 
(a —A b)AA = a — A c In the main case a > b > c we treat the same three 
subcases (I)-(III) like in (i): 

In case (I), (c) yields (a - A 6)A(6 - A c) = fcm
2(fcm(a) - fcm(6))Afcm

1(fcm(6) -
km(c)) = fcm

1(fcm(a)-fcm(6) + fcm(6)-fcm(c)) = fcm
x(fcm(a) - fcm(c)) = a-Ac. 

In case (II), (c) and (d) give 6 —A C G (am , 6m] and thus (a —A 6)A(6 —A C) = 
aA(b —A c) = a V (6 —A c) = a = a —A c-

In case (III) we obtain (because of (d) and (h)): (a —A b)A(b —A c) = (a —A 
6)A6 = a V 6 = a = a —A C. 

(k) (aA6) - A 6 = (6Aa) - A 6 = inf {c G [A, B] : 6Ac > 6Aa} < a. 

(1) Using (h) and (k) we obtain (aA6) - A c < (aA[6 V c]) - A c = (aA[(6 - A 

c)Ac]) - A c = ([aA(6 - A c)]Ac) - A c < aA(6 - A c). 

(m) If a > 6 then we get by (d): (aA6) —A 6 = (a V 6) —A 6 = a —A 6 = a. 

If a < 6 then (e) gives (aA6) —A 6 = (a V 6) —A 6 = 6 —A b = A. 

(n) We consider the cases (a) AC€[A,a) & A c < bm a n d (P) Vce[A,a) bAc ^ bm-

In case (a) we take an arbitrary c G [am, a) and get 6m > 6Ac = fcm (fcm(6) + 
km(c)) so that fcm(6m) > fcm(6) + fcm(c). Thus we obtain fcm

1(fcm(6) + fcm(c)) < 
kmH[(km(b) + km(a)] Afcm(6m)) = fcm"1)(fcm(6) + fcm(a)) = a A 6 , s o t h a t 6 A c = 
kml{km(b) + km(c)) < aAb. The monotonicity of A gives Ace[A,a) b^c < a&b> 
or (aA6) —A 6 > a. Together with (k) we obtain (aA6) —A 6 = a. 

In case (/?) we get 6^ > 6Aa > 6Ac > 6^ which means 6Ac = 6Aa = aA6. 
Now definition (6) yields (aA6) —A 6 < c < a. Thus (n) is proven. 
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(o) Using (1) twice and(g) we arrive at: 

(aAb) - A (dAc) = [(aAb) - A c]-Ad< [aA(b - A c)] - A d 

= [(b - A c)Aa] - A d < (b - A c)A(a - A d) = (a - A d)A(b - A c). 

(p) Since a —A b G DA we have a —A b > A, so that (1) implies a > b. To 
prove a = a —A b we consider two cases. If -»( Vm€KA

 a ' b ^ (am> &ml) then 
we obtain together with a > b from (d) just a = a —A b. In the other case 
Vme*rA

 a'be (am> bm}> (c) gives a - A b G (a£, a], so that a-Abe DA yields 
a = bm = a — A b. Finally, we get from a = a — A b G DA and a > b the desired 
result aAb = aVb = a. 

(q) We consider two cases: 

( 7 ) : - ( V «.*<-(a£,6£]) and (*) : V m e * A a,b G (<£,&£]. 

In case (7) we have a V b = aAb > b so that a > b. Thus (m) gives (aAb) —A 
b = a. 

In case (J) we know that aAb G [am ,bm]. But aAb <£ £>A yields aAb < bm, 
which implies Ace[A,a) &Ac < bAa = aAb < b£. Now (n) gives (aAb)-A& = a. 

(r) We consider (similarly to (q)) two subcases (7) and (S): 

(7) : - ( V b>ce ( a - 6 m ] ) and (S) : \Jm^ b,ce (am ,bm ] . 

If (7) is supposed we get -if VmGKA
 a ^ 6 > c e (am» ^ml)» for> i f this is not the 

case then we obtain from c<b = AAb < aAb the contradiction b G (am , bm]. 

Thus twice application of (d) results in (aAb) —A C = aAb = aA(b —A C)-

In the case (S) we have b—Ac G (am , bm] (see (c)) and consider three subcases: 

(rl): a<a* (r2):, a > b*, (r3): a e ( a £ , 6 £ ] . 

Case (rl): (aAb) —A c= (a\/b) —A c = b —A c = aA(b —A c). 

Case (r2): (aAb) —A c = a —A c = a = aA(b —A c) (here we have used (d)). 

Case (r3): The assumption aAb ^ DA yields b^ > aAb = fcm"1)(fcm(a) + 
km(b)) so that aAb = km

1(km(a) + km(b)). Moreover b > c implies 
aAb > c, so that (c) leads to (aAb) —A C = km

1(km(aAb) — km(c)) = 
km

1((km(a) + km(b)-km(c)) = km
1((km(a) + km(b-Ac)) = aA(b-Ac)). 

(s) First (r) implies (b —A c)Aa = aA(b - A C) = (aAb) - A C. NOW we show 
(b —A c)Aa ^ DA. If this is not the case then we get from the above equality 
that aA(b —A C) G D A , SO that (p) implies the contradiction aAb G DA. 
These two partial results together with (g) and (r) lead to (aAb) - A (dAc) = 
[ (aAb ) - A c] -Ad = [ (b - A c)Aa]-Ad = (b-Ac)A(a-Ad) = (a-Ad)A(b-Ac). 

Thus Lemma 5 is proven. • 
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Example 4. (1) We start with the pseudo-difference with respect to the classical 
addition on intervals (which extends the example in Example 2): 

Let - c o < A < B < oo and let A = +, that is 

a+b :=A + [(a - A) + (b - A)] A(B- A), a, be [A, B]. 

Then we have: a - A b = A + (0 V (a - &)), a, be [A, B] 
(If a = b = oo then we define a —A b := 0). 

Indeed, h(x) := x — A, x e [A, B] is a generator of +, since h~l(y) = A + y, ye 
[0,B - A] so that a+b = h~x(h(a) + h(b)), a, be [A,B]. 

Now, if a > 6 then Lemma 5(c) implies a—&b = h~l (h(a) — h(b)) = h~l(a — b) = 
A + (a — b). If a < b then Lemma 5 (e) leads to a —A b = A = A + (0 V (a — &)). 

(2) If we choose in (1) A = 0, B = 4, A = +, then this example shows that we 
cannot omit the assumption 

aAb £ D A in Lemma 5 (q): (2A3) - A 3 = 4 - A 3 = 1 < 2 = 2A0 = 2A(3 - A 3), 

aAb £ DA in Lemma 5 (r): (2A4) - A 3 = 4 - A 3 = 1 < 3 = 2A1 = 2A(4 - A 3), 

b > c in Lemma 5 (r): (1A1) - A 2 = 2 - A 2 = 0 < 1 = 1A0 = 1A(1 - A 2), 

aAb £ DA in Lemma 5 (s): (4A4) - A (2A2) = 4 - A 4 = 0 < 4 = 2A2 
= (4 - A 2)A(4 - A 2) , 

b > c (and a > d, because of the commutativity of A) in Lemma 5 (s): (2A1) —A 
(1A2) = 3 - A 3 = 0 < 1 = 1A0 = (2 - A 1)A(1 - A 2). 

For our purposes it is important to know whether the weak distributivity law is 
compatible with a pseudo-difference. The following result shows, that the answer is 
positive. 

Theorem 11 . Let A and II be pseudo-additions, and let o be a pseudo-multiplication 
satisfying (Z) and (DL*). Then the following holds: 

(a) A A ia~:b-:c=>([a-Ab]ox)U([b-Ac]ox) = [a-Ac]ox]. 
a,6,cG[A,B]x€[A,B] 

(b) / \ f\ [a>b=> ([a-Ab]ox)U(box) = aox]. 
a,be[A,B]x€[A,B] 

(c) / \ / \ (aAb)ox = ([(aAb)-Ab]ox)U(box)<(aox)U(box). 
a,6G[A,B]a:G[A,B] 

(d) (a0 = - 4 < a i < a 2 < - - - < a n < 5 ) Axe[A,B] => U?=1[(ai-& at-i) ox] = an ox. 

P r o o f , (a) Because of (Z) we assume w.l.o.g.that x e (A,B]. We consider 4 
cases: 

(I): a = b, (II): b = c, (III): (a > b > c) A a <£ DA, 

(IV): (a>b>c)A(\JmeKAa = bm). 
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Case (I): We use Lemma 5 (e) and obtain: ([a —A b]ox)U([b —A C] OX) = (A ox) II 
([b-A c]ox) = AU([b-& c]ox) = ( [ 6 - A C]OX) = ( [ a - A C]OX). 

Case (II) can be proven in the same manner like Case (I). 

Case (III): We use (e), (j) and (p) of Lemma 5 (in that order) to get a —A b, b —A C G 
(A, B], (a —A b)A(b —A c) = a —A C ̂  D A , and (DL*) implies ([a —A b] ox) II 
([b -A c]ox) = ([a - A c] o x). 

In Case (IV) there exists a sequence (an) C (6, b„\) satisfying an | b„\. In the fol
lowing chain of equations we use case (III) and 

(sup an) - A b = sup(an - A b) (87) 

to arrive at 

([a - A b] o x) II ([b - A c]ox) = ([(sup an) - A b] o x) II ([& - A c] o x) 

= ([sup(an —A b)] ox)U ([b - A c]ox) = (sup[(an - A b) o x]) II ([b —A C] O X) 

= sup([(an - A b) ox] II ([b - A C] OX)) = sup[(an - A C)OX] = [sup(an - A c)]ox 

= [(sup an) —A c] o a; = (a —A C) O X. 

We include still the proof for (87): an —A b < (supan) —A b so that sup(an —A b) < 
(supan) —A b. If we now put 5 = sup(an —A b) then we get s > an —A b and by 
Lemma 5(f) bAs > an for all n G N. Thus we have bAs > (supan) and finally 
(again by Lemma 5 (f)) s > (supan) —A b. 

(b) We use statement (a) with c := A and apply Lemma 5 (a). 

(c) To prove the first equality in (c) we use simply (b). The inequality follows 
from Lemma 5 (k). 

(d) follows by induction on n G N: If n = 1 then (d) follows from Lemma 5 (a). 
Suppose (d) is true for n G N. Then we get U™=i[(ai —A ai-i)ox] = [(an+i —A an)o 
x] II (U?=1[(ai - A a i - i ) o x]) = [(an+i - A an) o x] II [an ox]= an+i o x (in the last 
equality we have used (b)). Therefore Theorem 11 is proven. • 

10. SUMMARY 

We have shown that the concept of weak distributivity has many applications and 
leads by Theorem 5 to one more unexpected result (comparison of two pseudo-
additions). The main results in Part II are probably Theorem 6 (representation 
theorem for pseudo-multiplications) and Theorem 7 (representation theorem for 
pseudo-additions and pseudo-multiplication under weak assumptions). 

In Section 9 it is shown that the introduced pseudo-difference is compatible with 
the weak distributivity. 

(Received October 27, 2004.) 
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