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K Y B E R N E T I K A — V O L U M E 4 4 ( 2 0 0 8 ) , N U M B E R 1 , P A G E S 1 1 3– 1 3 0

SEPARATION OF CONVEX POLYHEDRAL SETS
WITH COLUMN PARAMETERS

Milan Hlad́ık

Separation is a famous principle and separation properties are important for optimiza-
tion theory and various applications. In practice, input data are rarely known exactly and
it is advisable to deal with parameters. In this article, we are concerned with the basic
characteristics (existence, description, stability etc.) of separating hyperplanes of two con-
vex polyhedral sets depending on parameters. We study the case, when parameters are
situated in one column of the constraint matrix from the description of the given convex
polyhedral set. We provide also a lot of examples carried out on PC.
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1. INTRODUCTION

There are several kinds of separability of convex sets (cf. [8]). For the purpose of
this paper it is convenient to introduce the following one.

Definition 1. Convex sets X ,Y ⊂ Rn are called strongly separable if dimX =
dimY = n and there exists a hyperplane R = {x ∈ Rn | rTx = s} such that
X ⊆ R− = {x ∈ Rn | rTx ≤ s}, and Y ⊆ R+ = {x ∈ Rn | rTx ≥ s} hold. R is
called the separating hyperplane of the sets X , Y.

We will use the following well known separation theorem (see e. g. [3, 7, 10]):

Theorem 1. Convex sets X , Y ⊂ Rn are strongly separable if and only if dimX =
dimY = n, and intX ∩ intY = ∅.

In this paper we study the strong separability of two convex polyhedral sets
(Ã ∈ Rm×n, C̃ ∈ Rl×n, b̃ ∈ Rm, d̃ ∈ Rl):

M̃1 ≡ {x ∈ Rn | Ãx ≤ b̃}, (1)

M̃2 ≡ {x ∈ Rn | C̃x ≤ d̃}. (2)
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The first attempt to systematically study separation under uncertainty was done
in [6], where we derived the basic separation properties of the sets (1), (2) with
parameters on the right-hand side of inequalities. Some of there obtained results,
which we need in this paper, will be presented in this section. In the following
sections we study separation for the case when there are parameters in one column
of the matrix Ã. Parameters in one line (column or row) is the most general case
which still leads to quite strong results. In dealing with parameters, we are inspired
by [1, 2, 9]. We will define so called solution set (Section 2) and in the sequel the so
called stability sets (Section 4) and derive their description. The terms “solution”
and “stability set” are taken over from [9], but the meaning is a bit different (we
do not work with an objective function). Many examples of stability sets that were
carried out on PC are presented in tables at the end of the paper. The Section 6
gives an application in the field of multiobjective programming.

Let us introduce some notation. Given a matrix M , the expressions M i,·, M ·,j
denote the ith row and the jth column of the matrix M , respectively. Vector ek
denotes the kth unit vector. For given vectors a, b ∈ Rk, the expression a < b means
ai < bi ∀ i. For any set X let us denote by X , intX , dimX , and convX the closure,
the interior, the dimension, and the convex hull of X , respectively. A sign of a real
number r ∈ R is defined as

sgn(r) =





0 r = 0,
1 r > 0,
−1 r < 0.

Definition 2. A basis of a convex polyhedral set described by Mx = v, x ≥ 0
(M ∈Rm×n, v∈Rm, m≤n) is any vector B∈{1, . . . , n}m for which rank(MB)=m
holds (where MB means the restriction of the matrix M to the basic columns).
A basis B is feasible if M−1

B v ≥ 0.
A sub-basis of the convex polyhedral set described by Mx ≤ v (M ∈ Rm×n,

v ∈ Rm) is any vector S ∈ {1, . . . ,m}k, 1 ≤ k ≤ n, for which rank(MS) = k holds
(where MS in this case means the restriction of the matrix M to the sub-basic
rows). A sub-basis S is called feasible if {x ∈ Rn |MSx = vS , MNx ≤ vN} 6= ∅
for N = {1, . . . ,m} \ S. A basis of Mx ≤ v is any n-elemental sub-basis.

Let us introduce

Q∗ ≡
{

(u,v, vl+1) ∈ Rm+l+1
∣∣∣



Ã
T

C̃
T

0

b̃
T

d̃
T

1
1T 1T 0






u
v
vl+1


 =




0
0
1


 ,



u
v
vl+1


 ≥ 0

}
.

With the help of the convex polytope Q∗ we can describe all separating hyperplanes
of M̃1 and M̃2. Theorem 2 and Theorem 3 come from [6], but they have origin
in [4, 5].

Theorem 2. Suppose that dimM̃1 = dimM̃2 = n, intM̃1 ∩ intM̃2 = ∅. Let
(u,v, vl+1) ∈ Q∗, uT Ã 6= 0T , and η ∈ 〈0, vl+1〉 is arbitrary. Then

R = {x ∈ Rn | uT (Ãx− b̃) = η} (3)
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represents a separating hyperplane of the convex polyhedral sets M̃1 and M̃2. Con-
versely, any separating hyperplane R of M̃1 and M̃2 can be expressed in the form
of (3) for a certain (u,v, vl+1) ∈ Q∗, uT Ã 6= 0T , and η ∈ 〈0, vl+1〉.

Theorem 3. Let dimM̃1 = dimM̃2 = n. Then the convex sets M̃1 and M̃2 are
strongly separable if and only if Q∗ 6= ∅.

2. SOLUTION SET

From now on, we study the situation, when there are parameters in one column
of the matrix Ã from (1) instead of fixed values. We can assume without loss of
generality that parameters are situated in the last column of Ã, i. e., Ã = (A δ) for
fixed matrix A ∈ Rm×(n−1) and vector of parameters δ ∈ Rm. The problem will
not be more complicated if there are parameters in the last column of the matrix C̃
from (2) as well, i. e., C̃ = (C µ) for fixed C ∈ Rl×(n−1) and vector of parameters
µ ∈ Rl. Let us introduce the family of convex polyhedral sets

M1(δ) ≡ {(x, xn) ∈ Rn | Ax+ δxn ≤ b}, (4)
M2(µ) ≡ {(x, xn) ∈ Rn | Cx+ µxn ≤ d}, (5)

where b ∈ Rm, d ∈ Rl. Assume that matrices (A b), (C d) do not contain the zero
row.

Furthermore let us introduce

M1 ≡ {x ∈ Rn−1 | Ax ≤ b}, (6)

M2 ≡ {x ∈ Rn−1 | Cx ≤ d}. (7)

The following statements hold trivially.
IfM1 6= ∅, thenM1(δ) 6= ∅ ∀ δ ∈ Rm (since when x ∈M1, then (x, 0) ∈M1(δ)).

If dimM1 = n − 1, then dimM1(δ) = n ∀ δ ∈ Rm (since when x ∈ intM1, then
(x, 0) ∈ intM1(δ)). Analogously for the set M2.

Definition 3. The solution set (for the strong separability of the convex polyhedral
sets M1(δ) from (4) and M2(µ) from (5)) is the set of all (δ,µ) ∈ Rm+l such that
the convex polyhedral sets M1(δ), M2(µ) are strongly separable.

Let us introduce

P1 ≡ {δ ∈ Rm | dimM1(δ) = n}, (8)

P2 ≡ {µ ∈ Rl | dimM2(µ) = n}. (9)

P ≡ P1 × P2 = {(δ,µ) ∈ Rm+l | dimM1(λ) = dimM2(µ) = n}, (10)

U ≡ {(δ,µ) ∈ Rm+l | intM1(δ) ∩ intM2(µ) 6= ∅}. (11)

From Theorem 1, Theorem 3, and from definition of the sets P and U we get the
following assertion.
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Assertion 1.

(i) The solution set for M1(δ), M2(µ) is equal to P \ U .

(ii) We have U ⊆ P.

Assertion 2. If dimM1 = dimM2 = n − 1 and the convex polyhedral sets M1

and M2 are not strongly separable, then the solution set for M1(δ), M2(µ) is
empty.

P r o o f . From the assumptions of the assertion it follows that there exists a point
x0 ∈ Rn−1 such that x0 ∈ intM1 ∩ intM2. Hence for all δ ∈ P1, µ ∈ P2 the
inclusion (x0, 0) ∈ intM1(δ)∩ intM2(µ) holds and therefore the convex polyhedral
sets M1(δ), M2(µ) are not strongly separable. ¤

Now we will be concerned with the description of the set P1. The description of
P2 and P will be analogous.

Theorem 4. The set P1 has the description

P1 = V1 ∪ −V1, (12)

where
V1 = {δ ∈ Rm | hTi δ > 0 ∀ i ∈ I} (13)

and hi, i ∈ I, are extremal directions (vectors in directions of unbounded edges) of
the convex polyhedral cone

NA,b ≡ {y ∈ Rm | ATy = 0, bTy ≤ 0, y ≥ 0}. (14)

P r o o f . P1 is the set of all δ ∈ Rm for which intM1(δ) 6= ∅ or equivalently

{(x, xn) ∈ Rn | Ax+ δxn ≤ b− ε} 6= ∅ (15)

for an infinitesimal vector ε > 0. The situation (15) holds for a vector δ if and only
if the problem

max {0Tx+ 0xn | Ax+ δxn ≤ b− ε}
has an optimal solution. It follows from the theory of duality in linear programming
that this is equivalent to the condition, that the problem

min {(b− ε)Ty | ATy = 0, δTy = 0, y ≥ 0} (16)

has an optimal solution. The set of feasible solutions to the problem (16) forms a
convex polyhedral cone. Therefore the problem (16) has an optimal solution if and
only if

{y ∈ Rm | ATy = 0, δTy = 0, y ≥ 0, (b− ε)Ty < 0} = ∅,
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or, equivalently

{y ∈ Rm | ATy = 0, δTy = 0, y ≥ 0, bTy ≤ 0, y 6= 0} = ∅.

Hence P1 is the set of all δ ∈ Rm for which

{y ∈ NA,b | δTy = 0} = {0} (17)

holds. We claim that P1 = V1 ∪ −V1.
Let δ0 ∈ V1. Then hTi δ

0 > 0 ∀ i ∈ I. Each nontrivial vector y ∈ NA,b can be
expressed as a linear combination y =

∑
i∈I αihi for certain αi ≥ 0,

∑
i∈I αi > 0.

Therefore
yT δ0 =

∑

i∈I
αih

T
i δ

0 > 0

and the condition (17) holds. Analogously for δ0 ∈ −V1.
Conversely, let δ0 ∈ Rm and suppose that the condition (17) holds. Then either

yT δ0 > 0 for all nontrivial y ∈ NA,b or yT δ0 < 0 for all nontrivial y ∈ NA,b. In
the first case we specially have hTi δ

0 > 0 ∀ i ∈ I and thus δ0 ∈ V1. In the second
case we analogously have δ0 ∈ −V1. ¤

Theorem 5. The set U has the description

U = U1 ∪ −U1

where
U1 = {(δ,µ) ∈ Rm+l | hTi δ + gTi µ > 0 ∀ i ∈ I} (18)

and (hTi , g
T
i ), i ∈ I, are extremal directions of the convex polyhedral cone

{(y,z) ∈ Rm+l | ATy +CTz = 0, bTy + dTz ≤ 0, y, z ≥ 0}. (19)

P r o o f . The set U can be rewritten as U = {(δ,µ) ∈ Rm+l | dim (M1(δ) ∩M2(µ))
= n}. When we apply Theorem 4 to the family of convex polyhedral sets M1(δ) ∩
M2(µ), we obtain the resulting description of the set U . ¤

Let us introduce
P ′1 ≡ {δ ∈ Rm | M1(δ) 6= ∅},
P ′2 ≡ {µ ∈ Rl | M2(µ) 6= ∅}.

Now we will derive the description of the set P ′1. The description of P ′2 will be
analogous.
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Theorem 6. Let us consider the convex polyhedral cone NA,b from (14). Let
gi, i ∈ I1, be extremal directions of NA,b with the property gTi b < 0 and let
hj , j ∈ I2, be extremal directions of NA,b with the property hTj b = 0. If I1 = ∅,
then P ′1 = Rm. Otherwise the set P ′1 has the description

P ′1 = V ′1 ∪ −V ′1,

where
V ′1 = {δ ∈ Rm | gTi δ > 0 ∀ i ∈ I1, hTj δ ≥ 0 ∀ j ∈ I2}.

P r o o f . P ′1 is the set of all δ ∈ Rm for which M1(δ) 6= ∅, i. e., the problem

max {0Tx+ 0xn | Ax+ δxn ≤ b}

has an optimal solution. It follows from the theory of duality in linear programming
that this is equivalent to the condition, that the problem

min {bTy | ATy = 0, δTy = 0, y ≥ 0} (20)

has an optimal solution. The set of feasible solutions to the problem (20) forms a
convex polyhedral cone. Therefore that the problem (20) has an optimal solution if
and only if

{y ∈ Rm | ATy = 0, δTy = 0, y ≥ 0, bTy < 0} = ∅. (21)

Hence P ′1 is the set of all δ ∈ Rm for which (21) holds. If I1 = ∅, then bTy = 0 for
all y ∈ NA,b and thus P ′1 = Rm. Otherwise we assert that P ′1 = V ′1 ∪ −V ′1.

Let δ0 ∈ V ′1. Then gTi δ
0 > 0 ∀ i ∈ I1 and hTj δ

0 ≥ 0 ∀ j ∈ I2. Each point
y ∈ {y ∈ Rm | ATy = 0, bTy < 0, y ≥ 0} can be expressed as a linear combination
y =

∑
i∈I1 αigi +

∑
j∈I2 βjhj for certain αi, βj ≥ 0,

∑
i∈I1 αi > 0. Therefore

yT δ0 =
∑

i∈I1
αig

T
i δ

0 +
∑

j∈I2
βjh

T
j δ

0 > 0

and the condition (21) holds. Analogously for δ0 ∈ −V ′1.
Conversely assume, that δ0 ∈ Rm and the condition (21) holds. Then either

yT δ0 > 0 for all {y ∈ Rm | ATy = 0, bTy < 0, y ≥ 0} or yT δ0 < 0 for all
{y ∈ Rm | ATy = 0, bTy < 0, y ≥ 0}. In the first case we specially have gTi δ

0 > 0
∀ i ∈ I1 and for infinitesimal ε > 0 also (1− ε)hTj δ0 + ε

|I1|
∑
i∈I1 g

T
i δ

0 > 0 ∀ j ∈ I2.

Hence (1 − ε)hTj δ0 ≥ 0 for infinitesimal ε > 0, and thus hTj δ
0 ≥ 0 ∀ j ∈ I2. It

follows that δ0 ∈ V ′1. In the second case we analogously have δ0 ∈ −V ′1. ¤

3. DESCRIPTION OF SEPARATING HYPERPLANES

Let us introduce

Q∗(δ,µ) ≡
{

(u,v, vl+1) ∈ Rm+l+1 | Z(δ,µ)

(
u
v
vl+1

)
= z, (u,v, vl+1) ≥ 0

}
, (22)
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where

Z(δ,µ) ≡



AT CT 0
δT µT 0
bT dT 1
1T 1T 0


, z ≡




0
0
0
1


.

For the explicit description of all separating hyperplanes of the convex polyhedral
sets M1(δ), M2(µ) with δ ∈ P1, µ ∈ P2 and intM1(δ) ∩ intM2(µ) = ∅ we can
directly use Theorem 2.

Assertion 3. Let δ ∈ P1, µ ∈ P2, (u,v, vl+1) ∈ Q∗(δ,µ). Suppose that
(
uTA,uT δ

)

6= (0T , 0), and η ∈ 〈0, vl+1〉 is arbitrary. Then

R = {(x, xn) ∈ Rn | uT (Ax+ δxn − b) = η} (23)

represents a separating hyperplane of the convex polyhedral sets M1(δ), M2(µ).
Conversely, any separating hyperplane R of convex polyhedral sets M1(δ), M2(µ)
can be expressed in the form of (23) for a certain (u,v, vl+1) ∈ Q∗(δ,µ),

(
uTA,uT δ

)

6= (0T , 0), and η ∈ 〈0, vl+1〉.

4. STABILITY SETS

In this section we deal with the so called stability sets. Stability sets are defined in
a similar way as in [6, 9]. It is natural to define stability sets as sets of all (δ,µ)
such that all the sets Q∗(δ,µ) from (22) have the same system of feasible bases.

Definition 4. Let an arbitrary vector (δ0,µ0) from the solution set P \ U be given
and suppose that the set Q∗(δ0,µ0) is nonempty. Denote by S the system of all fea-
sible bases of the convex polyhedral set Q∗(δ0,µ0). The stability set corresponding
to the system S is the closure of the set of all (δ,µ) ∈ P \ U under which all feasible
bases from S remain feasible for Q∗(δ,µ).

Note that stability sets are defined as closed sets only for computational purposes.
We will see later (Remark 1) that an additional point lies only on the border of the
stability set.

Without loss of generality let us assume that

rank
(
AT CT

1T 1T

)
= n.

Otherwise it would occur one of the following possibilities:

(i) If rank
(

AT CT

1T 1T

)
= rank ( AT CT ), then Q∗(δ,µ) = ∅ ∀δ,µ and the solution

set is empty.

(ii) If rank
(

AT CT

1T 1T

)
> rank ( AT CT ), then rank ( AT CT ) < n − 1 and in the

description of Q∗(δ,µ) there are linear dependent equations, which we can
remove.
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Now we will derive the description of stability sets. Let (δ0,µ0) be from the
solution set and B a feasible basis of the convex polytope Q∗(δ0,µ0). Denote
D(δ,µ) ≡ ZB(δ,µ), D ≡ D(δ0,µ0). The basis B remains feasible for all val-
ues of parameters δ, µ satisfying the relation

D−1(δ,µ)z ≥ 0. (24)

Define vectors p ∈ Rn+2, q̃, q ∈ Rm+l+1:

p ≡ en =




0
1
0
0


 , q̃ ≡



δ − δ0

µ− µ0

0


 , q ≡



δ
µ
0


 .

From the assumption 1 + q̃TBD
−1p 6= 0 and the well known Sherman–Morrison

formula it follows
D−1(δ,µ) = (D + pq̃TB)−1 = D−1 − D

−1pq̃TBD
−1

1 + q̃TBD
−1p

.

Since for the choice δ = δ0, µ = µ0 the denominator 1+q̃TBD
−1p = 1 (i. e. positive),

assume moreover the following constraint

1 + q̃TBD
−1p > 0. (25)

Let us rearrange the expression (24):
D−1(δ,µ)z ≥ 0,

(
D−1 − D

−1enq̃
T
BD

−1

1 + q̃TBD
−1en

)
en+2 ≥ 0,

D−1·,n+2 −
D−1·,nq̃TBD−1·,n+2

1 + q̃TBD
−1·,n

≥ 0.

From the assumption (25) is this inequality equivalent to

D−1·,n+2 +D−1·,n+2(q̃TBD
−1·,n)−D−1·,n(q̃TBD

−1·,n+2) ≥ 0. (26)

Since q̃TB = qTB −Dn,·, the expression (26) is equivalent to

D−1·,n+2 +D−1·,n+2

(
(qTB −Dn,·)D−1·,n

)
−D−1·,n

(
(qTB −Dn,·)D−1·,n+2

)
≥ 0,

D−1·,n+2(qTBD
−1·,n)−D−1·,n(qTBD

−1·,n+2) ≥ 0. (27)

The expression (27) represents a system of linear inequalities with respect to the
variables δ, µ.

Remark 1. Let us investigate the expression (25). It is equivalent to

1 + (qTB −Dn,·)D−1·,n > 0, or, to qTBD
−1·,n > 0. (28)

When we multiply the system (27) by the vector Dn+2,· ≥ 0, then we obtain

(Dn+2,·D−1·,n+2)(qTBD
−1·,n)− (Dn+2,·D−1·,n)(qTBD

−1·,n+2) ≥ 0, qTBD
−1·,n ≥ 0.

Since the stability set is defined as a closed set, the constraint (28) is redundant.
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Remark 2. (Description of stability sets) Given δ0, µ0 from the solution set
P \ U . The stability set (corresponding to δ0, µ0) is the set of all (δ, µ) ∈ P \ U
satisfying the following systems of inequalities

D−1·,n+2(qTBD
−1·,n)−D−1·,n(qTBD

−1·,n+2) ≥ 0

for all feasible bases B of the convex polytope Q∗(δ0,µ0) from (22). There is always
a finite number of stability sets.

Example 1. Let

A =
(

1
−1

)
, b =

(
0
−1

)
, C =

(
−1

)
, d =

(
−2

)
.

We will provide the description of the solution set and all stability sets.

1 2 3−1

1

−1

−2
M1(1, 1)

0

M2(−1)

x1

x2

Fig. 1. Illustration to Example 1 for values δ = (1, 1)T , µ = (−1).

Since the convex polyhedral cone NA,b from (14) contains only one extremal
direction h1 = (1, 1)T , the set P1 (according to Theorem 4) is described as follows

P1 = {δ ∈ R2 | δ1 + δ2 > 0} ∪ {δ ∈ R2 | δ1 + δ2 < 0}.

The set P2 is equal to R, since the convex cone NC,d = {y ∈ Rl | CTy = 0, dTy
≤ 0, y ≥ 0} = {0} has no edge. The convex polyhedral set (19) has the description

{(y1, y2, z1) ∈ R3 | y1 − y2 − z1 = 0, −y2 − 2z1 ≤ 0, y1, y2, z1 ≥ 0}

and has two edges in direction of (h1
1, h

1
2, g

1
1) = (1, 1, 0, 1)T and (h2

1, h
2
2, g

2
1)

= (1, 0, 1, 2)T . Hence the convex polyhedral set U1 from (18) is described as follows

U1 = {(δ1, δ2, µ1) ∈ R3 | δ1 + δ2 > 0, δ1 + µ1 > 0}.
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The solution set is (according to Theorem 1) described by

P \ U ={(δ1, δ2, µ1) ∈ R3 | δ1 + δ2 > 0, δ1 + µ1 ≤ 0}∪
{(δ1, δ2, µ1) ∈ R3 | δ1 + δ2 < 0, δ1 + µ1 ≥ 0}.

Now we will compute all stability sets according to Remark 2.

1. Choose (δ1
1 , δ

1
2 , µ

1
1) from the solution set, e. g. in this way: (δ1

1 , δ
1
2 , µ

1
1) =

(1, 1,−1). The convex polytope Q∗(δ1
1 , δ

1
2 , µ

1
1) has only one feasible basis,

B = (1, 2, 3, 4), and the first stability set is described by the following sys-
tem of inequalities

δ1 + δ2 > 0, δ1 + µ1 ≤ 0.

2. Choose (δ2
1 , δ

2
2 , µ

2
1) from the solution set, but not from the first stability set, e. g.

in this way: (δ2
1 , δ

2
2 , µ

2
1) = (−1,−1, 1). The convex polytope Q∗(δ2

1 , δ
2
2 , µ

2
1) has

only one feasible basis, B = (1, 2, 3, 4), and the first stability set is described
by the following system of inequalities

δ1 + δ2 < 0, δ1 + µ1 ≥ 0.

We have obtained two stability sets (except degenerated stability sets, which have
a dimension less than n) the solution set consists of.

Tables 1 – 2 contain further results obtained on PC (x86), Pentium 4, 2.6 GHz,
512 MB RAM, Gentoo Linux. Our source code was written in MATLAB 6.5. In each
of the mentioned tables, the number of stability sets and the computing time (in
minutes and seconds) is written down for given matrix A, vector b, matrix C and
vector d. The input data of A, C, b, d were generated pseudorandomly. With the
increase of m, l, n the number of stability sets and the computing time increases
very rapidly.

5. A PERMANENT SEPARATING HYPERPLANE

Let us consider the convex polyhedral sets M1(δ), M2(µ) from (4), (5) with the
property δ ∈ Z1, µ ∈ Z2, where Z1 ⊂ Rm, Z2 ⊂ Rl are convex polytopes. Let
us assume that Z1 ⊂ P ′1 and Z2 ⊂ P ′2. Moreover, we will assume for the sake of
simplicity, that all the convex polyhedral sets M1(δ), δ ∈ Z1, M2(µ), µ ∈ Z2

contain at least one vertex. The question is, whether there exists a fixed hyperplane
R such that:

M1(δ) ⊆ R− ∀ δ ∈ Z1, M2(µ) ⊆ R+ ∀µ ∈ Z2.

Such a hyperplane R is called a permanent separating hyperplane. Note that a
permanent separating hyperplane need not exist even if M1(δ), M2(µ) are sep-
arable for all δ ∈ Z1, µ ∈ Z2 (see Example 2). We will check the existence of
a permanent separating hyperplane by the following process: Compute the convex
hulls conv

(
∪δ∈Z1M1(δ)

)
and conv

(
∪µ∈Z2M2(µ)

)
and check separability of these

convex hulls.
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Table 1. Examples in R2, pseudorandom data.

number of

matrix A vector b matrix C vector d stability sets computing time

„
1
−1

« „
−1
−1

« „
−3

9

« „
−1
−1

«
12 4 s

„
−6
−7

« „
−4
12

« 0
@

3
2
8

1
A

0
@
−5

9
1

1
A 44 15 s

0
@
−4
−2
−6

1
A

0
@
−1

9
−4

1
A

0
@

8
1
−5

1
A

0
@

8
−6

2

1
A 90 1 min 19 s

0
@
−2
−2

7

1
A

0
@

1
−1

0

1
A

0
BB@

−8
−6
−9
−2

1
CCA

0
BB@

11
3
−5
12

1
CCA 206 4 min 8 s

0
BB@

0
8
−6
−9

1
CCA

0
BB@

−4
0
−3

9

1
CCA

0
BB@

−6
0
−9
−1

1
CCA

0
BB@

3
6

10
−5

1
CCA 968 29 min 51 s

Lemma 1. Let B1 be a sub-basis of the convex polyhedral set M1(δ). Let us
consider the following convex polyhedral cone

NB1 ≡ {(y, z) ∈ Rm | AT
B1
y +AT

N1
z = 0, bTB1

y + bTN1
z ≤ 0, z ≥ 0}, (29)

where N1 ≡ {1, . . . ,m} \B1. Let us denote by (gy
i , g

z
i ), i ∈ I1, extremal directions

of NB1 with the property (gy
i , g

z
i )T (bB1 , bN1) < 0 and denote by (hy

j ,h
z
j ), j ∈ I2,

extremal directions of NB1 with the property (hy
j ,h

z
j )T (bB1 , bN1) = 0. The set SB1

of all δ ∈ Rm for which the sub-basis B1 is feasible for M1(δ) has the following
description:

If I1 = ∅, then SB1 = Rm. Otherwise

SB1 = S∗B1
∪ −S∗B1

,

where
S∗B1

= {δ ∈ Rm | (gy
i , g

z
i )T (δB1 , δN1) > 0 ∀ i ∈ I1,

(hy
j ,h

z
j )T (δB1 , δN1) ≥ 0 ∀ j ∈ I2}.

P r o o f . Feasibility of the sub-basis B1 preserves for the values δ ∈ Rm for which
the set

{x ∈ Rn | AB1x+ δB1xn = bB1 , AN1x+ δN1xn ≤ bN1}
= {x ∈ Rn | AB1x+δB1xn ≤ bB1 , −AB1x−δB1xn ≤ −bB1 , AN1x+δN1xn ≤ bN1}
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Table 2. Examples in R3, R4, pseudorandom data.

number of computing

matrix A vector b matrix C vector d stability sets time

0
@

5 5
7 1
−6 −6

1
A

0
@

5
−5
−5

1
A

0
@
−8 9

4 8
2 2

1
A

0
@
−6

6
11

1
A 41 25 s

0
@
−7 8

3 7
8 −9

1
A

0
@
−6

6
6

1
A

0
BB@

−5 −3
−3 1

9 8
1 7

1
CCA

0
BB@

7
−4
−6
−3

1
CCA 429 10 min 45 s

0
BBBB@

0 −3
5 −3
0 8
9 9
−7 −7

1
CCCCA

0
BBBB@

7
6

11
0
−2

1
CCCCA

0
@

7 −1
−4 5
−5 6

1
A

0
@

4
−5

6

1
A 608 29 min 56 s

0
@

8 5 3
−7 1 1

2 8 4

1
A

0
@

7
−4

7

1
A

0
BB@

4 5 −2
6 8 −2
−4 −7 −2

2 6 1

1
CCA

0
BB@

−1
−3
−6
−2

1
CCA 44 27 s

0
BB@

7 6 −2
−6 3 3
−9 0 −2

8 −4 7

1
CCA

0
BB@

−3
2
−3

3

1
CCA

0
BB@

4 5 −7
−4 −1 −4
−2 −5 −4
−7 −3 7

1
CCA

0
BB@

3
1

12
−1

1
CCA 131 3 min 56 s

is non-empty. Consider the convex polyhedral cone

{(y1,y2,z) ∈ Rm+|B1| |AT
B1
y1 −AT

B1
y2 +AT

N1
z = 0, (30)

bTB1
y1 − bTB1

y2 + bTN1
z ≤ 0, y1,y2, z ≥ 0}.

Denote by (g1
i , g

2
i , g

z
i ), i ∈ I ′1, the extremal directions of the convex polyhedral cone

(30) with the property (g1
i , g

2
i , g

z
i )T (bB1 ,−bB1 , bN1) < 0 and by (h1

j ,h
2
j ,h

z
j ), j ∈ I ′2,

the extremal directions of (30) with the property (h1
j ,h

2
j ,h

z
j )T (bB1 ,−bB1 , bN1) = 0.

After substitution y ≡ y1−y2, gy
i ≡ g1

i −g2
i , h

y
j ≡ h1

j −h2
j we obtain the statement

of Lemma 1 according to Theorem 6: If a vector (g1
i , g

2
i , g

z
i ) represents an extremal

direction of (30), then the vector (gy
i , g

z
i ) is zero or represents an extremal direction

of (29), and vice versa. Likewise for vectors (h1
j ,h

2
j ,h

z
j ) and (hy

j ,h
z
j ). ¤

Let δ0 ∈ Rm and B1 be any feasible sub-basis of M1(δ0). Let us introduce

Sδ0

B1
≡





Rm if I1 = ∅ (from Lemma 1),
S∗B1

if δ0 ∈ S∗B1
,

−S∗B1
if δ0 ∈ −S∗B1

.
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Lemma 2. Let δ0 ∈ Rm and S be an arbitrary (n− 1)-elemental sub-basis of the
convex polyhedral set M1(δ0). Let us assume that the basis S determines an edge
of M1(δ0) unbounded in the direction of (h0, h0

n) 6= (0, 0) and this edge originates
from the vertex corresponding to the basis S ∪ {i} for a certain i ∈ {1, . . . ,m} \ S.
Then the set HiS of all δ ∈ Rm for which the edge, corresponding to the sub-basis
S, represents an unbounded edge of M1(δ) originating from the vertex determined
by the basis S ∪ {i}, has the following description:

If h0
n = 0, then HiS = Sδ0

S∪{i}. Otherwise

HiS =
{
δ ∈ Sδ0

S∪{i} | (δj−AT
j,·A−1

S δS) sgn(h0
n)≤0 ∀ j∈{1, . . . ,m} \ (S ∪ {i})

}
. (31)

P r o o f . Any unbounded edge of the convex polyhedral setM1(δ) corresponding
to the sub-basis S and originating from the vertex determined by the basis S ∪ {i}
is described by the system

ASx+ δSxn = bS , Ai,·x+ δixn ≤ bi

and is unbounded in direction which represents (according to [11]) a nontrivial so-
lution to

ASx+ δSxn = 0, Ai,·x+ δixn ≤ 0, (32)

whereas the inequalities Aj,·x+ δjxn ≤ 0 with j ∈ {1, . . . ,m} \ (S ∪{i}) if added to
(32) are redundant. For the special case when (x, xn) = (h0, h0

n), δ = δ0 we have

ASh
0 + δ0

Sh
0
n = 0, Ai,·h0 + δ0

i h
0
n ≤ 0.

If h0
n = 0, then the vector (h0, h0

n) is obviously an extremal direction ofM1(δ) for all
δ ∈ Sδ0

S∪{i}. Otherwise, the matrix AS must be nonsingular (since rank
(
AS δ

0
S

)
=

n− 1). From (32) we have x = −A−1
S δSxn and consequently

(
δi −Ai,·A−1

S δS
)
xn ≤ 0.

The equation
δi −Ai,·A−1

S δS = det (A−1
S ) · det

(
AS δS
Ai,· δi

)

holds. The determinant det
(

AS δS
Ai,· δi

)
has a constant sign for all δ ∈ Sδ0

S∪{i}, since

if for certain δ1, δ2 ∈ Sδ0

S∪{i}

d1 = det
(
AS δ1

S

Ai,· δ1
i

)
> 0 and d2 =

(
AS δ2

S

Ai,· δ2
i

)
< 0,

hold, then for the convex combination δ3 ≡ 1
|d1|+|d2| (|d2|δ1 + |d1|δ2) ∈ Sδ0

S∪{i} we
have

det
(
AS δ3

S

Ai,· δ3
i

)
= 0,
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which contradicts the feasibility of the basis S ∪ {i}. Hence an element xn from
(32) has a constant sign for all δ ∈ Sδ0

S∪{i}, namely sgn(h0
n). A vector (x, xn)

belongs to the unbounded edge of M1(δ) provided Aj,·x + δjxn ≤ 0 for all j ∈
{1, . . . ,m} \ (S ∪ {i}). Hence

−AT
j,·A−1

S δSxn + δjxn ≤ 0 ∀ j ∈ {1, . . . ,m} \ (S ∪ {i}),
or, equivalently

(
δj −AT

j,·A−1
S δS

)
sgn(h0

n) ≤ 0 ∀ j ∈ {1, . . . ,m} \ (S ∪ {i}). ¤

Let δ0 ∈ Z1. Denote by S a family of all feasible bases of the convex polyhedral
setM1(δ0) and by H a family of pairs (S, i), where S is a feasible sub-basis ofM1(δ0)
to which it corresponds an unbounded edge originating from a vertex determined by
the basis S ∪ {i}. Let us introduce

Z1(S,H) ≡ Z1 ∩
(
∩B∈S Sδ0

B

)
∩

(
∩(S,i)∈HHiS

)
.

The set Z1(S,H) represents a set of all δ ∈ Z1 such that all bases from S are (accord-
ing to Lemma 1) feasible forM1(δ) and the family of unbounded edges is preserved
(Lemma 2). In this way we can divide the set Z1 into the sets Z1(Sk,Hk), k ∈ K,
where K is a finite index set. Each set Z1(Sk,Hk), k ∈ K, represents a convex set,
a closure of which is a convex polytope.

Assertion 4. Let k ∈ K and Sk 6= ∅. Let us assume that the set Z1(Sk,Hk)
is closed and denote by δi, i ∈ Vk, all vertices of the convex polytope Z1(Sk,Hk).
Then the set conv

(
∪δ∈Z1(Sk,Hk)M1(δ)

)
represents a convex polyhedral set and the

equation

conv


 ⋃

δ∈Z1(Sk,Hk)

M1(δ)


 = conv

( ⋃

i∈Vk
M1(δi)

)

holds.

P r o o f . We will prove that for an arbitrary δ1, δ2 ∈ Z1(Sk,Hk) and an arbitrary
convex combination δc ≡ (1− c)δ1 + cδ2, c ∈ (0, 1) we have

M1(δc) ⊆ conv
(
M1(δ1) ∪M1(δ2)

)
.

To prove this it is sufficient to show that all vertices of the convex polyhedral set
M1(δc) can be expressed as a convex combination of vertices of M1(δ1), M1(δ2)
and all extremal directions ofM1(δc) can be expressed as non-negative linear com-
binations of extremal directions of M1(δ1), M1(δ2). Let B ∈ Si be a basis of
M1(δ) and denote by v1, v2, and vc the vertex corresponding to the basis B of
the convex polyhedral setM1(δ1),M1(δ2), andM1(δc), respectively. Next denote
M ≡

(
AB δ

1
B

)
. According to the well-known Sherman–Morrison formula, we get

vc =
(
M + c(δ2

B − δ1
B)eTn

)−1

bB =
(
M−1 − cM−1(δ2

B − δ1
B)eTnM

−1

1 + ceTnM
−1(δ2

B − δ1
B)

)
bB . (33)
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Since B is a feasible basis ofM1(δc) for all c ∈ 〈0, 1〉, the denominator of expression
(33) has a constant sign for all c ∈ 〈0, 1〉. Hence the expression (33) represents a
monotone function of a variable c with c ∈ 〈0, 1〉 and, therefore, the vertex vc is a
convex combination of v1, v2.

Let (S, i) ∈ Hk, where S is an (n−1)-elemental sub-basis determining unbounded
edge of M1(δc). Let us denote a vector in direction of this unbounded edge for
M1(δ1),M1(δ2), andM1(δc) as (h1, h1

n), (h2, h2
n), and (hc, hcn), respectively. From

the proof of Lemma 2 we have sgn(h1
n) = sgn(h2

n) = sgn(hcn). Consider the following
three cases.

1. If h1
n = h2

n = hcn = −1, then

δ1 = ASh
1, δ2 = ASh

2, δc = ASh
c.

Hence we obtain 0 = AS

(
hc − (1 − c)h1 − ch2

)
. From the nonsingularity of

the matrix AS it follows that (hc, hcn) = (1− c)(h1, h1
n) + c(h2, h2

n).

2. The case h1
n = h2

n = hcn = 1 is analogous to the previous one.

3. In the case h1
n = h2

n = hcn = 0 all the vectors h1, h2, hc determine the same
direction. ¤

According to the Assertion 4 we can, under certain assumption, reduce the com-
putation of the convex hull of an infinite number of convex polyhedral sets to finite
number (for an explicit description of convex hulls see [5]). In this way we can reduce
the whole computation of conv

(
∪δ∈Z1 M1(δ)

)
to a computation of a convex hull

of finitely many convex polyhedral sets, since

conv

( ⋃

δ∈Z1

M1(δ)

)
= conv

( ⋃

k∈K

⋃

i∈Vk
M1(δi)

)
.

Example 2. Given

A =

(−3
3
−3

)
, b =

(
0

12
15

)
, Z1 =

{
δ ∈ R3 | δ = (1, 1, 2)T + t(1,−1, 2)T , t ∈ 〈0, 6〉

}

and M2(µ) =
{
x ∈ R2 |

(
1 3
−1 −2

)
x ≤

(
14
−12

)}
is fixed. We will compute the

convex hull conv
(
∪δ∈Z1M1(δ)

)
and check the existence of a permanent separating

hyperplane.

1. Choose δ1 ∈ Z1, e. g. as δ1 = (1, 1, 2)T . The family of all feasible bases of
the convex polyhedral set M1(δ1) is S1 = {(1, 2)}. The convex polyhedral
cone N(1,2) from (29) has two extremal directions g1 = (−1,−1, 0)T and h1 =
(−9,−5, 4)T . Hence

Sδ1

(1,2) ={δ ∈ R3 | −δ1 − δ2 < 0, −9δ1 − 5δ2 + 4δ3 ≤ 0}.
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2 4 6 8 10 12 14−2−4−6

2

4

6

x1

x2

conv
“

∪δ∈Z1
M1(δ)

”

M1(δ
1) M1(δ

2)

M1(δ
3)

M2(µ)

Fig. 2. Illustration to Example 2.

The convex polyhedral set M1(δ1) has two extremal directions (−1,−3) (it
corresponds to the sub-basis (1) originating from a vertex determined by the
basis (1, 2)) and (1,−3) (it corresponds to the sub-basis (2) originating from
a vertex determined by the basis (1, 2)). Hence H1 = {((1), 2), ((2), 1)}. Sets
H2

(1), H1
(2) have according to (31) the description

H2
(1) = {δ ∈ Sδ1

(1,2) | −δ1 + δ3 ≥ 0},
H1

(2) = {δ ∈ Sδ1

(1,2) | δ2 + δ3 ≥ 0}.

The convex polytope Z1(S1,H1) is equal to

Z1(S1,H1) = Z1 ∩ Sδ1

(1,2) ∩H2
(1) ∩H2

(1)

=
{
δ ∈ R3 | δ = (1, 1, 2)T + t(1,−1, 2)T , t ∈ 〈0, 3

2 〉
}

and consists of two vertices δ1 and δ2 = ( 5
2 ,− 1

2 , 5)T .

2. Choose δ3 ∈ Z1 \ Z1(S1,H1), e. g. as δ3 = (7,−5, 14)T . The family of all
feasible bases of the convex polyhedral set M1(δ3) is S2 = {(1, 3), (2, 3)}.
The convex polyhedral cone N(1,3) from (29) has two extremal directions g2 =
(1,−1, 0)T , h2 = (9,−4, 5)T . Hence

Sδ3

(1,3) ={δ ∈ R3 | δ1 − δ3 > 0, 9δ1 + 5δ2 − 4δ3 ≥ 0}.

The convex polyhedral coneN(2,3) has two extremal directions g3 = (−1,−1, 0)T ,
h3 = (5,−4, 9)T and hence

Sδ3

(2,3) ={δ ∈ R3 | −δ2 − δ3 > 0, 9δ1 + 5δ2 − 4δ3 ≥ 0}.
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The convex polyhedral set M1(δ3) has two extremal directions: (−7,−3) (it
corresponds to the sub-basis (1) originating from a vertex determined by the
basis (1, 3)) and (−5,−3) (it corresponds to the sub-basis (2) originating from
a vertex determined by the basis (2, 3)). Hence H2 = {((1), 3), ((2), 3)}. Sets
H3

(1), H3
(2) have, according to (31), the description

H3
(1) = {δ ∈ Sδ3

(1,3) | δ1 + δ2 ≥ 0},
H3

(2) = {δ ∈ Sδ3

(2,3) | δ1 + δ2 ≥ 0}.

The convex polytope Z1(S2,H2) is equal to

Z1(S2,H2) = Z1 ∩ Sδ3

(1,3) ∩ Sδ3

(2,3) ∩H3
(1) ∩H3

(2) =

=
{
δ ∈ R3 | δ = (1, 1, 2)T + t(1,−1, 2)T , t ∈ 〈 3

2 , 6〉
}

and consists of two vertices δ2 a δ3.

Altogether we obtain

conv

( ⋃

δ∈Z1

M1(δ)

)
= conv

(
M1(δ1) ∪M1(δ2) ∪M1(δ3)

)

=

{
x ∈ Rn

∣∣∣



−3 7

0 1
3 4
3 1


x ≤




36
6

39
30




}
.

There is no permanent separating hyperplane (since the sets conv
(
∪δ∈Z1 M1(δ)

)

and M2(µ) are not separable), even though M1(δ), M2(µ) are strongly separable
for all δ ∈ Z1.

6. APPLICATION IN MULTIOBJECTIVE PROGRAMMING

In this section we show an application of the proposed theory in multiobjective
programming. Let us consider a multiobjective program

max {Cx | x ∈M},

where M ≡ {x ∈ Rn | Ax ≤ b}, A ∈ Rm×n, C ∈ Rl×n, b ∈ Rm. Let x0 ∈ M be
a weakly efficient solution, i. e., there is no x ∈ M with Cx > Cx0. Alternatively,
weak efficiency of x0 can be characterized as separability by a hyperplane of two
convex polyhedral sets, M and {x | Cx ≥ Cx0}, or after transation,

{x | Ax ≤ b−Ax0} and {x | Cx ≥ 0}.

As long as there are uncertainties or measurement errors in one column coefficients
of the cost matrix C, they can be modelled by column parameters and the theory
derived in previous sections is applicable.
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7. CONCLUSION

In this article, we were concerned with separation properties of two convex polyhe-
dral sets M̃1 and M̃2 depending on parameters. Parameters arise in one column
of the constraint matrix from the description of these convex polyhedral sets. The
situation, when there are parameters on the right-hand side of inequalities was dealt
with in [6]. The situation, when parameters arise in one row of the constraint ma-
trix, is the subject of further research. We defined the so called solution set (a set of
parameters for which M̃1 and M̃2 are strongly separable) and stability sets (sets of
parameters for which separability of M̃1 and M̃2 has the same characteristics). To
stability sets, one could apply various kinds of postoptimality analysis (parametric
analysis, sensitivity analysis or tolerance analysis – see e. g. [2]), but it goes outside
the scope of this paper. We provided also several examples which were carried out
on a computer. One section was devoted to determining the so called permanent
separating hyperplane which separates M1(δ) and M2(µ) for all values of param-
eters δ,µ from a given convex polytope. Eventually, we showed how this theory is
applicable in multiobjective programming.

(Received September 20, 2006.)
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