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THE MULTISAMPLE VERSION OF THE LEPAGE TEST 

FRANTIŠEK RUBLÍK 

The two-sample Lepage test, devised for testing equality of the location and scale pa
rameters against the alternative that at least for one of the parameters the equality does 
not hold, is extended to the general case of k > 1 sampled populations. It is shown that 
its limiting distribution is the chi-square distribution with 2(k — 1) degrees of freedom. 
This fc-sample statistic is shown to yield consistent test and a formula for its noncentral-
ity parameter under Pitman alternatives is derived. For some particular alternatives, the 
power of the fc-sample test is compared with the power of the Kruskal-Wallis test or with 
the power of the Ansari-Bradley test by means of simulation estimates. Multiple compar
ison methods for detecting differing populations, based on this multisample version of the 
Lepage test or on the multisample version of the Ansari-Bradley test, are also constructed. 

Keywords: multisample rank test for location and scale, Lepage statistic, consistency, non-
cent rality parameter, multiple comparisons for location and scale parameters 

AMS Subject Classification: 62G10 

1. INTRODUCTION 

Perhaps the most widely used two-sample rank test of equality of location parameters 
is the Wilcoxon-Mann-Whitney test, constructed by Wilcoxon in [24] and by Mann 
and Whitney in [16]. Its practical use is explained in currently used monographs 
like [3] or [10]. When it is desirable to test the equality of the scale parameters of 
two underlying populations by means of a rank test, then in the case of the equal 
medians usually the Ansari-Bradley test, constructed in [1] is used, the formulas and 
tables for this test can be found also in [10]. However, while the Wilcoxon-Mann-
Whitney test does not react well to changes in the scale parameters when the location 
remains constant, analogously the Ansari-Bradley test has not good sensitivity to 
changes in the location parameters when the scale remains constant. For testing the 
hypothesis of equality both of the location and scale parameters of two populations 
against the alternative that at least for one of the parameters the equality does not 
hold, the monograph [10] recommends to use the Lepage test constructed in [14]. 
The Lepage test statistic is a combination of the Wilcoxon-Mann-Whitney and the 
Ansari-Bradley test statistics; a version of this two-sample test, based on general 
scores, has been studied also in [5]. 
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Since the Lepage test statistic has under the null hypothesis asymptotically the 
chi-square distribution with 2 degrees of freedom, it can be used either by means 
of tables from [15] and [10], or with the help of the asymptotic approximation by 
means of the critical values of the chi-square distribution. A multisample version 
of the Ansari-Bradley test statistic was proposed by Puri in [18] (more detailed 
computational formulas for this multisample statistic are given in [23]). Further, it 
is well known that the multisample extension of the Wilcoxon-Mann-Whitney test 
is the Kruskal-Wallis test (described in [12] and [13]), because in the two sample case 
both the tests yield the same critical region for testing the equality of the location 
parameters. In an analogy with the two-sample case, the multisample version of 
the Lepage statistic is in the Section 2 proposed to be the sum of the Kruskal-
Wallis and the Ansari-Bradley statistics. Consistency of the resulting test, limiting 
distribution of this multisample statistic and its behaviour under Pitman alternatives 
are the topic of Theorem 2.1 of the mentioned section. 

A general assertion on multiple comparison procedure is in Theorem 2.2, a pro
cedure for detecting populations differing in scale parameters (when the location 
parameters are assumed to be equal but can be unknown) is derived by means of 
Theorem 2.3(11) and labelled as (2.42) and (2.43). A multiple comparison proce
dure for detecting difference either in the location or in the scale parameter (and 
aimed also at the use in conjunction with the multisample version of the Lepage 
test statistic) is derived by means of Theorem 2.4 and labelled as (2.46)-(2.47). In 
principle, all the comparison rules constructed in this paper can be used with their 
exact critical constants based on the uniform distribution of the ranks of the pooled 
random sample, but similarly as in the case of the multisample tests, only the crit
ical constants of the constructed rules based on the asymptotic approximation are 
mentioned, because the tables of the exact constants including all possible sample 
sizes with values in a chosen bounded range would be very extensive. 

The Section 2 contains also some simulation results on the power of the Kruskal-
Wallis, the Ansari-Bradley and the multivariate extension of the Lepage test. The 
proofs of the assertions of the Section 2, as well as some assertions on limiting 
distribution of location-scale problem test statistics based on general score functions, 
can be found in the Section 3. 

2. MAIN RESULTS 

It is supposed throughout the paper that Xji,... ,Xjnj is a random sample from 
the distribution with a continuous distribution function Fj(x) and these j = 1 , . . . , k 
random samples are independent. The topic is the statistical inference on the null 
hypothesis 

H0: Fx=F2 = ... = Fk. (2.1) 

Behaviour of the tests under the alternative will be described by means of the fol
lowing assumption. 
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( A l ) For j = 1 , . . . , k the sample Xji,..., Xjn. is a random sample from the dis
tribution of the random variable 

0 = Vjtj + ft (2.2) 

where Oj > 0, fij are real numbers and £ i , . . . ,ek are independent identically dis
tributed random variables with the continuous distribution function 

F(x) = P(ej < x). (2.3) 

Let .*., , 
N = m + ... + nk (2.4) 

denote the total sample size. The sample sizes are such that 

min(n i , . . . , nk) —> oo, (2.5) 

and for the relative sample sizes 
Pi = | (2-6) 

the relations . . . . . , / r i _x 

hrnpj = pj > 0, j = 1 , . . . , k (2.7) 

hold. 

It is assumed in (Al) that nj = n^ , where u = 1,2,... denotes the index of 
the experiment. Hence also N = N^u\ pj = p^ and by the limit in (2.7) one 
understands the limit as u tends to infinity. The location and scale parameters t^-, 
Gj are in (2.2) described as being fixed, and this is how (Al) will be used in the 
assertion (II) of Theorem 2.1. However, in the third part of the mentioned theorem 
they are allowed to vary with u in the way, described in (2.21). For the sake of 
brevity, in most cases the index u of the experiment will be omitted. 

Under validity of (Al) the null hypothesis (2.1) can be expressed as 

Ho : Mi = M2 = • • • = V>k , <?i = a2 = . . . = ok . (2.8) 

Now assume that 

X = (-Xii,. . . - X i m j . - . j X j i , . . . ,Xjn.,. ..,Xfci,...,Xfcnfc) (2.9) 

denotes the pooled random sample and 

R{N) = (RlU^^Rln1^^,Rjl,^^Rjnj^^,RkU^^Rknk) (2.10) 

denotes its ranks, i. e., R^ ..., Rjnj are the ranks of the sample from the j t h pop
ulation. 

The multisample Ansari-Bradley statistic will be defined by means of the score 
vector 

( 1 , 2 , 3 , . . . , m , m , . . . , 3,2,1) JV = 2m, 
bN = { (2.11) 

( 1 , 2 , 3 , . . . , m , ^ , m , . . . , 3 , 2 , 1 ) 1V = 2m + l , 
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and the partial sums 

5 f = E M % ) > J = l,---,fc. (2.12) 
i = l 

Put 

v% 

ßN 

' 4 8 ( Í V - $ iVeven, 

(iV-H)(iV2+3) ^ d d 

48 N J o u u ' 

f LE+21 iVeven, 

-"Sr^ -V odd. 

(2.13) 

(2.14) 

The multisample version of the Ansari-Bradley statistic is defined by the formula 

, fc / c W \ 2 . fc (s?) - niUN) 

V LV j = 1 \ n.7 J VN j=sl
 n3 

which is equivalent to the expression for the multisample Ansari-Bradley statistic, 
given on p. 792 of [23]. 

Let 

and the partial sum 

-*---£-- (»•) 

Then 

s,=X>i. (2.17) 
t = l 

r^^^.Kiiy^^-"^)2
 (2,8) 

™H£t Vn; 2 J wNfri n3 
is the well-known Kruskal-Wallis test statistic. 

Theorem 2 .1 . Put 
T = TK + TB- (2.19) 

(I) Suppose that for the continuous distribution functions mentioned at the be
ginning of the section the hypothesis (2.1) holds. If also (2.5) is fulfilled, then the 
statistic (2.19) is asymptotically x2-distributed with 2(k — 1) degrees of freedom. 

(II) Suppose that (Al) holds. Then the test of (2.8) based on (2.19) is consistent, 
i.e., if (2.8) is not fulfilled, then for the statistic (2.19) 

H m P ( T > t ) = l (2.20) 
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for every positive real number t. 

(Ill) Let us assume that for j = 1 , . . . , k the sample XjX,..., Xjnj is a random 
sample from the distribution of the random variable (2.2) where jij, aj depend on 
the index u of the experiment in such a way that 

aj = ay = a + —j= , ^ij = Mj- = A*+ -7-= i a > 0, fi,aj ,fi* sue real numbers. 

(2.21) 
Suppose that both (2.5) and (2.7) hold. If the distribution function (2.3) possesses 
with respect to the Lebesgue measure a bounded density / , which is continuous at 
every x (with the possible exception of the finite number of real numbers) and 

/ 

+00 
\x\f(x)dx < +oo, (2.22) 

then the statistic (2.19) has asymptotically the chi-square distribution with 2(k — 1) 
degrees of freedom and the noncentrality parameter 

k k 
» \ 2 A-. -AQ\^„.{„W)\1 ST = SK + 6B, SK = 12j2pA»n2, SB=48^2pj(^r^ (2-23) 

j = i j = i 

where 

„M = J+00(^lx+!lzJi)f2{x)dXj (2.24) 

„<*> = f °° (p^-x + --^---) sign(0.5 - F(x))f2(x) dx, (2.25) 

k k 

o = ^2PJ<TJ, ji=Y^PjfiJ- (2-26) 

The statistic (2.19) is designed for the situation, when Fj(x) = F((x — /J>j)/aj) 
and F is a continuous distribution function. If the observed value of T is greater than 
the 1 — a quantile of the chi-square distribution with 2(fc — 1) degrees of freedom, 
then the null hypothesis (2.1), corresponding in this case to (2.8), is rejected. 

According to (II) of the previous theorem the test based on (2.19) is consistent at 
any fixed alternative ii\,a\ > 0 , . . . ,/Xfc,crfc > 0 not fulfilling (2.8). For the Pitman 
alternatives (2.21) the noncentrality parameter (2.23) of T is the sum of components 
SK and 5B, corresponding to the Kruskal-Wallis test and the Ansarj-Bradley test, 
respectively. If in addition to the assumptions of Theorem 2.1 (III) for the density 
/ the equality f(x) = f(—x) holds for all x, then from the asymptotic local point of 
view according to (2.23) - (2.26) the Kruskal-Wallis statistic contributes to the over
all power only through a response to the location and the Ansari-Bradley statistic 
only through a response to the scale parameter. 
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If the assumptions of the assertion (III) of the previous theorem hold in the 
normality setting, i.e., if the random variables £i,...,£fc are 1V(0,1) distributed, 
then an application of (2.23) yields that in this case the noncentrality parameter 

5г = - í > (Џj-W , 12 Л 

3 = 1 .7 = 1 

(2.27) 

The asymptotically optimal statistic for testing (2.8) based on the normality as
sumption is the likelihood ratio test statistic (its optimality in the sense of exact 
slopes follows from Theorem 3.1 of [21]). After some computation one obtains from 
the Corollary 1.2 and the formulas (1.21), (1.28) of [22] that in the normality set
ting under the local alternatives (2.21) the likelihood ratio statistic has asymptically 
chi-square distribution with 2 (A; — 1) degrees of freedom and the non-centrality pa
rameter 

x = 2^Pi a2 + 2 2 > a2 • 
J = l J = l 

(2.28) 

Thus 
R Á *-t 

0.6079 = — < -L < - = 0.9549, 
7T- A 7T 

(2.29) 

where the lower bound is attained if there is no change in the location and the upper 
bound is attained when there is no change in the scale parameter. 

The following tables contain simulation results on the fit of the size of the test 
based on (2.19) with a chosen significance level or results concerning the comparison 

Table 1. Simulation estimates 
under validity of (2. 

of the tail probabilities 
1) for k=S. 

П\ 7І2 TI3 6, 6, 6 10, 10, 10 10, 10, 15 
OL 0.05 0.1 0.05 0.1 0.05 0.1 

P(тв>xì(k-1)) 0.038 0.090 0.044 0.096 0.047 0.102 

P(Tк> XІ(k-l)) 0.041 0.098 0.050 0.103 0.046 0.093 

P(т>xl(2(к-1))) 0.031 0.075 0.040 0.091 0.042 0.091 

П\ 712 ПЗ 10, 15, 15 15, 15, 15 20, 20, 20 
a 0.05 0.1 0.05 0.1 0.05 0.1 

p(тв>xl(k-ij) 0.046 0.102 0.046 0.102 0.050 0.099 

P(Tк> XÌ(к-l)) 0.048 0.101 0.046 0.097 0.052 0.104 

P(T >xl(2(k-l))) 0.041 0.100 0.042 0.094 0.048 0.099 

of this test with the Kruskal-Wallis and the Ansari-Bradley test. The simulation 
estimates in all tables are based on N -= 10000 trials for each particular case. In 
Table 1 (as well as in the whole text) Xa( m ) denotes the 1 — a quantile of the 
chi-square distribution with m degrees of freedom. 
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The simulation results from Table 1 suggest that for k = 3 the approximation 
of the exact critical constant of the statistic (2.19) with its asymptotic counterpart 
X«(2(fc — 1)) yields size of the test close to the nominal significance level when all 
sample sizes are at least 10, for smaller sample sizes the size of the test usually 
remains below the nominal value. 

The Ansari-Bradley test, designed for testing the equality of the scale parameters, 
rejects the null hypothesis (2.1) if TB > Xa(k ~ !)> a n d the Kruskal-Wallis test 
designed for testing the equality of the location parameters rejects (2.1) if TK > 
Xa(k — 1). The behaviour of these tests in situations when the null hypothesis is 
violated only in one type of the parameter, is illustrated by simulation estimates of 
their power, when for j = 1,2,3 the j t h random sample of size n- is taken from the 
normal distribution with the mean fij and the variance cr?. 

Table 2. Simulation estimates of the power when the change occurs 
in the location parameter. 

A-1 = 0, Џ2 = 0, џз = 0.5, cri = cг2 = aз = 1 

П\ 712 ГСЗ 10, 10, 10 10, 15, 15 15, 15, 15 15, 25, 35 

a 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 

P(тв>xl(k-1)) 0.042 0.091 0.042 0.091 0.046 0.096 0.045 0.092 

P(тк>xl(k-1)) 0.159 0.266 0.217 0.335 0.241 0.365 0.438 0.569 

P(т>xl(2(k-l)j) 0.105 0.198 0.147 0.257 0.166 0.280 0.325 0.464 

T a b l e 3 . S imulat ion es t imates of t h e power when t h e change occurs 
in t h e scale parameter . 

џi = A-2 = Mз = 0, <т\ = 1, ø2 = 1, crз = 1 5 

П\ ГÍ2 П з 10, 10, 10 10, 15, 15 15, 15, 15 15, 25, 35 

Q 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 

P(Tв>XІ(k-l)) 0.131 0.225 0.177 0.281 0.199 0.309 0.345 0.468 

P(Tк>XІ(k~l)) 0.049 0.103 0.046 0.096 0.049 0.104 0.042 0.089 

P(т>XІ(2(k-l))) 0.093 0.183 0.125 0.219 0.143 0.246 0.245 0.367 

The results in the Tables 2 and 3 show that while T may react to the parameter 
change weaker than the statistic designed especially for the underlying type of al
ternative, T reacts more strongly when compared with the statistic not designed for 
the given alternative (as the mentioned results show the latter may not at all react, 
because in Table 2 the power of the Ansari-Bradley test coincides with the nominal 
level of significance and the same situation is in Table 3 with the Kruskal-Wallis 
test). Therefore if one is not sure what type of the alternative (either location or 
scale change) will occur in practice, the test of (2.1) based on T is preferable to the 
Ansari-Bradley and to the Kruskal-Wallis test. 
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The alternative that the change will occur merely in the location or merely in 
the scale parameter can sometimes be perceived as not to be of the proper nature, 
because in some situations the increase of the response level (i. e., the increase of the 
location parameter) is accompanied with an increase of its variability. Behaviour 
of the previously mentioned tests in such a situation is illustrated by the power 
estimates given in the following table, where as in the previous cases Пj denotes 
size of the sample from the normal distribution with mean Џj and the standard 
deviation Gj. 

Table 4. Simulation estimates of the power when the change occurs 
both in the location and in the scale parameter. 

Џ\ = 0, CT\ — 1, Џ2 = 0.3, (72 = 1.5, џз = 0.8, <73 = 2 

П\ П2 Пз 10, 10, 10 10, 15, 15 15, 15, 15 15, 25, 35 

a 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 

P(тв>xl(k-1)) 0.213 0.330 0.241 0.370 0.334 0.470 0.430 0.573 

P(TK> xl(k-l)) 0:137 0.232 0.151 0.253 0.199 0.307 0.263 0.392 

P(т>xl(2{k-1))) 0.221 0.363 0.260 0.412 0.390 0.540 0.539 0.691 

The simulation results presented in Table 4 suggest that when the change in the 
location parameter is comparable with the change in the scale, then it may happen 
that the test based on (2.19) will be more powerful than the Ansari-Bradley or the 
Kruskal-Wallis test. 

Before proceeding with a multiple comparison procedure based on (2.19) we pay 
attention to procedures based on the components of this statistic. 

It is observed on p. 131 of [4] that an analogue of the pairwise multiple comparison 
procedure using the Wilcoxon scores and constructed ibidem, can also be constructed 
in the joint ranking case. The following theorem is an extension of this assertion 
into a general framework. In this theorem the quantity Qk fulfills the equality 

p( max \yi-Уj\>Qk

a) C(y) = Nk(0,Ik)) a , (2.30) 

(a) 
where yi denotes the ith coordinate of y and Ik is the k x k identity matrix, i. e., Qk 

denotes the 1 — a quantile of the maximum modulus of the 1Vfc(0, Ik) distribution. 

Theorem 2.2. Let (2.1), (2.5) and (2.7) hold. Suppose that (p : (0,1) —> E1 is 
a function expressible as a finite sum of monotone square integrable functions such 
that for Tp = fQ tp(u) du 

VP= I (vW-ip)2 du 
Jo 

is a positive real number. Let the scores 

oлr(j) = dщ j = l,...,N, (2.31) 
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where the real number dN ^ 0. Put 

1 N 

°N = -rz~ $>"(•?) ~ ^)2» (2-32) 

where a ^ stands for the arithmetic mean of aN(\),..., a^(N). For j = 1, . . . , k let 
(cf. (2.10)) 

ns 

5 i V ) - E M * * ) (2-33) 
i=l 

and for j i < j 2 
ş[ч>) ş(y>) 

D&.^Z.J*.. (2.34, 
V n i i ni2 V 

For the statistic Mn\l...,nk = max{ |L)^j 2 | ; 1 < j \ < j 2 < k} the convergence (cf. 
(2.30)) 

P(M%ltnh>Qk

a))—> 7 < a (2-35) 

holds, and if pi = .. .pk = £, then 7 = a. 

An application of the previous assertion yields the following theorem. 

T h e o r e m 2.3. Let (2.1), (2.5) and (2.7) hold. 

(I) Suppose that 

MM..,nh = m a x { | D g a | ; 1 < ji < j 2 < k} , (2.36) 

nM _ / 2 4 n i l ni2 ( 2 n 7 ) 
D^-VN(N + 1) / J L + -_-_' ( } 

V V nii nj"2 
where 5j is the partial sum (2.17). Then the convergence (2.35) holds and 7 = a if 

Pi = --.pk = j . 

(II) Suppose that 

< * L -"—{l^fil; i<ii<i- <- k). (2-3») 
s ( b ) 5 ( b ) 

<>=/?-fe=fc- (2M) 

v V n « n « 
where u ^ is defined in (2.13) and SJ6) is the partial sum (2.12). Then the convergence 

P(Mn+l.,nk > Oia)) —• 7 < a (2-40) 
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holds and 7 = a if p_ = .. .pk = £. 

By means of the previous theorem we construct multiple comparisons procedures, 
used in conjunction with the concerned test rejecting the null hypothesis (2.1) if the 
test statistic exceeds the quantile of the chi-square distribution. 

The Kruskal-Wallis statistic (2.18) is designed for the situation, when Fj(x) = 
F(x — fij). If for the observed value of TK the inequality TK > X^(k — \) holds, then 
the null hypothesis (2.1) is rejected. Declare the j i th and the 32th populations to 
be different (i.e., the location parameters \ijx ^ Hj2), if for (2.37) the inequality 

P ? £ l > Q i t t ) (2-41) 

holds. If n\ = . . . = njb = n, then the rule (2.41) becomes 

-5 i2|>QiQ), 

which is the Nemenyi method for equal sample sizes, derived in [17]. It should be 
noted here that the rule (2.41) is an improvement of the rule (110) from p. 166 of 
[17] because of the reduction of the size of its critical constant. 

The multisample version (2.15) of the Ansari-Bradley statistic is designed for the 
situation, when Fj(x) = F(X/GJ). If for the observed value of T_? the inequality 
TB > Xa(k — 1) holds, then the null hypothesis (2.1) is rejected. Declare the j\th 
and the J2th populations to be different (i.e., the scale parameters cr^ ^ &j2), if for 
(2.39) the inequality 

l-#Al>Qia) (2-42) 
holds. If n_ = . . . = nk = n, then the rule (2.42) becomes 

.(«> 
i c ( 6 ) _ Mb). 

U±—Jl±>Qk*>. (2.43) 
VnVN 

Theorem 2.4. Let (2.1), (2.5) and (2.7) hold. Suppose that (cf. (2.36)-(2.39)) 

Mnu...,nk = max{M<*Ltnk , M g „ w } . (2.44) 

If a G (0,1) and /? = 1 — y/1 — a, then the convergence (cf. (2.30)) 

P(Mnu...,nk > Q[0)) —> 7 < a (2.45) 

holds and 7 = a if p\ = .. .pk = \. 

As has already been mentioned, the statistic (2.19) is designed for the situation, 
when Fj(x) = F((x — HJ)/CTJ). If for the observed value of T the inequality T > 
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Xa(2(ft — 1)) holds, then the null hypothesis (2.8) is rejected. Declare the j i t h and 
the J2th populations to be different if for (2.37),-(2.39) at least one of the inequalities 

\D%l\>QT, (2.46) 

l ^ £ l > Q f > (2-47) 

holds; here 
p = 1 - \ / l - a (2.48) 

and as in the previous cases, the constant Q\ ' is defined by means of (2.30). The 
validity of (2.46) is interpreted as the difference fij1 ^ /i j2 of the location parameters 
and the validity of (2.47) as the difference CFJX ^ &j2 of the scale parameters. The 
tables of the constants fulfilling (2.30) are published in [8], but since for the usual 
significance levels a the quantity (2.48) has values not included in these tables, the 
use of the approximation 

' - ! 
can be recommended, because the use of the rule (2.46)-(2.47) with a chosen /? 
corresponds to the significance level a = 2/3 — 01 of the test and the critical con
stants Q used in the multiple comparisons rules of this paper are of approximative 
asymptotic nature. 

3. PROOFS 

The assertion of Theorem 2.1 (I) on the limiting null distribution will be carried out 
by means of the following theorem. 

Theorem 3.1. Let us assume that ip : (0,1) —> E1, ip : (0,1) —* E1 and each of 
these functions is expressible as a finite sum of monotone square integrable functions. 
Put 

Jp= (p(u) du, ip = / I/J(U) du 

x Jo Jo1 

Yp = f (<p(u) -Tp)2du, V*= [ (tf(u) - Wdu, (3.1) 
Jo Jo 

v<P,i>= / ( ^ ( ^ ) - ^ ) ( ^ M - ^ ) d u » 
Jo 

and suppose that the matrix 

v={v:,t V ) (32) 

is regular. For j = 1 , . . . , k let (cf. (2.10), (2.4)) 

*r -!>(-£-). #=T^T t (Ki-?i) - *)' • 
1 N f \ 

^ = ̂ g^(NTTj' 

(3-3) 
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and the quantities SJ , (T2
N' , -0 are defined similarly. Let both (2.1) and (2.5) hold. 

(I) Suppose that the relative sample sizes (2.6) are such that pj —» pj. Put 

Z = (£1,•• . ,&,»7i,•••,%) , ft = , = - , riJ = -J-j===- (3.4) 

Then 
Z - > J V 2 f e ( 0 , K K ® A ( p ) ) (3.5) 

in distribution. Here 

/ i t^u \ / v£r\ 
KV=\ _ J ^ _ VY* ) , A(p) = lk~y/P(y/P)', VP= . (3-6) 

V V%^ / \ ^ / 
and <8> denotes the Kronecker product of matrices. 

(II) The statistic 

52 = VM-ty^)*®" + Q*~ Q^]' (3J) 

where 

1 k / 5 ( v ? ) \2 1 k /SW \2 

Q* = ^ £ " ' ( - ^ - - 0 ) > ^ = T^En i ( -Jr-^) > <3-8) 

91/ fc , <7(v?) x , 9 ( t / , ) 

Q ^ = ^ = = = = = = E ^ i - ^ - " ^ (3-9) 
JVMW<%+ h Kn> )Kn* J 

converges in distribution to the chi-square distribution with 2(k — 1) degrees of 
freedom. 

Since the previous theorem can be proved similarly as the Theorem on p. 170 of 
[7] by means of Lemma a on p. 164 ibidem, the proof is omitted. 

P r o o f of T h e o r e m 2.1. (I) Suppose that the functions of the argument 
x e ( 0 , l ) 

cp(x) = x, ip(x) = min {x, 1 — x) . (3.10) 

Then the quantities (3.1) are 

H » = _ j . V^> = ^ V ^ = 0, (3.11) 

and (p, ij) fulfill the assumptions of the previous theorem. Since j = (N+ l)ip(j/(N + 
1)) and the coordinates of the vector (2.11) fulfill the equality 

M j ) = ( N + W i j r ^ . ) . J = 1, • • •, N, (3.12) 
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the validity of the assertion (I) of Theorem 2.1 can be verified by means of Theo
rem 3.1. • 

The assertions (II) and (III) of Theorem 2.1 deal with the behaviour of the statis
tic under the alternative. Their proof will be carried out by means of the version of 
the Chernoff-Savage theorem stated in the next text. Since this version uses the fol
lowing assumptions (A2) on existence of the derivatives of the score function which 
are slightly different from usually used conditions, we prefer to include it into the 
paper in order to make clear what a precise kind of assertion forms the base for the 
concerned proof. 

(A2) ^ - (0,1) -> E1 and there exist bounded functions gf : (0,1) -> El, 
i = 1,2 and finitely many real numbers an = 0 < . . . < as = 1 such that for 
all u G (0,1) — {ao , . . . , as} the first two derivatives of ib exist and 

V ' ( u ) = 5 J , ) ( u ) , 4>"(u)=g™(u), 

g\, ' is right-continuous and 

* ( - a ) - * ( - - ) - = / $\t)dt, $)(u2)-$\u1)= 9$\t)dt 
Jt\ Ju\ 

for all 0 < t\ < £2 < 1, the second equality holds whenever u\ < u<i belong to 
(di, ai-f 1) and i -= 0 , . . . , s — 1. 

Theorem 3.2. Suppose that (2.10) denotes the ranks of the pooled random sample 
(2.9), the relations (2.5), (2.7) hold and put 

k k 

H(x) = Y,PiFi(x). ff(-o = E ^ F i ( x ) • <3-13) 
3=1 3=1 

(I) Assume that the function ip : (0,1) -» E1 fulfils (A2). Let (cf. (3.3)) 

o M /-+00 
T f > = - i - , nf = / * (£(*) ) dFj(x), (3.14) 

T W = ( f » , . . . , Z f > ) ' , /,<*> = 0 ? > f . - , M?})' • (3-15) 

Then the convergence in distribution 

VN(T™ - / x w ) —> /Vfc(0, S) (3.16) 

holds. Here the diagonal elements of the asymptotic covariance matrix 

j = i t = i P t j = i 
j^i t^i 3^i 
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and the off-diagonal elements 

k 

^ir = 2^Pj\h^r + Ij,r,i — U,j,r — U,r,j ~" h,i,j — Ir,j,i) > 

where 

7. . t = / / %)(- - Fi(y))gf(H(x))gf(H(y))dFj(x)m(y). 
x<y 

(II) Suppose that for j = l,...,fc the distribution function Fj depends on the 
index u of the experiment in such way that 

Fj(x) = Fh^-\, (3.17) 

where F is the continuous distribution function (2.3), 

Urn aiu) = a, lim ^ = /. (3.18) 
u—»oo •" u—»oo J 

and er > 0, /i are real numbers. Let the score functions (p, ip fulfill (A2) and, similarly 
as in (3.14), (3.15), 

TM = (T^\...,T^y, pM = (/i(*\ ...,M<*>)'. (3.19) 

Then for 

r = ( r w ) ' / i = ( ^ ) ) ' (3,20) 

the weak convergence of distributions 

C(y/N(T - /*)) —> N2fc(0,S) (3.21) 

holds. Here (cf. (3.1) ) 

s =(& fcO' r = d i a s £ S)-"'- ' - O . - . 1 ^ - * -
(3.22) 

We remark that the previous theorem can be proved in the same way as Theo
rem 1 and its Corollary 2 in [2], Theorem 3.6.5 on p. 104 of [19] (the formulas for 
the asymptotic covariance matrix can be found also in [6]), the second part of the 
previous theorem can be proved similarly as Theorem 5.6.1 on p. 204 of [19]. 

Proof of T h e o r e m 2.1. (II). Suppose that (2.8) does not hold and put (cf. 
(2.2)) 

«„=V (<\>0) ""• (3.3) 
I 5 %=3-
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If there exists i such that for the limits (2.7) the inequality £ \ pjqij ^ \ holds, 
then according to Lemma 5.3 of [12] the test based on TK is consistent and since 
T>TK, the relation (2.20) holds. Assume therefore that 

k 1 
J^PjQiJ = 2 ' * = 1, • • •, * • (3.24) 
j=-

Since T > Ta, it is sufficient to prove that the test based on Ts is consistent. 
However, 

TB = (vl/N*)-1 £ if, ij = -* (Bf - «,£„) , 
j= i ynj^ 

which means that it is enough to show that for some j the test based on \tj\ is 
consistent. But 

VarftlHo) —» - - ^ -

and therefore it is sufficient to prove that for some j and 

Ь=tГ = ^S?> (3.25) 

the equality 

tip 
holds for each positive real number 7. Assume for a while that j is fixed and put 
(cf. (3.13)) 

ЏN 
1 Ґ°° I - 1 

dEj(x), /io = Я f ø | Я 0 ) . 

The limit Dj = limu_KX)(/i/v — /xrj) exists and 

r+oo i 
1 t+o° 1 

dFj(x). (3.27) 

It follows from the formula (3.16) of the Chernoff-Savage theorem that (3.26) will 
hold if Dj 7-- 0. We shall find an index j with this property. 

Choose a number xo such that 

H(xo) = \. (3.28) 

Since the random variables (2.2) are independent, for j ^ i 

Fi(x) = P(b <x) = P(d < 010 = *) 
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and therefore 

/ 

XQ 

FІ(X) dFj(x) = P(Q < 0 , 0 < *o) • 

Making use of these properties of the conditional distribution, (3.24) and the fact 
that Fj (x) is uniformly distributed, after some computation one obtains that 

Dj = \+pJFj(xo)2-Fj(xo) + 2£UY^PiFi(x)\dFj(x). 

Hence 
1 fXo 

Dj = j - Fj(x0) + 2 H(x) dFj(x). (3.29) 

Apply to the integral in this equality the integration by parts. Then (3.29) and 
(3.28) yield 

" Dj = \ - 2 j T Fj(x) dH(x). (3.30) 

According to the assumptions 

Fi(x) = F(aiX + bi), i = 1, . . . , k. (3.31) 

Suppose that the equality 

ai ==... = a* (3.32) 

would hold and for the sake of simplicity of notation assume that b\ < b2 < • •. _f_. bk. 
Since (2.8) does not hold, obviously 6;0 < &i0+i for some i0. But by means of (3.32) 

Qk,i = P(ti -ek<bi-bk) 

and since Si, ek are i.i.d. with a continuous distribution function, qk^ < | and for 
io this inequality is strict, which yields a contradiction with (3.24). Hence (3.32) 
does not hold and as the multiplication of the random variables Xij 's by the same 
positive constant does not change the values of ranks, one may assume that 

1 = a\ > ... > ak > 0 

and ai > a^\ for some i. Put in = max{£;at = a\} and 

x = mm < ; t = i0 + l,...,k> 
[ai-at J 

Since the ranks of Kn — /x,. . . ,Xknk — \i do not depend on the constant /i and 
this transformation leaves the values of a[s unchanged, assume without the loss of 
generality that x* = 0. Hence there exists j > 1 such that 

ai = 1 > aj > 0, bi = bj. (3.33) 
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(a) Let there exists x0 satisfying (3.28) such that 

x0 < 0. (3.34) 

Put G(x) = Fx(x). Then (3.33) implies that Fj(x) = G(ajx) and by (3.34) for all 
x < x0 

Fj(x) = G(CLJX) > G(x) = Fi(x). (3.35) 

If (3.35) holds with the equality sign for each x < x0, then for x < x0 

°<*>-oФ- -= G ( t ì 
Thus G(x) = 0, which together with (3.30) means that D\ ^ 0. It is therefore 
sufficient to assume that for some z 

G(ajz) > G(z), x0 > ajZ > z. 

For this z put 

XL = inf {x\ G(x) > G(z)} , xu = sup {x\ G(x) < G(ajz)} . 

Then z < XL < xu < djZ, for all numbers x G (XL,XU) the inequality in (3.35) is 
strict and this interval has positive measure (with respect to the Lebesgue-Stieltjes 
measure induced by G), which together with (3.35) and (3.30) means that D\ ^ Dj, 
and therefore at least one of these numbers is different fromjsero. 

(P) Suppose that the number inf{x; H(x) > - } is positive. Since the transfor
mation Xij = —Xij preserves the value of the statistic (2.12), considering instead of 
(2.9) the random variables Xij one obtains the situation from (a), and the proof is 
completed. • 

We remark that the following assertion is similar to Theorem 5.6.4 on p. 205 of 
[19]. 

Lemma 3.1. Suppose that (Al) is fulfilled with (2.21) and the distribution func
tion (2.3) possesses a density which has the properties, postulated in the assumptions 
of the assertion (III) of Theorem 2.1. Assume further that the score functions (p, ip 
fulfill (A2), the matrix (3.2) is regular and define by means of (3.14) 

fM = (v^(Tl (v )-E(Tl (^ ) |Ho)),... )v^(T f c
(v' )-^(T f c

(v )l^o)))^ 

TW = ( ^ ( T ^ - i ^ ^ 

f = ( i> \ r w ' ) \ 
Then (cf. (2.4), (3.2), (3.6)) 

NT'(V-1 ® A(p))T —> xl(*-i)(*) (3.36) 
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in distribution, and the noncentrality parameter of this chi-square distribution with 
2(k — 1) degrees of freedom is 

8 = V'(V~1®K)U. (3.37) 

Here 

K = d i a g ( P l , . . . , pk)-p(p)', v = (v?\...,vk*\v{?\...,v(

k*\>, 

^ = C(^^-~~}--)9.(П~))Ґ(-)äx, J 

.+oo v™ = SZ^^x+tň^)gÁF{x))f2{x)áx' 
/x, a are defined in (2.26) and g^(z) = <p'(z), g$(z) = ip'(z) at the points where these 
derivatives exist. 

P r o o f . Let Fj(x) = F(a,jX + bj) be the distribution function of (2.2). Since 

f h(x) dF(ajX + bj) = f h(?—^ dF(x) 

after some computation one obtains from (3.14) that 

/

+oo k 

<p(yN(x)) dF(x), yN(x) = ^ P t F ( x i ) / V ) , 
m™ * = - (3.38) 

X{ N — ~~z~: X + ~-~~~ . 

VN<7 + o\ \lNo + a\ 

Put y(x) = F(x). Then 

^U„(*» - (PWX))) = *»»>-;« f > (nxf-FJx)) vm«* -x) 
^ / yN -y ~ \ xhN -x j 

and applying to this function the Lebesgue theorem one obtains from (3.38) that 
(cf. (3.1)) 

y/N(nf> -<?) = v™ + o(\). (3.39) 
It is easy to see from (A2) that ip satisfies the Lipschitz condition and (cf. (3.3)) 

y/N\<p-<p\ = o(l). (3.40) 

Taking into account (3.39), (3.40) and (3.21) one easily obtains obtains that 

VNT—*N2k(Dv,W), 

where D = diag(y/p~,..., y/p~, y/~~,..., y/pk), W = V ® A(p). Since V~x <g> A(p) 
is the Moore-Penrose inverse of W, the rest of the proof follows from Theorem 9.2.3 
on p. 173 of [20]. • 
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Proof of T h e o r e m 2.1. (Ill) The functions (3.10) fulfill the assumptions 
of the previous Lemma with (3.11) and since with the notation from (2.19) and the 
previous lemma 

r = ivr , (v- 1 ®yi(p))f + oP(l), 

the rest of the proof can be carried out by means of (3.36). • 

The proof of Theorem 2.2 is an extension of the proof on pp. 130-131 of [4] into a 
setting based on the joint ranking and requiring the score function to be a function 
fulfilling imposed regularity conditions. 

Proof of T h e o r e m 2.2. Taking into account (2.34) it is evident that one 
may assume that for the scores in (2.33) the equality a^ij) = ^(j/(1V + 1)) holds. 
Then making use of Lemma a on p. 164 of [7] and Theorem 2.1 of [11] it is easy to 
see that the random vectors 

c(v) _ (n(v>) n^) n (<^ r>M r>M n^ V 
O — \IJ\2 , iJ i3 , • • • , -tJlfc , -V23 » • • • i U2k > • • • i Uk-\k) 

are asymptotically normal with mean 0 and asymptotic covariances cov(D^2, Dj£j4) 
given by the formula (here j \ < j*2, J3 < J4) 

2 j \ = J3 , 32 = J4 , 

c\ 

—j- — h = h - J1 h ¥" n» 

j i ¥" 33 , 32 = J4 = * 1 

*!(*+*)(*+*) — ' - <мч 
- 2 

pV(^+^)(*+^) 
32=JЗ=3, 

j \ , J2, J3, J4 mutually different. 

However, if Y = (Yi,..., Yfc)' is a random vector which is normally distributed with 
mean 0 and the covariance matrix diag(^j-,..., ^ ) , then putting 

^ = ^ 7 x f t ' 
V Pi^Pj 

^ = ( f / l 2 , ^ 1 3 , . . . , f / l f c , ^ 2 3 , . . . , ^ 2 k , . . . , ^ - - l k ) 

one finds out that the normally distributed random vector U has the covariance 
structure (3.41). Hence 

p(M<Xl,nk > Q?) - 7 = P(-n«M > Qia)) < a, 
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where the last inequality follows from the Hayter theorem in [9], and the inequality 
holds with the equality sign if p\ = . . . = pk = 1/fc. • 

P r o o f of T h e o r e m 2.3 a n d 2.4. Suppose tha t </?, tp are the functions (3.10). 
Then bN{j) = {N + l)^{j/{N + 1)) and (cf. (2.14), (2.13)) 

1 N 

bN = A/v , jj—^ ^2{bN{j) - bN)2 = v% . 
i = i 

Hence one may assume tha t for the part ial sums Sj , 5 • appearing in the formulas 

(2.33), (2.34) for M%l..,nk and M$l..,nk the validity of the equalities 

S- = s^ S^ = s^ 

holds. Thus the assumptions of Theorem 2.2 are obviously fulfilled which implies 
tha t the Theorem 2.3 is t rue . 

Making use of Theorem 3.1 (I), (3.11) and Theorem 2.3 one obtains t h a t 

limP(Mni,...,nfc < QP) = timP{M%ltnh < Q^) Iimi»(AfW..,nib < Qf) 

> (1-/5)2 

and this relation holds with the equality sign, if pi = ... = pk = 1/k. • 
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