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WEIGHTED MEANS AND WEIGHTING FUNCTIONS1

Radko Mesiar and Jana Špirková

We present some properties of mixture and generalized mixture operators, with special
stress on their monotonicity. We introduce new sufficient conditions for weighting functions
to ensure the monotonicity of the corresponding operators. However, mixture operators,
generalized mixture operators neither quasi-arithmetic means weighted by a weighting func-
tion need not be non-decreasing operators, in general.

Keywords: mixture operator, generalized mixture operator, monotonicity of the mixture
operator, quasi-arithmetic mean, ordinal approach
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1. INTRODUCTION

In multicriteria decision making, alternatives are characterized by score vectors de-
scribing the degree of fulfilment of chosen criteria. Without going into details (for
them, we recommend monographs [5, 6], for example), suppose that each alternative
a is characterized by a score vector a = (a1, . . . , an) ∈ [0, 1]n, where n ∈ N − {1} is
the number of applied criteria and the decision is based on an aggregation operator
A : [0, 1]n → [0, 1]. Commonly used anonymous (i. e., stable under permutations of
score) aggregation operator is the arithmetic mean M ,

M(a1, . . . , an) =
1
n

n∑

i=1

ai.

Standard incorporation of (fixed) weights (for details see [6] or [4]) models possibly
different criteria importance and leads to the class of weighted arithmetic means.
In this case, weights are assigned to single criteria (i. e., coordinates of score vec-
tor), independently of the actual score vector. Alternative approaches of introducing
weights to the arithmetic mean aggregation link the weights and single observed score
values. If this link is based on the ordinal approach, (i. e., fixed weight is assigned
to the largest score, another fixed weight is assigned to the second largest score,
etc.), we obtain the OWA (Ordered Weighted Average) operators introduced by
[16]. Observe that OWA operators can be viewed as “symmetrization” of weighted
arithmetic means, see [3], and that both OWA’s and weighted arithmetic means are

1Presented at the International Summer School on Aggregation Operators and Their Applica-
tions 2005 (AGOP 2005) held in Lugano, Switzerland, on July 10–15, 2005.
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strongly related to the number n of all criteria. Two cardinal approaches general-
izing the arithmetic mean are based on transformation and on weighting function.
Transformed arithmetic mean M (f) : [0, 1]n → [0, 1] based on a transformation
f : [0, 1]→ [−∞,∞] (f is continuous and strictly monotone) is given by

M (f)(a1, . . . , an) = f−1

(
1
n

n∑

i=1

f(ai)

)
. (1)

Observe that Mf is also called a quasi-arithmetic mean ([3, 6]) and that it is con-
tinuous up to the case Ranf = [−∞,∞]. The aim of this paper is a closer look to
the second cardinal approach based on a weighting function g : [0, 1]→]0,∞], which
is supposed to be continuous. Arithmetic mean weighted by a weighting function g
(also called a mixture operator in [12, 15]), Mg : [0, 1]n → [0, 1] is given by

Mg(a1, . . . , an) =
∑n
i=1 g(ai) · ai∑n
i=1 g(ai)

. (2)

Observe that due to the continuity of weighting function g, each mixture operator
Mg is continuous. Note that sometimes different weighting functions are applied for
different criteria score, thus leading to a generalized mixture operator, see [12, 15],
Mg : [0, 1]n → [0, 1] given by

Mg(a1, . . . , an) =
∑n
i=1 gi(ai) · ai∑n
i=1 gi(ai)

, (3)

where g = (g1, . . . , gn) is a vector of weighting functions. Obviously generalized
mixture operators are continuous. Observe also that quasi-arithmetic means (based
on the transformation f) weighted by a weighting function g,
M

(f)
g : [0, 1]n → [0, 1], given by

M (f)
g (a1, . . . , an) = f−1

(∑n
i=1 g(ai) · f(ai)∑n

i=1 g(ai)

)
(4)

were studied by several authors, see, e. g., [1, 11]. Recall that operators
M

(f)
g : [0, 1]n → [0, 1] given by

M
(f)
g (a1, . . . , an) = f−1

(∑n
i=1 gi(ai) · f(ai)∑n

i=1 gi(ai)

)
(5)

are often called Losonczi means due to [10] (and if all gi are equal, i. e., when (4) is
applied, then M

(f)
g is called a simple Losonczi mean). In different papers, different

names for operators we will investigate are used. To avoid any confusion, throughout
this paper we will use the following terminology:
• operators M (f)

g will be called Losonczi means, in short L-means

• operators M (f)
g will be called simple Losonczi means, SL-means

• operators Mg will be called generalized mixture operators

• operators Mg will be called mixture operators.

Interesting are relations of formulas (1), (2) and (4) (which clearly generalizes
both (1) and (2)). For example, put f : [0, 1]→]0,∞], f(x) = 1

x . Then M (f) = Mf .
Finally observe that formulas (1), (2), (4) do not depend on the number of criteria n.
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2. BASIC PROPERTIES OF WEIGHTED OPERATORS

All operators introduced in the introduction are obviously unanimous (i. e., idempo-
tent) operators, A(a, . . . , a) = a for each a ∈ [0, 1]. Up to the weighted arithmetic
mean (and possibly operators given by (3) and (5)) all of them are also anonymous
(i. e., symmetric),

A(a1, . . . , an) = A(aσ(1), . . . , aσ(n)),

where σ : {1, . . . , n} → {1, . . . , n} is any permutation. However, not all of them are
aggregation operators [3, 9].

Definition 2.1. A mapping A : [0, 1]n → [0, 1] is called an aggregation operator
whenever it is non-decreasing in each coordinate and fulfils

A(0, . . . , 0) = 0, A(1, . . . , 1) = 1.

The non-decreasigness of an aggregation operator A means (in multicriteria deci-
sion making) that better score of an alternative a when comparing with the score of
an alternative b is compatible with the preference of a over b (i. e., Pareto principle is
satisfied). However, mixture operators, generalized mixture operators neither (sim-
ple) Losonczi means need not be non-decreasing operators, in general. Evidently,
this possible failure is connected with the use of weighting function g. In the next
section, we will have a closer look to this problem.

Recall that penalization of bad attribute performances and reward of good at-
tribute performances in case of quasi-arithmetic means can be simply interpreted
as M (f) ≥ M (i. e., M (f)(a1, . . . , an) ≥ M(a1, . . . , an) for all (a1, . . . , an) ∈ [0, 1]n).
Following [8], we have M (f) ≥ M if and only if f is increasing and convex or it is
decreasing and concave. We will look for a similar characterization in the case of
mixture operators.

Proposition 2.1. Let Mg : [0, 1]n → [0, 1] be a mixture operator. Then
Mg ≥M if and only if the weighting function g : [0, 1]→]0,∞] is non-decreasing.

P r o o f . Let g be non-decreasing and let X be a random variable with uniform
distribution on (a1, . . . , an) (even if ai = aj for some i 6= j, formally we can dis-
tinguish them). Then g(X) and X have non-negative correlation, i. e., non-negative
covariance E [(g(X)− E(g(X))] · [X − E(X)] ≥ 0. This means that

1
n

n∑

i=1

g(ai)ai ≥
(

1
n

n∑

i=1

g(ai)

)
·
(

1
n

n∑

i=1

ai

)
,

i. e.,
Mg(ai) ≥M(ai).

Vice-versa, let Mg ≥M . For arbitrary x, y ∈ [0, 1], x < y,

Mg(x, y, . . . , y) ≥M(x, y, . . . , y),
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i. e.,
g(x) · x+ (n− 1) · g(y) · y
g(x) + (n− 1) · g(y)

≥ x+ (n− 1) · y
n

.

Therefore,

ng(x)x+ n(n− 1)g(y)y ≥ g(x)x+ (n− 1)2g(y)y + (n− 1) (g(x)y + g(y)x) ,

and, equivalently,
(n− 1) (g(y)− g(x)) (y − x) ≥ 0,

i. e., g(y) ≥ g(x). Hence g is non-decreasing. 2

Recall that to each operator A : [0, 1]n → [0, 1] its dual Ad : [0, 1]n → [0, 1] is
given by Ad(a1, . . . , an) = 1−A(1−a1, . . . , 1−an). Note that duality preserves mono-
tonicity and boundary conditions of aggregation operators, as well as the anonymity
and unanimity. Moreover, weighted means are self-dual (W = W d), while the dual
to an OWA operator is again an OWA operator but with reversed weights ( they are
taken in the opposite order).

Dual operator to a quasi-arithmetic mean is again a quasi-arithmetic mean,(
M (f)

)d
= M (1−f∗), where f∗ : [0, 1] → [−∞,∞] is given by f∗(x) = f(1 − x).

Observe that M (f1) = M (f2) if and only if f2 = αf1 + β for some real constants
α 6= 0 and β. Therefore, a quasi-arithmetic mean M (f) is self-dual if and only if
f∗ = αf + β for some α 6= 0, β. After small computing we can conclude that
M (f) =

(
M (f)

)d
if and only if the graph of the transformation f is symmetric with

sort point
(

1
2 , f(1

2 )
)
, i. e., f(x) + f(1− x) = 2f

(
1
2

)
for all x ∈ [0, 1].

Concerning the mixture operators, we have the next results.

Proposition 2.2. Let Mg : [0, 1]n → [0, 1] be a mixture operator. Then

(Mg)d = Mg∗ ,

where g∗ : [0, 1]→]0,∞] is given by g∗(x) = g(1− x), and (Mg)d = Mg if and only
if g(x) = g(1− x) for all x ∈ [0, 1], i. e., g = g?.

P r o o f . For any (a1, . . . , an) ∈ [0, 1]n, we have

(Mg)d(a1, . . . , an) = 1−Mg(1− a1, . . . , 1− an)

= 1−
∑n
i=1 g(1− ai) · (1− ai)∑n

i=1 g(1− ai)
=

∑n
i=1 g

?(ai) · ai∑n
i=1 g

?(ai)
= Mg∗(a1, . . . , an).

Observe that Mg1 = Mg2 if and only if g1 = αg2 for some real constant α > 0.
However, then (Mg)d = Mg if and only if the graph of the weighting function g is
symmetric with respect to the axis x = 1

2 , i. e., g(x) = g(1− x) for all x ∈ [0, 1].
Similarly, for a generalized mixture operator Mg we have (Mg)d = Mg? , where
g? = (g?1 , . . . , g

?
n). In the case of Losonczi means, we have (M (f)

g )d = M
(1−f?)
g? and

(M (f)
g )d = M

(1−f?)
g? . 2
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3. MONOTONICITY OF MIXTURE OPERATORS

As already observed, each mixture operator Mg is unanimous (idempotent), and
thus it is monotone if and only if it is non-decreasing (i. e., if it is an aggregation
operator). Our main interest is in mixture operators rewarding the good attribute
performances, i. e., in mixture operators stronger than arithmetic mean, Mg ≥ M .
Therefore, we will deal with non-decreasing weighting functions g mostly. However,
if Mg is an aggregation operator then also Md

g = Mg? (see Proposition 2.2) is
an aggregation operator. Thus description of non-decreasing weighting functions
g yielding monotone mixture operator Mg straightforwardly gives also description
of non-increasing g yielding monotone Mg (observe that g is non-decreasing if and
only if g∗ is non-increasing, and that (g?)? = g). Due to the anonymity (symmetry)
of Mg it is enough to investigate its monotonicity in the first coordinate only. For
application reasons, we will restrict our considerations to piecewise smooth weighting
functions g (i. e., all derivatives of g exist possibly up to countably many points).
Due to the continuity of Mg (and of g), the monotonicity of Mg in the first coordinate
is equivalent to the non-negativity of the first partial derivative ∂Mg

∂a1
in all points

a1 ∈ [0, 1] where this derivative exist. Therefore, with no loss of generality we
can assume that g is smooth (and thus ∂Mg

∂a1
exist everywhere on [0, 1]). Several

non-decreasing weighting functions g yielding a monotone mixture operator were
introduced in [15], namely linear and special quadratic functions. Note, however,
that description of such fitting quadratic functions in [15] is not exhaustive.

Definition 3.1. Let g : [0, 1] →]0,∞] be a non-decreasing continuous function
such that the mixture operator Mg is an aggregation operator. Then g is called a
fitting weighting function.

Observe that fitting weighting functions (up to special classes) were not yet char-
acterized. The first sufficient condition for a weighting function g to be fitting was
stated in [13].

Proposition 3.1. A smooth weighting function g : [0, 1] →]0,∞] is a fitting
weighting function (independently of n) whenever the next condition is satisfied:

0 ≤ g′(x) ≤ g(x) for all x ∈ [0, 1]. (C1)

Remark 3.1. Note that the requirement of (piecewise) smoothness of the weight-
ing function g in the above proposition is substantial. Though for any non-decreasing
weighting function g its derivative exists almost everywhere, (C1) fulfilled in points
of existence of g′ need not guarantee the non-decreasingness of the mixture opera-
tor Mg. Indeed, consider the Cantor function g : [0, 1] → [0, 1]. Then g( 1

3 ) = 1
2 ,

g( 1
9 ) = 1

4 , g( 2
27 ) = 1

8 , and thus

Mg

(
1
3
,

2
27

)
=

( 1
8 · 2

27 + 1
2 · 1

3 )
( 1

8 + 1
2 )

=
38
135

,
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Mg

(
1
3
,

1
9

)
=

( 1
4 · 1

9 + 1
2 · 1

3 )
( 1

4 + 1
2 )

=
7
27
,

i. e.,
Mg

(
1
3
,

2
27

)
> Mg

(
1
3
,

1
9

)

violates the non-decreasingness of Mg. Observe that the set of points, where the
Cantor function has not derivative is the Cantor set (i. e., it is uncountable) and
that g′(x) = 0 whenever g′(x) exist.

This result can be generalized. Indeed, from (2) we see that

∂Mg

∂a1
=

(g(a1) + g′(a1) · a1) · (∑n
i=1 (g(ai)))− (

∑n
i=1 g(ai) · ai) · g′(a1)

(
∑n
i=1 g(ai))

2 ≥ 0

if and only if
g2(a1) + α (g(a1) + g′(a1)(a1 − β)) ≥ 0, (6)

where α =
∑n
i=2 g(ai) and α · β =

∑n
i=2 g(ai) · ai (and thus necessarily β ∈ [0, 1]

and α ∈ [(n − 1) · g(0), (n − 1) · g(1)]). Now it is easy to see that (C1) implies (6).
However, (6) is satisfied also whenever

g(a1) + g′(a1) · (a1 − β) ≥ 0 (7)

for each a1 ∈ [0, 1] and each β ∈ [0, 1]. Because of g′(a1) ≥ 0, (7) is fulfilled whenever

0 ≤ g′(x)(1− x) ≤ g(x) for all x ∈ [0, 1]. (C2)

We have just shown a sufficient condition more general than (C1).

Proposition 3.2. If a non-decreasing smooth weighting function g satisfies (C2)
then

Mg : [0, 1]n → [0, 1]

is an aggregation operator (independently of n).

Though (6) is a general characterization of fitting weighting functions g, in gen-
eral constants α and β are not independent (and they obviously are linked to g).
Therefore to find an “if and only if” general condition to characterize fitting weight-
ing functions is a problem with rather high computational complexity even in special
classes of functions. However, we are able still to improve sufficient condition (C2),
but constraint by n.

Proposition 3.3. Let g be a non-decreasing smooth weighting function such that
for a fixed n ∈ N ,n > 1, it satisfies the next condition:

g2(x)
(n− 1)g(1)

+ g(x) ≥ g′(x)(1− x) for all x ∈ [0, 1] (C3)

Then g is a fitting weighting function, i. e., Mg : [0, 1]n → [0, 1] is an aggregation
operator.
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P r o o f . Minimal value of g(a1) + g′(a1) · (a1 − β) for β ∈ [0, 1] is attained for
β = 1, i. e., it is g(a1) + g′(a1) · (a1 − 1). Therefore, (6) is surely satisfied whenever

g2(a1)
α

+ g(a1) ≥ g′(a1) · (1− a1).

Suppose that (C3) holds. Then

g2(a1)
α

+ g(a1) ≥ g2(a1)
(n− 1) · g(1)

+ g(a1) ≥ g′(a1) · (1− a1),

i. e., (6) is satisfied and thus g is a fitting weighting function.

Remark 3.2. Observe that if we require that (C3) holds for all n ∈ N , n > 1,
then this condition reduces to (C2).

Example 3.1.

1. For linear non-decreasing weighting functions each sufficient condition ((C1) –
(C3)) characterizes all increasing linear fitting weighting functions, namely
g(x) = α · x + β, α ≥ 0, β ≥ α. Note that if α = 0, necessarily β > 0 and
then Mβ = M is the common arithmetic mean. The strongest operator Mg

from this class is determined by the weighting function s(x) = α(x+ 1) (recall
that positive multiplicative constant has no influence on the resulting mixture
operator

Ms(a1, . . . , an) = M(a1, . . . , an) +
σ2(a1, . . . , an)

M(a1, . . . , an) + 1
,

where σ2(a1, . . . , an) is the dispersion of a random variable X uniformly dis-
tributed over (a1, . . . , an) (obviously, then M(a1, . . . , an) is the corresponding
mean value). By duality, for decreasing linear fitting weighting functions given
by formula g(x) = αx + β we have α < 0 and β + 2α ≥ 0. The weakest
aggregation operator Mg with linear weighting function g is the dual operator
to Ms, Mw = (Ms)d, and it is given by

Mw(a1, . . . , an) = M(a1, . . . , an)− σ2(a1, . . . , an)
2−M(a1, . . . , an)

.

2. Let gγ : [0, 1]2 →]0,∞] be given by gγ(x) = 1 + γx2 for γ ∈ [0,∞[. From (C1)
we get inequality

γx2 − 2γx+ 1 ≥ 0.

This inequality is fulfilled for all x ∈ [0, 1] if and only if γ ∈ [0, 1] (this was
observed also in [12, 15] with several illustrative examples from multicriteria
decision making).

However, applying (C2), we get the inequality given by

3γx2 − 2γx+ 1 ≥ 0.
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The function on the left side inequality attains minimum for x = 1
3 . We

can conclude that gγ is a fitting weighting function whenever γ ∈ [0, 3]. The
condition (C3) for n = 2 leads to the inequality

γ2x4 + (3γ2 + 5γ)x2 − (2γ2 + 2γ)x+ γ + 2 ≥ 0

(observe, that in this case (C3) yields an “if and only if” condition for γ so that
gγ is a fitting weighting function). Thus for n = 2 we see that gγ is a fitting
weighting function whenever γ ∈ [0, 4.081553896] (the result was obtained by
means of MAPLE system). Similarly, applying (C3) for n = 3 we get inequality

γ2x4 + (6γ2 + 8γ)x2 − (4γ2 + 4γ)x+ 2γ + 3 ≥ 0.

By system MAPLE we have obtained γ ∈ [0, 3.581118151].

As already observed in Section 2, Mg is an aggregation operator if and only if Mg∗

is monotone (i. e., an aggregation operator). This fact allows us to introduce suffi-
cient conditions for non-increasing smooth weighting functions g yielding monotone
mixture operators Mg:

g(x) + g′(x) ≥ 0 for all x ∈ [0, 1] (C1’)
g(x) + g′(x)x ≥ 0 for all x ∈ [0, 1] (C2’)
g(x)2

(n−1)g(0) + g(x) + g′(x)x ≥ 0 for all x ∈ [0, 1]. (C3’)

4. MONOTONICITY OF GENERALIZED MIXTURE OPERATORS

Generalized mixture operators are not stable under permutations of score vectors
(i. e., they are not anonymous), in general, and thus the monotonicity of Mg should
be checked in each coordinate separately. However, for each i ∈ {1, . . . , n}, the
monotonicity of Mg in ith coordinate is equivalent with the fulfilment of a version
of inequality (6), namely

g2
i (ai) + αi (gi(ai) + g′i(ai)(ai − βi)) ≥ 0 (8)

for all (a1, . . . , an) ∈ [0, 1]n, where αi =
∑
i 6=j gj(aj) and αi · βi =

∑
j 6=i gj(aj) · aj .

Observe that this means that β ∈ [0, 1] and thus we can apply sufficient conditions
(C1), (C2) or (C1’), (C2’) whenever gi is monotone.

Proposition 4.1. Let g = (g1, . . . , gn) be a vector of monotone smooth weighting
functions. Then the generalized mixture operator Mg : [0, 1]n → [0, 1] is monotone
(i. e., it is an aggregation operator) whenever all non-decreasing gi fulfil (C1) or (C2)
and all non-increasing gi fulfil (C1’), or (C2’).

Example 4.1. For n = 2, let g = (g1, g2), where g1(x) = x+ 1 and g2(x) = 2− x.
It is easy to check that g1 fulfils (C1) and g2 fulfils (C1’) and thus Mg : [0, 1]2 → [0, 1]
given by

Mg(a1, a2) =
a1 + a2

1 + 2a2 − a2
2

3 + a1 − a2
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is an aggregation operator. Observe that this operator coincide with the (binary)
arithmetic mean M on both diagonals, i. e.,

Mg(a, a) = a = M(a, a),

Mg(a, 1− a) =
1
2

= M(a, 1− a).

Observe also that g2 = g∗1 , and that the last property is true for arbitrary g2 = g∗1 ,
i. e.,

M(g,g∗)(a, 1− a) =
1
2

for each a ∈ [0, 1] and any weighting function g.

5. CONCLUDING REMARKS

We have discussed some properties of mixture and generalized mixture operators
with special stress on their monotonicity. New sufficient conditions for weighting
functions to ensure the monotonicity of the corresponding operators have been in-
troduced. Note that the monotonicity of quasi-arithmetic means weighted by a
weighting function g will be subject of our next study. For readers interested in the
applications of mixture and generalized mixture operators in multicriteria decision
making we recommend recent paper [15], where several illustrative examples can
be found. Obtained results can be further generalized for the Losonczi means. For
example, if f : [0, 1]→ [0, 1] is an increasing differentiable bijection, then for smooth
and non-decreasing g the simple Losonczi mean M

(f)
g is an aggregation operator

whenever g ·f ′ ≥ g′. Similarly, for Losonczi mean M (f)
g with g = (g1, . . . , gn), where

each weighting function gi, i = 1, 2, . . . , n, is smooth and non-decreasing, the valid-
ity of gi, f ′ ≥ g′, i = 1, . . . , n is sufficient to guarantee the monotonicity of M (f)

g .
Note that each strictly monotone quasi-arithmetic mean can be expressed as M (f)

with f : [0, 1] → [0, 1] an increasing bijection. This is not the case of non-strictly
monotone quasi-arithmetic means (which possess necessarily an annihilator), such
as the geometric mean (with f(x) = log x) or harmonic mean (with f(x) = 1

x ). In
such case, also the investigation of the monotonicity of the related (simple) Losonczi
means is more complicated. Admitting 0 in the range of g, let f(x) = 1

x (i. e., M (f)

is the harmonic mean) and let g(x) =
√
x. Then the simple Losonczi mean M

(f)
g is

an aggregation operator which coincide with the geometric mean in the binary case,
but differs from the geometric mean whenever n > 2. A deeper study of monotonic-
ity of Losonczi means and of relationships between Losonczi means M (f1)

g1
and M (f2)

g2

will be subject of our further investigations.
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