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THE LEAST TRIMMED SQUARES

Part II:
√

n-consistency

Jan Ámos V́ı̌sek

√
n-consistency of the least trimmed squares estimator is proved under general conditions.

The proof is based on deriving the asymptotic linearity of normal equations.
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INTRODUCTION AND NOTATIONS

The paper is a continuation of [4]. That is why only brief introduction of notations
will be given. For discussion of the definitions and assumptions see Part I.

Let N denote the set of all positive integers, R the real line and Rp the p-
dimensional Euclidean space. Moreover, for any set A let Ao denote the interior of
the set (in the topology implied by Euclidean metric). We shall consider for any
n ∈ N the linear regression model

Yi = xT
i β0 + ei, i = 1, 2, . . . , n (1)

where Yi and xi = (xi1, xi2, . . . , xip)T are values of response and of explanatory
variables for the ith case, respectively. β0 is the vector of regression coefficients and
ei represents random fluctuation (disturbance) of Yi from the mean value EYi. (To
be complete, let us add that of course xT

i β =
∑p

j=1 xijβj .)

Throughout the paper we shall assume that the random variables are defined on
a basic probability space (Ω,A, P ) (other assumptions are given below).

Let us recall that we made (in Part I) one exception from the commonly used
notation. Since in what follows we shall use for the description of sets somewhat
complicated expressions containing moreover indices, we shall write (in many cases)
I {property describing the set A} instead of traditional notation I{property describing

the set A}.
In what follows the definition of the least trimmed squares will be considered in

the form:
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Definition 1. For a compact set K such that the vector of the true regression
coefficients β0 ∈ Ko the estimator given as

β̂(LTS,n,h) = argmin
β∈K

h∑

i=1

r2
(i)(β) (2)

will be called the least trimmed squares (LTS).

It is clear that for given i the squared residual appears in the sum on the right
hand side of (2) iff r2

i (β) ≤ r2
(h)(β), so that we can write equivalently

β̂(LTS,n,h) = argmin
β∈K

n∑

i=1

r2
i (β) · I

{
r2
i (β) ≤ r2

(h)(β)
}

(3)

= argmin
β∈K

n∑

i=1

(Yi − xT
i β)2 · I

{
r2
i (β) ≤ r2

(h)(β)
}

.

Now, denote G(z) the distribution function of e2
1. For any α ∈ (0, 1), u2

α will be the
upper α-quantile of G(z), i. e.

P (e2
1 > u2

α) = 1−G(u2
α) = α. (4)

Further, denote by [a]int the integer part of a and for any n ∈ N put

hn = [(1− α)n]int. (5)

Moreover, for any a, b ∈ R we shall denote (a, b)ord = (min{a, b}, max{a, b}) and the
same will be used for the closed intervals. Finally, put Qn = 1

n

∑n
i=1 xix

T
i and for

an arbitrary α ∈ (0, 1) Qn(α) = 1
n

∑n
i=1 xix

T
i I

{
r2
i (β0) ≤ u2

α

}
.

Prior to continuing the discussion on the least trimmed squares it is useful to give
the assumptions which will be used in the most assertions.

Assumptions A
The sequences {xi}∞i=1 (xi ∈ Rp) is a fix sequence of nonrandom vectors from Rp.
Further, the sequence {ei}∞i=1 (ei ∈ R) is a sequence of independent and identically
distributed random variables. The distribution function F (z) of random fluctuation
e1 is symmetric and absolutely continuous with a bounded density f(z) which is
strictly decreasing on R+. The density is positive on (−∞,∞) and has bounded in
absolute value the first and the second derivative. The second derivative is further
Lipschitz of the first order. Moreover,

n∑

i=1

‖xi‖4 = O(n) and Ee4
1 = κ4 ∈ (0,∞). (6)

Finally,

lim
n→∞

Qn = Q (7)



The Least Trimmed Squares. Part II:
√

n-Consistency 183

where Q is a regular matrix (and convergence is of course assumed coordinatewise).

Alternatively to the Assumptions A, we shall use Assumptions B (the reasons for
it were given in Part I).

Assumptions B

The sequences {xi}∞i=1 (xi ∈ Rp) is a fix sequence of nonrandom vectors from Rp.
Moreover, (7) holds for some regular matrix Q. Further for any n ∈ N

max
1≤i≤n, 1≤j≤p

|xij | = O(1). (8)

The sequence {ei}∞i=1 (ei ∈ R) is a sequence of independent and identically distributed
random variables with absolutely continuous symmetric distribution function F (z).
There is a neighbourhood of uα in which the distribution F (z) has a bounded density
f(z) which is positive and has bounded in absolute value the first and the second
derivative. The second derivative is further Lipschitz of the first order. Moreover,
the density f(z) is strictly decreasing on R+ and Ee4

1 = κ4 ∈ (0,∞).

We have proved (in Part I) that

β̃(LTS,n,h) = argmin
β∈Rp

h∑

i=1

r2
(i)(β) (9)

can be found among solutions of

n∑

i=1

[
(Yi − xT

i β) xi · I
{

r2
i (β) ≤ r2

(h)(β)
}]

= 0, (10)

i. e. that at the point given as the solution of the extremal problem (9) the relation
(10) holds. Notice please that whenever we prove that the estimator given by (2) is
consistent (i. e. exists and converges in probability to β0), it also solves (10).

Assumptions C

There are distribution functions H(β)(t), t ∈ R, β ∈ Rp such that for any compact
set W ⊂ Rp

sup
β∈W

sup
t∈R

∣∣∣∣∣
1
n

n∑

i=1

I
{
xT

i (β − β0) ≤ t
}
−H(β)(t)

∣∣∣∣∣ = O(n−
1
2 ). (11)

Remark 1. Recently it was found that when Xi’s are i.i.d. the first supremum in
(11) can be taken over Rp, see [5].
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√
n-CONSISTENCY OF THE LEAST TRIMMED SQUARES

Lemma 1. Let α ∈
(
0, 1

2

)
and let Assumptions A or B and C be fulfilled. Then

for any ε > 0 and ∆ > 0 there are δ = δ∆,ε > 0 and n∆,ε ∈ N such that for all
n > n∆,ε

P

(
sup

β∈B(β0,δ)

∣∣∣r2
(hn)(β)− u2

α

∣∣∣ < ∆

)
> 1− ε.

P r o o f . Let us fix ε > 0 and ∆ > 0. Employing Lemma 1 of Part I we can find
a constant K(ε) < ∞ and n(1) ∈ N so that for any n > n(1) we have

P

(
sup
β∈K

∣∣∣r2
(hn)(β)− u2

α(β)}
∣∣∣ < n−

1
2 K(ε)

)
> 1− ε. (12)

Let us find n∆,ε ≥ n(1) such that for all n > n∆,ε we have n−
1
2 K(ε) < 1

2∆. In the
proof of Lemma 2 of Part I we have shown that there is a δ ∈ (0, 1) so that for all
β, β̃ ∈ Rp, ‖β − β̃‖ < δ we have

∣∣∣uα(β)− uα(β̃)
∣∣∣ ≤ K · ‖β − β̃‖2.

Utilizing it for β̃ = β0, we can find δ > 0 so that for any ‖β − β0‖ < δ we have
∣∣uα(β)− uα(β0)

∣∣ <
1
2
∆. (13)

Taking into account that uα(β0) = uα and (12) together with (13), we conclude the
proof. ¤

Assertion 1. Let {ei}∞i=1 (ei ∈ R) be a sequence of independent and identically
distributed random variables with absolutely continuous distribution function F (z).
Then for any n ∈ N and any i = 1, 2, . . . , n we have

P (r2
i (β0) = r2

(hn)(β
0)) =

1
n

.

P r o o f . The proof can be found in [1]. Since it is not easy available, let us give it
(moreover, it’s short). First of all, let us recall that for any i 6= j, i, j = 1, 2, . . . , n
and n ∈ N

P (r2
i (β0) = r2

j (β0)) = 0.

Due to the fact that the random variables ei’s are i.i.d., we have for all pairs i, j =
1, 2, . . . , n

P (r2
i (β0) = r2

(hn)(β
0)) = P (r2

j (β0) = r2
(hn)(β

0))

and
n∑

i=1

P (r2
i (β0) = r2

(hn)(β
0)) = 1.

That concludes the proof. ¤
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Remark 2. The previous assertion shows that under the assumption that the
sequence {ei}∞i=1 is i.i.d., for any n ∈ N the probability space Ω can be decomposed
on n equiprobable sets such that for each of them it holds that on it the hth order
statistic among e2

1, e
2
2, . . . , e

2
n is represented by the square of one fix random variable,

say e2
i0

for some i0 ∈ {1, 2, . . . , n}. It is clear that h − 1 of the other n − 1 random
variables have to be smaller than e2

i0
and n − h larger than it. Hence these n − 1

random variables are not even conditionally independent, if the condition is e2
(h) =

e2
i0

. Nevertheless we may prove following:

Lemma 2. Let {ei}∞i=1 (ei ∈ R) be a sequence of independent and identically
distributed random variables with absolutely continuous distribution function F (z).
Then for any n ∈ N , any i0 ∈ {1, 2, . . . , n} and any h − 1 tuple selected from
the indices {1, 2, . . . , i0 − 1, i0 + 1, . . . , n} the random variables e1, e2, . . . , ei0−1,
ei0+1, . . . , en are conditionally independent on the set on which e2

i0
= e2

(h) and
e2
i < e2

(h) for i ∈ {i1, i2, . . . , ih−1} while e2
i > e2

(h) for i /∈ {i0, i1, i2, . . . , ih−1}.
Moreover the conditional density of each random variable (except of ei0) is propor-
tional to f(z) and the rest of the corresponding formula may be bounded by the
same constant over the whole space Ω.

P r o o f . As we have already said, due to the previous assertion for any n ∈ N
the probability space Ω can be decomposed on n equiprobable sets, on each of them
the hth order statistic among e2

1, e
2
2, . . . , e

2
n, (h ∈ {1, 2, . . . , n}) is represented by the

square of one ei’s, say e2
i0

for some i0 ∈ {1, 2, . . . , n}. Notice that none of the other
n − 1 ei’s (i 6= i0) has a special position among the others, except of the fact that
h − 1 of them are smaller than e2

(h) while the others are larger. So, let us select
h−1-tuple of indices, say i1, i2, . . . , ih−1 of those random variables, squares of which
will be assumed to be smaller than e2

i0
, i. e. e2

ij
< e2

(h) for j = 1, 2, . . . , h− 1. By this
selection we give also the set of indices, say ih+1, . . . , in for which e2

(h) < e2
ij

. Now,
formally the conditional density is the same for all possibilities of selection of h− 1
tuples of r.v.’s. So, the probability space may be decomposed into the sets so that
each of them is characterized by

• e2
(h) = e2

i0

• for the indices i1, i2, . . . , ih−1 e2
ij

< e2
(h) while for other indices e2

(h) < e2
ij

.

Of course, i0 is successively 1, 2, . . . , n and the h−1-tuple i1, i2, . . . , ih−1 runs through
all

(
n

h−1

)
possibilities. (It is easy to see that we have n ·

(
n

h−1

)
of such sets.) Let us

call this partition S. Now, the conditional density of e2
1, e

2
2, . . . , e

2
i0−1, e

2
i0+1, . . . , e

2
n,

under the condition given by the set S0 (say) from the partition S, is evidently
proportional to

h−1∏

j=1

f(zj)
n∏

k=h+1

f(zk) for max
1≤j≤h−1

zj < e2
(h) and e2

(h) < min
h+1≤k≤n

zk (14)

and equal to 0 otherwise. Since the integral of the conditional density over the set S0

is equal 1, we can even find the constant by which we need to multiply (14) to obtain
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the joint conditional density of e2
1, e

2
2, . . . , e

2
i0−1, e

2
i0+1, . . . , e

2
n. Since the situation is

fully symmetric in all indices, the conditional density is formally the same on all
elements of the partition S. It implies that the conditional density can be bounded
by the same constant over the whole Ω. ¤

Remark 3. The most important result of the previous lemma is that the condi-
tional density can be bounded by the same constant over the whole space Ω. Of
course, this constant depends on n. Nevertheless, if we look for a probability that
e2
j falls into an interval, we can evaluate this probability as conditional one over all

sets of division S, except of one on which e2
j = e2

(h). The unconditional probability
(or its upper bound) is then given as the mean value over all these sets. Since the
probability of the event {e2

j = e2
(h)} is 1

n , we conclude that the probability in ques-
tion is proportional to the (upper bound of) density and the length of the respective
interval. Moreover, due to the fact that we take mean value over all sets of the divi-
sion S, in this case the corresponding constant (of proportionality) does not depend
on n ∈ N . That is why, at some points of the proofs in the text which follows, we
shall consider the conditional probabilities of some events under the condition that:

• e2
(h) = e2

i0
,

• max{e2
i1

, e2
i2

, . . . , e2
ih−1

} < e2
(h)

and

• min{e2
ih+1

, . . . , e2
in
} > e2

(h).

Let us denote this condition C(i0, i1, i2, . . . , ih−1).

Theorem 1. Let α ∈
(
0, 1

2

)
and let Assumptions A or B and C hold. Further, let

K be a compact subset of Rp, β0 ∈ Ko. Then β̂(LTS,n,h) is
√

n-consistent, i. e.

√
n

(
β̂(LTS,n,h) − β0

)
= Op(1) as n →∞.

P r o o f . Let us recall that

β̂(LTS,n,h) = argmin
β∈K

ρ(β)

where

ρ(β) =
n∑

i=1

[
(Yi − xT

i β)2 · I
{

r2
i (β) ≤ r2

(h)(β)
}]

.

Since we already know that β̂(LTS,n,h), independently of K is consistent, we may
restrict ourselves in the rest of proof, say, on K = B̄(β0, 1) and on a corresponding
subset (say O1) of the space Ω (such that for any ω ∈ O1 β̂(LTS,n,h) ∈ B̄(β0, 1); of
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course, it means simultaneously that we restrict ourselves, without recalling it, on
n which are larger than some n1). We have shown in Part I that

∂ρ(β)
∂β

= −2
n∑

i=1

[
(Yi − xT

i β)xi · I
{

r2
i (β) ≤ r2

(h)(β)
}]

a. e. (15)

(see (19) of [4]) and so we may write1

∂ρ(β)
∂β

∣∣∣∣
β=β̂(LTS,n,h)

− ∂ρ(β)
∂β

∣∣∣∣
β=β0

= −2
n∑

i=1

[(
Yi − xT

i β̂(LTS,n,h)
)

xi · I
{

r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}

−(Yi − xT
i β0) xi · I

{
r2
i (β0) ≤ r2

(h)(β
0)

}]
. (16)

Including into (16)

+−
n∑

i=1

(
Yi − xT

i β̂(LTS,n,h)
)

xi · I
{

r2
i (β0) ≤ r2

(h)(β
0)

}

and taking into account once again (15) together with the fact that ∂ρ(β)
∂β

∣∣∣
β=β̂(LTS,n,h)

=

= 0 we arrive at

1√
n

n∑

i=1

[
(Yi − xT

i β0)xi · I
{

r2
i (β0) ≤ r2

(h)(β
0)

}]

=
1√
n

n∑

i=1

xix
T
i

(
β̂(LTS,n,h) − β0

)
I
{

r2
i (β0) ≤ r2

(h)(β
0)

}

− 1√
n

n∑

i=1

(
Yi − xT

i β̂(LTS,n,h)
)
· xi

[
I

{
r2
i (β̂(LTS,n,h))

≤ r2
(h)(β̂

(LTS,n,h))
}
− I

{
r2
i (β0) ≤ r2

(h)(β
0)

}]

=
1
n

n∑

i=1

xix
T
i

[
I
{
e2
i ≤ u2

α

}]
· √n

(
β̂(LTS,n,h) − β0

)

1A very first idea can be to find the second derivative
∂2ρ(β)

∂β·∂βT = −2
Pn

i=1 xix
T
i ·

I
n

r2
i (β) ≤ r2

(h)
(β)
o

(along the same lines as it was done for the first derivative in Part I) and

then to use the Mean Value Theorem, see e. g. Hewitt and Stromberg [2]. Unfortunately, the
Assertion 1 of Part I indicates that the sets on which the hth order statistic among the squared dis-
turbances is represented by the square of one given random variable have “radiuses” approximately
of order 1

n
. In other words, as follows from the considerations which led to the formula for the

derivative in Part I, the discontinuities of the first (as well as the second) derivative have distance

of order 1
n

. On the other hand we may expect that (at the best)
‚‚‚β̂(LTS,n,h) − β0

‚‚‚ = O(n−
1
2 ), so

that we have to conclude: For this purpose the second derivative is not continuous.
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+
1
n

n∑

i=1

xix
T
i

[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}]√
n

(
β̂(LTS,n,h) − β0

)

+
1
n

n∑

i=1

xix
T
i

[
I
{

r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}

−I
{

r2
i (β0) ≤ r2

(h)(β
0)

}]
· √n

(
β̂(LTS,n,h) − β0

)

− 1√
n

n∑

i=1

eixi

[
I
{

r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}

−I
{

r2
i (β0) ≤ r2

(h)(β
0)

}]
. (17)

We shall study terms of (17) one by one. Let us start with that on the left hand
side. It can be written as (remember that r2

i (β0) = e2
i )

1√
n

n∑

i=1

{
eixi ·

[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}]}
(18)

+
1√
n

n∑

i=1

[
eixi · I

{
e2
i ≤ u2

α

}]
.

Evidently

I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}
= 1 ⇔ u2

α < e2
i ≤ e2

(h) (19)

and
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}
= −1 ⇔ e2

(h) < e2
i ≤ u2

α. (20)

Prior to continuing in proof, let us denote by C(i0, i1, i2, . . . , ih−1, z) the condi-
tion under which C(i0, i1, i2, . . . , ih−1) holds (see Remark 3) and

√
e2
(h) = z ∈ R

(and for the sake of space and simplicity of notations let us write C(z) instead of
C(i0, i1, i2, . . . , ih−1, z)). Then Lemma 1 of Part I implies that for any ν ∈ (0, 1)
there is nν ∈ N and a constant K(1) < ∞ so that for all n > nν there is a set An so
that P (An) > 1− ν and for any ω ∈ An

∣∣∣e2
(h) − u2

α

∣∣∣ < n−
1
2 K(1)

so that whenever (19) and (20) hold, then for all n > nν and any ω ∈ An also for
some finite K(2)

||ei| − uα| < n−
1
2 K(2). (21)

Lemma 2 then guarantee that there are K(3) < ∞ and K(4) < ∞ such that

P
({
−

√
e2
(h) ≤ ei < −uα

}
∩An|C(z)

)
= P

({
uα < ei ≤

√
e2
(h)

}
∩An|C(z)

)

= K(3) · f(uα) (z − uα) + ζ
(1)
i (22)
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as well as

P
({
−uα ≤ ei < −

√
e2
(h)

}
∩An|C(z)

)
= P

({√
e2
(h) < ei ≤ uα

}
∩An|C(z)

)

= K(3) · f(uα) (uα − z) + ζ
(2)
i (23)

where
|ζ(j)

i | ≤ n−1K(4), j = 1, 2. (24)

(Let us recall that, as follows from Lemma 2, K(3) as well as K(4) are the same for
all i = 1, 2, . . . , n and z ∈ R.) But (21), (22), (23) and (24) immediately implies
that

E
{

ei

[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}]
· I{An}

}

= EC(z)

{[
Eei

[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}]
· I{An}|C(z)

]}

≤ EC(z)

{[
−uα + n−

1
2 ·K(2)

]
·
[
K(3) · f(uα) (z − uα) + n−1 ·K(4)

]

+
[
uα + n−

1
2 ·K(2)

]
·
[
K(3) · f(uα) (z − uα) + n−1 ·K(4)

]

−
[
−uα − n−

1
2 ·K(2)

]
·
[
K(3) · f(uα) (uα − z)− n−1 ·K(4)

]

−
[
uα − n−

1
2 ·K(2)

]
·
[
K(3) · f(uα) (uα − z)− n−1 ·K(4)

]}

where the subscript C(z) indicates that the mean value is taken over the condition
C(z). In this case it means that we should take into account all possible values
of z =

√
e2
(h) (see Lemma 2). Of course, due to the presence of I{An} in the

expression the values of z are restricted on {−uα−n−
1
2 K(2),−uα+n−

1
2 K(2)} ∪{uα−

n−
1
2 K(2), uα+n−

1
2 K(2)}. In the same way we can find the lower bound for the mean

value in question. Finally taking into account that |z − uα| = O(n−
1
2 ), we conclude

that there is a constant K(5) < ∞ so that for all n > nν we have
∣∣∣Eei

[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}]
· I{An}

∣∣∣ ≤ n−1K(5). (25)

Along similar lines we can find K(6) < ∞ so that for all n > nν

var
{

ei

[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}]
· I{An}

}
≤ n−

1
2 K(6). (26)

As a side product of the previous considerations we obtain (for some K(7) < ∞)

E
∣∣∣
[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}]
· I{An}

∣∣∣ < n−
1
2 K(7) (27)

which we shall need later on. As all xi’s are deterministic, we have
∥∥∥E

{
eixi

[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}]
· I{An}

}∥∥∥
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= ‖xi‖ ·
∣∣∣E

{
ei

[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}]}
· I{An}

∣∣∣

and then (25) and (26) imply that there is some K(8) < ∞ so that for all n > nν

∥∥∥E
{

eixi

[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}]
· I{An}

}∥∥∥ < n−1‖xi‖K(8) (28)

and similarly for any j = 1, 2, . . . , p

var
{

eixij

[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}]
· I{An}

}
< n−

1
2 ‖xi‖2K(8). (29)

Now (18) can be modified into the form

1√
n

n∑

i=1

{
eixi ·

[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}

−E
{

eixi

[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}]}]}
(30)

+
1√
n

n∑

i=1

{
E

{
eixi ·

[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}]}}
. (31)

Finally, taking into account (29) we conclude that for any ∆ > 0

P

(∣∣∣∣∣
1√
n

n∑

i=1

{
eixij ·

[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}]

−E
{

eixij

[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}]} } ∣∣∣ > ∆
)

≤ E

{
∆−2var

[
1√
n

n∑

i=1

{
eixij ·

[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}]

−E
{

eixij

[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}]}} ∣∣∣ C(z)
]}

< ∆−2n−
3
2

n∑

i=1

‖xi‖2 ·K(8). (32)

Then (6) implies that (30) is op(1). Similarly, employing (28) we find that also

1√
n

n∑

i=1

∥∥∥E
{

eixi ·
[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}]}∥∥∥ < n−
3
2

n∑

i=1

‖xi‖ ·K(8),

i. e. (31) is o(1). Combining just derived facts we conclude that the left hand side
of (17) is equal to

1√
n

n∑

i=1

[
eixi · I

{
e2
i ≤ u2

α

}]
+ op(1) (33)

and taking into account once again (6), we can utilize Central Limit Theorem and
then conclude that the left hand side of (17) is Op(1). (It is clear that it was possible
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to show that the left hand side of (17) is Op(1) in a simpler way. But we shall need
the fact that the left hand side has just the form given in (33) later on.)

Now, let us turn to the terms on the right hand side of (17). The first one can
be written as

1
n

n∑

i=1

xix
T
i

[
I
{
e2
i ≤ u2

α

}
− EI

{
e2
i ≤ u2

α

}]
· √n

(
β̂(LTS,n,h) − β0

)

+
1
n

n∑

i=1

xix
T
i (1− α) · √n

(
β̂(LTS,n,h) − β0

)
.

Now taking into account (7) and applying the law of large numbers on the sequences
{
xijxi`

[
I
{
e2
i ≤ u2

α

}
− EI

{
e2
i ≤ u2

α

}]
I{An}

}∞
i=1

,

(for j, ` = 1, 2, . . . , p), we conclude that the first term of the right hand side of (17)
is equal to

[Qn (1− α) + op(1)] · √n
(
β̂(LTS,n,h) − β0

)
. (34)

Let us consider the second term of the right hand side. Taking into account (27),
we obtain for any ε > 0

P

(∥∥∥∥∥
1
n

n∑

i=1

xix
T
i

[
I
{

e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}]∥∥∥∥∥ > ε

)

<
1
nε

n∑

i=1

‖xi‖2 · E
∣∣∣I

{
e2
i ≤ e2

(h)

}
− I

{
e2
i ≤ u2

α

}∣∣∣ < n−
3
2 ε−1

n∑

i=1

‖xi‖2K(7), (35)

so that the second term is of order op(1) · √n
(
β̂(LTS,n,h) − β0

)
.

Now let ε and η be positive numbers and denote by J the upper bound of the
density f(z). Due to (6) there is a finite K(9) and n(1) ∈ N so that for all n > n(1)

1
n

n∑

i=1

‖xi‖2 < K(9) and
1
n

n∑

i=1

‖xi‖3 < K(9). (36)

Let us put τ = 1
16ε · η ·

[
K(9) · J

]−1
. Employing Lemma 1 of Part I and Lemma 1 of

this part of paper, we can find nε > n(1), K(10) < ∞ and δε ∈ (0, 1) so that for all
n > nε and all β ∈ Rp,

∥∥β − β0
∥∥ < δε the set

Bn =

{
ω ∈ Ω : sup

β∈B(β0,δε)

∣∣∣r2
(hn)(β)− u2

α

∣∣∣ <
1
4
τ and

∣∣∣e2
(hn) − u2

α

∣∣∣ < n−
1
2 K(10) · J−1

}

has probability

P (Bn) > 1− 1
2
ε. (37)
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Since β̂(LTS,n,h) is consistent, there is nδ > nε such that for all n > nδ

Cn =
{

ω ∈ Ω :
∥∥∥β̂(LTS,n,h) − β0

∥∥∥ < δε

}
and P (Cn) > 1− 1

2
ε. (38)

Now, let us restrict ourselves on n > nδ and ω ∈ Bn ∩ Cn and let us make an idea
when

I
{

r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}
− I

{
r2
i (β0) ≤ r2

(h)(β
0)

}
6= 0. (39)

If (39) holds then either

r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h)) and r2

i (β0) > r2
(h)(β

0) (40)

or
r2
i (β̂(LTS,n,h)) > r2

(h)(β̂
(LTS,n,h)) and r2

i (β0) ≤ r2
(h)(β

0) (41)

Due to ri(β̂(LTS,n,h)) = ei − xT
i

(
β̂(LTS,n,h) − β0

)
, we immediately find that (40)

holds iff either

−
√

r2
(h)(β̂

(LTS,n,h)) + xT
i

(
β̂(LTS,n,h) − β0

)
≤ ei < −

√
e2
(h) (42)

or √
e2
(h) < ei ≤

√
r2
(h)(β̂

(LTS,n,h)) + xT
i

(
β̂(LTS,n,h) − β0

)
. (43)

Similarly, (41) holds iff either

−
√

e2
(h) ≤ ei < −

√
r2
(h)(β̂

(LTS,n,h)) + xT
i

(
β̂(LTS,n,h) − β0

)
(44)

or √
r2
(h)(β̂

(LTS,n,h)) + xT
i

(
β̂(LTS,n,h) − β0

)
< ei ≤

√
e2
(h)). (45)

Now taking into account that the event in (42) is a subset of

−uα −
1
4
τ − n−

1
2 K(10) − ‖xi‖τ ≤ ei < −uα + n−

1
2 K(10) (46)

we conclude that it has, for n > n(2) = max{nδ, (64K(9) · K(10) · J · (3εη)−1)2},
probability less than 1

16
εη(1+‖xi‖)

K(9) . Of course, we may carry out similar considerations
for all events in (43), (44) and (45). Then we obtain for any n > n(2)

P

(
1
n

n∑

i=1

∥∥xix
T
i

∥∥ ·
∣∣∣I

{
r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}

−I
{

r2
i (β0) ≤ r2

(h)(β
0)

}∣∣∣ · I{Bn} · I{Cn} > η
)

< η−1 · E
{

1
n

n∑

i=1

∥∥xix
T
i

∥∥ ·
∣∣∣I

{
r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}

−I
{

r2
i (β0) ≤ r2

(h)(β
0)

}∣∣∣ · I{Bn} · I{Cn}
}
≤ ε. (47)
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So we have shown that

1
n

n∑

i=1

∥∥xix
T
i

∥∥ ·
∣∣∣I

{
r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}

−I
{

r2
i (β0) ≤ r2

(h)(β
0)

}∣∣∣ · I{Bn ∩ Cn} = op(1).

Since the last but one term in (17) can be written as

1
n

n∑

i=1

xix
T
i

[
I
{

r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}
− I

{
r2
i (β0) ≤ r2

(h)(β
0)

}]
×

×{I{Bn} · I{Cn}+ I{Bc
n}+ I{Cc

n}} ·
√

n
(
β̂(LTS,n,h) − β0

)

(47) implies that the last but one term of (17) is equal to

√
n

(
β̂(LTS,n,h) − β0

)
· op(1). (48)

It remains to cope with the last term of (17). For the (substantial) sake of space
let us write (up to the end of the considerations about this term) r2

(h)(β̂) instead

of r2
(h)(β̂

(LTS,n,h)) and ∆i instead of xT
i

(
β̂(LTS,n,h) − β0

)
. In what follows we shall

carry out the analysis of the last term in (17) in a rough way, in order to show
that it is Op(1). It is due to the fact that at the present moment we are able
to estimate |r2

(h)(β̂
(LTS,n,h)) − e2

(h)| only by means of Lemma 1. When we shall

know that β̂(LTS,n,h) is
√

n-consistent, we will analyze this term better (in order to
establish an asymptotic representation of β̂(LTS,n,h)). Similarly as in previous it is
straightforward to find that the difference of indicators

I
{

r2
i (β̂(LTS,n,h)) ≤ r2

(h)(β̂
(LTS,n,h))

}
− I

{
r2
i (β0) ≤ r2

(h)(β
0)

}
(49)

is equal to one iff

−
√

r2
(h)(β̂) + ∆i ≤ ei < −

√
e2
(h) or

√
e2
(h) < ei ≤

√
r2
(h)(β̂) + ∆i (50)

and is equal to minus one iff

−
√

e2
(h) ≤ ei < −

√
r2
(h)(β̂) + ∆i or

√
r2
(h)(β̂) + ∆i < ei ≤

√
e2
(h). (51)

The indicators of the events given in (50) and (51) can be further written as

I

{
−

√
r2
(h)(β̂) + ∆i ≤ ei < −

√
e2
(h)

}
= I

{
−

√
r2
(h)(β̂) ≤ ei < −

√
e2
(h)

}

−I

{
min{−

√
r2
(h)(β̂),−

√
r2
(h)(β̂) + ∆i} ≤ ei < min{−

√
e2
(h),−

√
r2
(h)(β̂) + ∆i}

}
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+I

{
−

√
r2
(h)(β̂) + ∆i ≤ ei < min{−

√
r2
(h)(β̂),−

√
e2
(h)}

}
, (52)

I

{√
e2
(h) < ei ≤

√
r2
(h)(β̂) + ∆i

}
= I

{√
e2
(h) < ei ≤

√
r2
(h)(β̂)

}

− I

{
max{

√
e2
(h),

√
r2
(h)(β̂) + ∆i} < ei ≤ max{

√
r2
(h)(β̂),

√
r2
(h)(β̂) + ∆i}

}

+I

{
max{

√
r2
(h)(β̂),

√
e2
(h)} < ei ≤

√
r2
(h)(β̂) + ∆i

}
, (53)

I

{
−

√
e2
(h) ≤ ei < −

√
r2
(h)(β̂) + ∆i

}
= I

{
−

√
e2
(h) ≤ ei <

√
r2
(h)(β̂)

}

−I

{
max{−

√
e2
(h),−

√
r2
(h)(β̂) + ∆i} ≤ ei < max{−

√
r2
(h)(β̂),−

√
r2
(h)(β̂) + ∆i}

}

+I

{
max{−

√
r2
(h)(β̂),−

√
e2
(h)} ≤ ei < −

√
r2
(h)(β̂) + ∆i

}
, (54)

and

I

{√
r2
(h)(β̂) + ∆i < ei ≤

√
e2
(h)

}
= I

{√
r2
(h)(β̂) < ei ≤

√
e2
(h)

}

− I

{
mim{

√
r2
(h)(β̂),

√
r2
(h)(β̂) + ∆i} < ei ≤ min{

√
e2
(h),

√
r2
(h)(β̂) + ∆i}

}

+I

{√
r2
(h)(β̂) + ∆i < ei ≤ min{

√
r2
(h)(β̂),

√
e2
(h)}

}
, (55)

So, taking into account that the difference in (49) attains value 1 iff (50) holds
and −1 for (51), the last term of (17) can be written as

1√
n

∑n
i=1 eixi

[
I

{
−

√
r2
(h)(β̂) ≤ ei < −

√
e2
(h)

}
+ I

{√
e2
(h) < ei ≤

√
r2
(h)(β̂)

}]

(56)

− 1√
n

∑n
i=1 eixi

[
I

{
−

√
e2
(h) ≤ ei < −

√
r2
(h)(β̂)

}
+ I

{√
r2
(h)(β̂) < ei ≤

√
e2
(h)

}]

(57)

+I
{
−

√
r2
(h)(β̂) + ∆i ≤ ei < min{−

√
r2
(h)(β̂),−

√
e2
(h)}

}

−I
{

max{
√

e2
(h),

√
r2
(h)(β̂) + ∆i} < ei ≤ max{

√
r2
(h)(β̂),

√
r2
(h)(β̂) + ∆i}

}

+I
{

max{
√

r2
(h)(β̂),

√
e2
(h)} < ei ≤

√
r2
(h)(β̂) + ∆i

}

+I
{

max{−
√

e2
(h),−

√
r2
(h)(β̂) + ∆i} ≤ ei < max{−

√
r2
(h)(β̂),−

√
r2
(h)(β̂) + ∆i}

}
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−I

{
max{−

√
r2
(h)(β̂),−

√
e2
(h)} ≤ ei < −

√
r2
(h)(β̂) + ∆i

}

+I

{
mim{

√
r2
(h)(β̂),

√
r2
(h)(β̂) + ∆i} < ei ≤ min{

√
e2
(h),

√
r2
(h)(β̂) + ∆i}

}

−I

{√
r2
(h)(β̂) + ∆i < ei ≤ min{

√
r2
(h)(β̂),

√
e2
(h)}

}
. (58)

Taking into account the tables in the proof of Assertion A.2, we can observe that
for each i there is at most one of all indicators in (58) equal to one. Nevertheless,
let us start with the term in (56). Since

I

{
−

√
r2
(h)(β̂)≤ei <−

√
e2
(h)

}
+I

{√
e2
(h) <ei≤

√
r2
(h)(β̂)

}
= I

{
e2
(h)≤e2

i <r2
(h)(β̂)

}
,

(56) can be written as

1√
n

n∑

i=1

eix
T
i I

{
e2
(h) ≤ e2

i < r2
(h)(β̂)

}
. (59)

Let us observe that the indicator in (59) depends, what concerns ei, only on its
square. Moreover, let us recall (once again) that

β̂(LTS,n,h) = argmin
β∈K

h∑

i=1

r2
(i)(β) (60)

(see (2)), i. e. β̂(LTS,n,h) depends only on the order statistics of the squared residuals.
Now let us consider any (but fix) ω0 ∈ O1 (for O1 see the remark at the beginning
of the proof, the fifth and sixth line of proof). Similar considerations as we have
carried out at the start of the paper then show that there is an h-tuple of indices,
say i1,ω0 , i2,ω0 , . . . , ih,ω0 such that

argmin
β∈B(β0,1)

h∑

i=1

r2
(i)(β) =

h∑

j=1

r2
ij,ω0

(β̂(LTS,n,h)(ω0)). (61)

Let us denote for a moment this value of β̂(LTS,n,h) by β̂(ω0). The corresponding
squared residuals are (in this notation) equal to

r2
i (β̂(ω0)) =

(
Yi − xT

i β̂(ω0)
)2

. (62)

In other words, if we select any other β ∈ B(β0, 1) and any other h-tuple of indices
we obtain the sum of squared residuals equal to or larger than the sum on the
right hand side of (61). Now, let us consider instead of values of disturbances at
point ω0, i. e. instead of e1(ω0), e2(ω0), . . . , en(ω0), the values e∗1 = −e1(ω0), e∗2 =
−e2(ω0), . . . , e∗n = −en(ω0). Then values of the response variable will be

Y ∗
i = xT

i β0 + e∗i = xT
i β0 − ei(ω0). (63)
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Consequently, the squared values of residuals for β(1) = β0 −
(
β̂(ω0) − β0

)
will be

r2
i (β(1)) =

(
Y ∗

i − xT
i β(1)

)2

=
[
xT

i β0 − ei(ω0)− xT
i

(
β0 − β̂(ω0) + β0

)]2

=
(
Yi − xT

i β̂(ω0)
)2

.

In other words, for the symmetric values of disturbances, i. e. for values e∗1 =
−e1(ω0), e∗2 = −e2(ω0), . . . , e∗n = −en(ω0), we have found that values of squared
residuals (for β = β(1) = β0 − (β̂(ω0) − β0)) are the same as the squared values of
the “original” residuals and the “new” β̂(LTS,n,h), namely β(1), is symmetric, around
β0, to the “original” β̂(LTS,n,h) = β̂(ω0). So the interval given in the indicator in
(59) is the same for “original” disturbances as well as for “symmetric” ones. So
we conclude that the distributions of random variables eixiI{e2

(h) ≤ e2
i < r2

(h)(β̂)},
i = 1, 2, . . . , n are symmetric and (6) then implies that their mean values exist and
are equal to zero. Now, due to the consistency of β̂(LTS,n,h), applying Lemma 1 for
any positive η we can find nη > nδ (see (38)) so that for all n > nη

{
e2
(h) ≤ e2

i < r2
(h)(β̂)

}
∩Bn ∩ Cn ⊂

{
u2

α − n−
1
2 K(10) · J−1 ≤ e2

i < u2
α + η

}
(64)

(let us recall that by J we have denoted the upper bound of the density f(z); for
K(10), Bn and Cn see the part of this proof between (36) and (38)). Since η was
arbitrary, (64) implies that for any positive ν, there is nν > nη so that for all n > nν

var
(
eixiI

{
e2
(h) ≤ e2

i < r2
(h)(β̂)

}
· IBn∩Cn

)
< ν · (1 + η) . (65)

Considerations, similar to those which produced (32) (of course, with a condition,
say, C(z, y) which assumes, in addition to C(z) also r2

(h)(β̂) = y) allow to apply
conditional Tchebyshev inequality on the triangular array of random variables

{{
eix

T
i I

{
e2
(h) ≤ e2

i < r2
(h)(β̂)

}}n

i=1

}∞
n=1

, (66)

and due to the fact that ν was arbitrary we can conclude that (56) is Op(1). Along
the same lines we find that the same is true for (57). Hence both these terms “can
be moved” on the left hand side of (17).

It remains to study (58). Unfortunately, the terms in (58) have not mean values
equal to zero. Hence we have to study the terms of the type

1√
n

n∑

i=1

{
eixi

[
I

{
−

√
r2
(h)(β̂) + ∆i ≤ ei < min{−

√
r2
(h)(β̂),−

√
e2
(h)}

}

−EI

{
−

√
r2
(h)(β̂) + ∆i ≤ ei < min{−

√
r2
(h)(β̂),−

√
e2
(h)}

}]}
. (67)

First of all, taking into account the tables from the proof of Assertion A.2 once
again, we observe that the length of all intervals inside the indicators in (58) is less
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or equal to ∆i. Then, due to Lemma 1, performing considerations about condi-
tional probabilities of the events in question similar as in previous (see the proof of
Theorem 1 of [4]) we find that

P

(
{−

√
r2
(h)(β̂) + ∆i ≤ ei < min{−

√
r2
(h)(β̂),−

√
e2
(h)

}
· IBn∩Cn)

= [f(uα) + o(1)] ·∆i = [f(uα) + o(1)] · xT
i

(
β̂(LTS,n,h) − β0

)
.

Now, employing Lemma 1 once again we conclude that

|ei − uα| · I
{
−

√
r2
(h)(β̂) + ∆i ≤ ei < min{−

√
r2
(h)(β̂),−

√
e2
(h)}

}
· IBn∩Cn = o(1)

(notice that due to the fact that on Bn e2
hn

as well as r2
hn

are bounded, the previous
expression is really o(1) not only op(1); we shall need it for the next step). Finally
we arrive at

EeixiI

{
−

√
r2
(h)(β̂) + ∆i ≤ ei < min{−

√
r2
(h)(β̂),−

√
e2
(h)}

}
· IBn∩Cn

= [2uαf(uα) + o(1)]xix
T
i

(
β̂(LTS,n,h) − β0

)
. (68)

Of course, the analysis of the mean value of other terms from (58) is in fact the
same. Then the analysis of the terms of type (67) is very similar to the analysis of
(56).

Finally, let us denote the sum of mean values of terms given in (58) by Tn. Now
recalling that we have observed that for any i = 1, 2, . . . , n at most one indicators
in (58) is nonzero and taking into account (68), we can conclude that there is Rn so
that

|Rn| ≤ 2uαf(uα)

for all n ∈ N and

Tn −Q · (Rn + op(1)) · √n
(
β̂(LTS,n,h) − β0

)
= op(1).

So, the analysis of (17) is finished. It yields that

Op(1) = { (Q + op(1)) · [(1− α)−Rn]} · √n
(
β̂(LTS,n,h) − β0

)
.

From the assumption that f(z) is strictly decreasing on R+, we have 1 − α >
2uαf(uα) (it is immediately clear from the graph of f(z)). So, finally utilizing
Lemma A.3 we conclude the proof. ¤
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APPENDIX

Lemma A.1. Let for some p ∈ N, {V(n)}∞n=1, V(n) = {v(n)
ij }j=1,2,...,p

i=1,2,...,p be a se-
quence of (p× p) matrices such that for i = 1, 2, . . . , p and j = 1, 2, . . . , p

lim
n→∞

v
(n)
ij = qij in probability (A.69)

where Q = {qij}j=1,2,...,p
i=1,2,...,p is a fixed nonrandom regular matrix. Moreover, let

{θ(n)}∞n=1 be a sequence of p–dimensional random vectors such that

∃ (ε > 0) ∀ (K > 0) lim sup
n→∞

P
(
‖θ(n)‖ > K

)
> ε. (A.70)

Then
∃ ( δ > 0) ∀ (L > 0)

so that
lim sup

n→∞
P

(∥∥∥V(n)θ(n)
∥∥∥ > L

)
> δ.

For the proof see [3].

Assertion A.1. Let a, b ∈ (0,∞), ∆ ∈ R. Then

I {−a + ∆ ≤ e < −b} = I {−a ≤ e < −b}
− I {min{−a,−a + ∆} ≤ e < min{−b,−a+∆}}
+I { − a + ∆ ≤ e < min{−a,−b}} , (A.71)

( min{−a,−a + ∆}, min{−b,−a + ∆}) ⊂ (−a,−a + ∆) (A.72)

and
(− a + ∆, min{−a,−b}) ⊂ (−a + ∆,−a) . (A.73)

Further we have

I {b < e ≤ a + ∆} = I {b < e ≤ a}
− I {max{b, a + ∆} < e ≤ max{a, a + ∆}}
+I {max{a, b}<e≤a+∆} , (A.74)

(max{b, a + ∆}, max{a, a + ∆}) ⊂ (a + ∆, a) (A.75)

and
(max{a, b}, a + ∆) ⊂ (a, a + ∆) . (A.76)
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Similarly

I {−b ≤ e < −a + ∆} = I {−b ≤ e < a}
−I {max{−b,−a+∆} ≤ e < max{−a,−a+∆}}
+I {max{−a,−b} ≤ e < −a+∆} , (A.77)

(max{−b,−a + ∆}, ax{−a,−a + ∆}) = ∅ (A.78)

and

(max{−a,−b},−a + ∆) ⊂ (−a,−a + ∆). (A.79)

Finally

I {a + ∆ < e ≤ b} = I {a < e ≤ b}
− I {mim{a, a + ∆} < e ≤ min{b, a + ∆}}
+I {a + ∆ < e ≤ min{a, b}} , (A.80)

(mim{a, a + ∆}, min{b, a + ∆}) ⊂ (a, a + ∆) (A.81)

and

(a + ∆, min{a, b}) ⊂ (a + ∆, a). (A.82)

P r o o f . We shall consider successively all possible cases. Let us start with (A.71)
and let us abbreviate the left hand side by

T0 = I {−a + ∆ ≤ e < −b}

and the terms of the right hand side by

T1 = I {−a ≤ e < −b} , T2 = I {min{−a,−a + ∆} ≤ e < min{−b,−a + ∆}}

and

T3 = I { − a + ∆ ≤ e < min{−a,−e}} .

Then
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Table A1.

a ≤ b

T0 T1 T2 T3

−b ≤ e ≤ −a ≤ −a + ∆ 0 0 0 0
−b ≤ −a ≤ e ≤ −a + ∆ 0 0 0 0
−b ≤ e ≤ −a + ∆ ≤ −a 0 0 0 0
−b ≤ −a + ∆ ≤ e ≤ −a 0 0 0 0
−a + ∆ ≤ e ≤ −b ≤ −a 1 0 0 1
−a + ∆ ≤ −b ≤ e ≤ −a 0 0 0 0

b < a

−a ≤ e ≤ −b ≤ −a + ∆ 0 1 1 0
−a ≤ −b ≤ e ≤ −a + ∆ 0 0 0 0
−a ≤ e ≤ −a + ∆ ≤ −b 0 1 1 0
−a ≤ −a + ∆ ≤ e ≤ −b 1 1 0 0
−a + ∆ ≤ e ≤ −a ≤ −b 1 0 0 1
−a + ∆ ≤ −a ≤ e ≤ −b 1 1 0 0

Similarly for (A.72) let us denote

I1 = (min{−a,−a + ∆}, min{−b,−a + ∆})

and for (A.73)
I2 = (− a + ∆, min{−a,−b}) .

Then we have

Table A2.

a ≤ b

I1 I2

−b ≤ −a ≤ −a + ∆ (−a,−b) = ∅ (−a + ∆,−b) = ∅
−b ≤ −a + ∆ ≤ −a (−a + ∆,−b) = ∅ (−a + ∆,−b) = ∅
−a + ∆ ≤ −b ≤ −a (−a + ∆,−a + ∆) = ∅ (−a + ∆,−b) ⊂ (−a + ∆,−a)

b < a

−a ≤ −b ≤ −a + ∆ (−a,−b) ⊂ (−a,−a + ∆) (−a + ∆,−a) = ∅
−a ≤ −a + ∆ ≤ −b (−a,−a + ∆) (−a + ∆,−a) = ∅
−a + ∆ ≤ −a ≤ −b (−a + ∆,−a + ∆) = ∅ (−a + ∆,−a)
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Let us continue with (A.74). Abbreviating the left hand side again by

T0 = I {b < e ≤ a + ∆}

and the terms of the right hand side by

T1 = I {b < e <≤ a} , T2 = I {max{b, a + ∆}, max{a, a + ∆}}

and
T3 = I {max{a, b}, a + ∆}} .

Then

Table A3.

a ≤ b

T0 T1 T2 T3

a ≤ e ≤ b ≤ a + ∆ 0 0 0 0
a ≤ b ≤ e ≤ a + ∆ 0 0 0 1
a ≤ e ≤ a + ∆ ≤ b 0 0 0 0
a ≤ a + ∆ ≤ e ≤ b 0 0 0 0
a + ∆ ≤ e ≤ a ≤ b 0 0 0 0
a + ∆ ≤ a ≤ e ≤ b 0 0 0 0

b < a

b ≤ e ≤ a ≤ a + ∆ 1 1 0 0
b ≤ a ≤ e ≤ a + ∆ 1 0 0 1
b ≤ e ≤ a + ∆ ≤ a 1 0 0 1
b ≤ a + ∆ ≤ e ≤ a 0 1 1 0
a + ∆ ≤ e ≤ b ≤ a 0 0 0 0
a + ∆ ≤ b ≤ e ≤ a 0 1 1 0

Similarly for (A.75) let us denote

I1 = (max{b, a + ∆}, max{a, a + ∆})

and for (A.76)
I2 = (max{a, b}, a + ∆}) .

Then we have
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Table A4.

a ≤ b

I1 I2

a ≤ b ≤ a + ∆ (a + ∆, a + ∆) = ∅ (b, a + ∆) ⊂ (a, a + ∆)
a ≤ a + ∆ ≤ b (b, a + ∆) = ∅ (b, a + ∆) = ∅
a + ∆ ≤ a ≤ b (b, a) = ∅ (b, a + ∆) = ∅

b < a

b ≤ a ≤ a + ∆ (a + ∆, a + ∆) = ∅ (a, a + ∆)
b ≤ e ≤ a + ∆ ≤ a (a + ∆, a + ∆) = ∅ (a, a + ∆) = ∅

b ≤ a + ∆ ≤ a (a + ∆, a) (a, a + ∆) = ∅
a + ∆ ≤ b ≤ a (b, a) ⊂ (a + ∆, a) (a, a + ∆) = ∅

The rest of proof runs along similar lines. ¤
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[1] P. Č́ıžek: Analýza citlivosti k-krokových M -odhad̊u (Sensitivity analysis of k-step
M -estimators, in Czech). Diploma Thesis, Czech Technical University, Prague 1996.

[2] E. Hewitt and K. Stromberg: Real and Abstract Analysis. Springer–Verlag, Berlin
1965.
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