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APPLICATION OF A MULTIPHASE FLOW CODE
FOR INVESTIGATION OF INFLUENCE OF CAPILLARY
PRESSURE PARAMETERS ON TWO-PHASE FLOW

Jiř́ı Mikyška and Tissa H. Illangasekare

We have developed a multiphase flow code that has been applied to study the behavior
of non-aqueous phase liquids (NAPL) in the subsurface. We describe model formulation,
discretization, and use the model for numerical investigation of sensitivity of the NAPL
plume with respect to capillary parameters of the soil. In this paper the soil is assumed to be
spatially homogeneous. A 2-D reference problem has been chosen and has been recomputed
repeatedly with modified parameters of the Brooks–Corey capillary pressure model. In
this paper we present selected figures showing the resulting plumes as well as quantitative
information regarding position of the center of mass of the plume and variances (spreads)
of the plume in both axes. These data allow us to evaluate influence of the capillary
pressure parameters on the plume morphology in a way that has already been used for
characterization of the plume distribution in laboratory experiments. Results confirm the
hypothesis that capillary pressure parameters are the key quantities that determine the fate
of organic contaminants in the subsurface, and emphasize the significance of the residual
NAPL saturation for correct modeling of the NAPL contamination.

Keywords: two-phase flow, non-aqueous phase liquids (NAPL), control volume finite ele-
ments, capillary pressure parameters, Brooks–Corey model, plume sensitivity

AMS Subject Classification: 65M60, 76S05, 76T99

1. INTRODUCTION

Models of two-phase flow, such as described e. g. in [13, 17], are used when solving
soil contamination problems by non-aqueous phase liquids (NAPL’s). At first, the
models are tested on simplified problems with known analytical solutions to verify
the correct function of the model. The verified code needs then be calibrated when
one desires to use it for solving a more complex problem. As typically not all data
involved in the model are known, or are known only with limited accuracy, one has
to estimate the missing data or work with approximate values of parameters. A
natural question arises, how much does a change in input data of the model affect
the resulting contamination plume? Or in other words, how sensitive is the plume
on changes of a certain parameter? Information of this kind is important not only
when calibrating a model or when using a model with uncertain data but also when
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preparing a laboratory experiment or a field test, because, to get meaningful results,
the most sensitive parameters must be measured most precisely.

The aim of this paper is to investigate the sensitivity of NAPL contamination
plume in a homogeneous medium on changes of capillary pressure parameters. In
Sections 2 and 3, we briefly describe the model and the numerical scheme used
respectively. In Section 4 we choose a reference problem, whose capillary pressure
parameters are perturbed within the range of −50 % up to +50 % with respect to
their reference values. Selected resulting plumes are shown and the quantitative
results include the positions of the center of mass and variances (spreads) of the
plume.

2. MODEL DESCRIPTION

Let Ω ⊂ Rd, d = 2 or 3 be a bounded domain with its boundary denoted as Γ, and
I = 〈0, T 〉 be a finite time interval. In the two-phase flow problem we are required
to find functions pα (phase pressures) and Sα (phase saturations) defined on Ω× I
for α ∈ {w, n} which are solutions to the following system of differential-algebraic
equations:

∂(φραSα)
∂t

−∇ ·
(
ρα
krα(Sα)
µα

K (∇pα − ρα~g)
)

= ραqα, α ∈ {w, n} (1a)

Sw + Sn = 1, (1b)
pc ≡ pn − pw = pc(Sw), (1c)

where φ denotes the medium porosity, ρα is the α-phase density, µα denotes the
α-phase viscosity, K is the second-order symmetric positive tensor of the medium
permeability (at full saturation), krα stands for the coefficient of relative perme-
ability of the α-phase, ~g denotes the vector of gravity acceleration and qα describes
the volumetric influx of the α-phase into the domain Ω due to outer sources/sinks.
α ∈ {w, n} is the phase index, w denoting the wetting phase (water) and n denot-
ing the non-wetting phase (NAPL). Finally, pc is the capillary pressure–saturation
curve. The solutions is subject to the initial conditions

pα(x, 0) = pα0(x) ∀x ∈ Ω and α ∈ {w, n}, (2a)
Sα(x, 0) = Sα0(x) ∀x ∈ Ω and α ∈ {w, n}, (2b)

and boundary conditions

pα(x, t) = pαD(x, t) ∀ (x, t) ∈ ΓpαD × I and α ∈ {w, n}, (3a)

Sα(x, t) = SαD(x, t) ∀ (x, t) ∈ ΓSαD × I and α ∈ {w, n}, (3b)

(ραvα · ~n)(x, t) = φα(x, t) ∀ (x, t) ∈ ΓφαN × I and α ∈ {w, n}. (3c)

In these equations ΓpαD ,ΓSαD and ΓφαN denote Dirichlet and Neumann parts of the
boundary Γ ≡ ∂Ω. Note that generally different boundary decompositions into
Dirichlet and Neumann parts are allowed for both phases. It is also assumed that



Influence of Capillary Pressure Parameters on Two-phase Flow 833

 0

 5

 10

 15

 20

 0  0.2  0.4  0.6  0.8  1

C
ap

ill
ar

y 
pr

es
su

re

Effective water saturation

Typical shape of the capillary pressure - saturation function

p_c

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

R
el

at
iv

e 
pe

rm
ea

bi
lit

y

Effective water saturation

Burdine’s Relative Permeability - Saturation Relationship for different parameters

k_rw
k_rn

Fig. 1. Typical shape of the capillary pressure – saturation curve (left) and the relative

permeabilities – saturation curves (right) as given by the model of Brooks and Corey for a

typical water – dense non-aqueous phase liquid (DNAPL) system.

the initial conditions (2a), (2b) and the boundary conditions (3a), (3b), (3c) are
compatible with the algebraic constraints (1b) and (1c).

The functions krα and pc are non-linear functions of saturations described by the
Brooks–Corey model that reads as (e. g. [8, 10, 13, 17])

pc(Sw) = pd ·
(
Sw

)− 1
λ , (4a)

krw(Sw) = Sw
2+3λ
λ , (4b)

krn(Sn) = Sn
2
(

1− (1− Sn)
2+λ
λ

)
, (4c)

where the value pd ≡ pc(Sw = 1) > 0 is called the entry pressure, λ denotes the pore
size distribution index and Sα is the effective α-phase saturation that is obtained
from Sα (α-phase saturation) in terms of the following formula

Sα =
Sα − Sαr
1−∑

α
Sαr

, (5)

in which the Sαr denote the residual α-phase saturations. In this paper we will
study the influence of the entry pressure pd, pore size distribution index λ, and non-
aqueous phase residual saturation Snr on the morphology of contamination plume
in the subsurface.

3. NUMERICAL SCHEME

Our numerical technique is based on a weak formulation of the two-phase flow equa-
tions in pw–Sn formulation. Multiplying the equations (1a) by a weighting function
W , integrating the equations over Ω, applying Green’s theorem, and substituting
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the Neumann boundary conditions (3c) results in the following weak form:
∫

Ω

W
∂(φραSα)

∂t
dx+

∫

Ω

ραλα∇W ·K · (∇pw + δαn∇pc − ραg) dx, (6)

=
∫

∂ΩNeu

Wφα dS +
∫

Ω

Wραqα dx α ∈ {w, n},

where λα ≡ krα
µα

stands for the α-phase mobility coefficient. Discretizing the primary
variables pw and Sn by linear Lagrange elements with linear basis functions Ni,
and using the implicit Euler time discretization together with the mass lumping
technique, the following discrete CVFE scheme can be derived (see [12, 13, 17])

[φραSα]n+1
i − [φραSα]ni

∆tn
Vi =

∑

j∈ηi
λn+1
αij ρ

n+1
α γij (ψn+1

αj − ψn+1
αi )

+ (ραqα)n+1
i Vi +mn+1

αi . (7)

Here, i and j denote nodes of a triangulation T , ηi is the set of neighbours of the
node i, ∆tn is the nth time-step, n is the time-level, ψα = pw + δαnpc− ραgzj is the
α-phase potential, Vi =

∫
Ω
Ni dx, γij = −

∫
Ω
∇Ni ·K · ∇Nj dx, and mαi represents

the finite-element discretization of the Neumann boundary conditions (3c). The
mobility coefficient λα is weighted using the full upwind weighting, i. e.

λαij =

{
λαi if γij(ψαj − ψαi) ≤ 0,

λαj if γij(ψαj − ψαi) > 0.
(8)

The equations (7) together with the Dirichlet boundary conditions (3a) and (3b)
make up a system of non-linear algebraic equations that is solved using the Newton
method. This leads to solution of several linear systems with large sparse non-
symmetric matrices in each time-step. These systems are solved using the BiCGStab
method (see [20]) used with linear multigrid as a preconditioner. More details can
be found in [17].

This scheme has been implemented in the language C using the numerical li-
brary UG (University of Heidelberg, see [1, 2, 3]) into a new numerical code called
VODA. The numerical code has been verified on two 1-D problems with known
(quasi-)analytical solutions – namely Buckley–Leverett ([9, 14]) problem which ne-
glects capillarity and on the McWhorter–Sunada problem ([5, 11, 15, 16]) which
includes capillarity. Results of the experimental convergence analysis can be found
in [4]. Moreover, the code also offers several methods of treatment of heterogeneity
interfaces. These methods have been verified and the results are covered in [6].

4. INFLUENCE OF CAPILLARY PRESSURE PARAMETERS
ON PLUME MORPHOLOGY

We investigate influence of the parameters pd, λ and Snr on the plume morphology.
As the reference problem we simulate incompressible two-phase flow in a vertical
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Table 1. Parameters of the reference problem for the sensitivity analysis.

ρw 999.7 [kg m−3] λ 4.931 [-] K 2.26 · 10−10 [m2]
ρn 1516.6 [kg m−3] pd 2549.83 [Pa] φ 0.43 [-]
µw 1.0 · 10−3 [kg m−1 s−1] Swr 0.1294 [-] pw0 hydrostatic [Pa]
µn 5.8 · 10−4 [kg m−1 s−1] Snr 0.25 [-] Sn0 0.0 [-]

Table 2. Reference problem for the sensitivity analysis: boundary conditions.

left boundary pwD = pw0 SnD = 0.0
right boundary pwD = pw0 SnD = 0.0
top & bottom boundaries φw = 0.0 φn = 0.0
top inlet boundary φw = 0.0 φn = −0.5 [kg.m−2 s−1]

2-D sand layer in a rectangular domain Ω of size 1.6 × 1.6 m, initially fully water-
saturated. At both side boundaries hydrostatic water pressure distribution and zero
non-wetting phase saturations are maintained whilst the top and bottom boundaries
are impermeable for both phases except from the central part of the top boundary
with length of 20 cm through which a dense non-aqueous phase liquid (DNAPL) is
introduced into the layer under a constant flux. A non-wetting phase is used with
density higher than water, and thus DNAPL will try to percolate down into the
layer in the direction of gravity. The sand layer is assumed to be homogeneous in
the entire domain. The exact values of all parameters are given in Tables 1 and 2.

The reference problem is solved on an unstructured triangular two-level mesh
with fine level consisting of 2388 elements with 1254 nodes. We are interested in
state of NAPL saturation in time T = 30 min, which is achieved in 20 regular time
steps of size ∆t = 1.5 min. Then, the computation is repeated with a modified value
of some parameter (pd, λ, Snr). In every simulation, we use all data of the reference
problems except from exactly one parameter that is increased or decreased by 1%,
5%, 10%, 20%, and 50% from its original value. For every parameter we thus have
a reference solution and 10 solutions of the perturbed problems. Resulting DNAPL
saturation distributions for the reference problem and for the extreme values of the
examined parameters are presented in Figure 2. The constant NAPL flux boundary
condition ensures that the same mass of DNAPL is injected into the soil in all
simulations.

For a quantitative characterization of the plume morphology we use the first and
second moments of the plume. Generally, the i, jth moment of the plume (in a 2-D
plane x-z) is defined as

Mij =
∫

Ω

xizjφ(x, z)ρnSn(x, z) dxdz. (9)

Clearly, M00 is the total mass of NAPL inside Ω. The first-order moments M10 and
M01 can be normalized to determine coordinates of the center of mass of the NAPL



836 J. MIKYŠKA AND T. H. ILLANGASEKARE

plume in terms of the following formula

Xc =
M10

M00
Zc =

M01

M00
. (10)

The second-order moments can be normalized and centered with respect to the first-
order moments to obtain variances of the DNAPL plume

σ2
x =

M20

M00
−X2

c σ2
z =

M02

M00
− Z2

c , (11)

which can be interpreted as a measure of DNAPL spreading around the center
of mass of the plume in the directions of the corresponding axes. This method of
characterization of the plume distribution using the first- and second-order moments
of the plume has been used in evaluation of laboratory experiments e. g. in [19].

Values of Xc, Zc, σ
2
x, and σ2

z were determined for the reference problem as well as
for all perturbed ones, and are plotted against the relative change of the respective
parameters in Figures 3 – 5. The results indicate that with increasing λ, the plume is
getting longer and more narrow, while the converse holds true for the entry pressure
pd. Higher values of the residual NAPL saturation Snr lead to a smaller plume
expanding slower with higher NAPL saturation values. On the contrary, lower values
of residual NAPL saturation lead to a larger more diffusive plume of lower saturation.
Although the total NAPL mass is the same in all simulations, we see that the volume
of the plume can be quite different for different residual NAPL saturations. From
Figures 3 – 5 it can also be seen that the spread in the z-direction (direction of
gravity) is more sensitive to the capillary pressure parameters than the spread in
the x-direction. This can be explained by the fact that in the horizontal direction
the capillarity is the only force driving the flow whereas in the vertical direction
both forces, capillarity and gravity, are active.

The results confirm the hypothesis that the capillary pressure parameters are
important parameters that determine the DNAPL plume morphology. From the
capillary pressure parameters in question, the residual NAPL saturation Snr turns
out to be most sensitive parameter. This contrasts with our experience that it is
the residual NAPL saturation Snr whose values are usually not known and must be
estimated (c.f. [17]).
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λ = 2.4655 pd = 1274.915 Pa Snr = 0.125

The common reference solution with λ = 4.931, pd = 2549.83 Pa, Snr = 0.25

λ = 7.3965 pd = 3824.745 Pa Snr = 0.375

Fig. 2. DNAPL saturation distribution for different values of λ (left column), pd (middle

column), and Snr (right column). The central row is the common reference solution. In

the top row the each parameter is decreased by 50 % while in the bottom row it is

increased by 50 % with respect to its reference settings. The dark backgrounds correspond

to uncontaminated domains with Sn = 0, while the lighter shadows correspond to

domains with positive values of NAPL saturations.
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Fig. 3. Plot of the first- and second-order moments against the relative changes of

Brooks–Corey parameter λ.
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Fig. 5. Plot of the first- and second-order moments against the relative changes of

residual NAPL saturation Snr.
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