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KYBERNET IK A — VOLUME 4 4 ( 2 0 0 8 ) , NU MB ER 5 , P AG E S 6 4 9 – 6 6 3

ON THE SOLUTION OF THE CONSTRAINED
MULTIOBJECTIVE CONTROL PROBLEM
WITH THE RECEDING HORIZON APPROACH

Daniele De Vito and Riccardo Scattolini

This paper deals with a multiobjective control problem for nonlinear discrete time sys-
tems. The problem consists of finding a control strategy which minimizes a number of
performance indexes subject to state and control constraints. A solution to this problem
through the Receding Horizon approach is proposed. Under standard assumptions, it is
shown that the resulting control law guarantees closed-loop stability. The proposed method
is also used to provide a robustly stabilizing solution to the problem of simultaneously min-
imizing a set of H∞ cost functions for a class of systems subject to bounded disturbances
and/or parameter uncertainties. Numeric examples are reported to highlight the stabilizing
action of the proposed control laws.
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1. INTRODUCTION

Many control design problems require to minimize a number of often conflicting
performance measures. These are known as multiobjective control problems and
have been tackled in different ways in recent years, see e. g. [6, 11] where linear
unconstrained systems have been considered. The case of nonlinear systems with
constraints has been treated in [4], where a solution based on the closed-loop optimal
control of stationary discrete time systems in the infinite horizon multiobjective
worst case has been given by taking into account the maximum value of a bounded
disturbance term affecting the state dynamics.

In order to deal with constrained nonlinear systems, in this paper a method based
on the Receding Horizon (RH ) approach is proposed. It is shown that, under quite
standard assumptions in nonlinear Model Predictive Control (MPC ) based on the
RH paradigm, see e. g. [7], the resulting control law guarantees the asymptotic
stability of the origin of the state space. The method proposed here is also used
to provide a solution to the problem of simultaneously minimizing a set of H∞
performance indexes for a class of systems subject to bounded disturbances and/or
parameter uncertainties.
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The paper is organized as follows. In Section 2 the adopted notation and some
basic definitions are reported. The multiobjective optimization problem is formu-
lated and solved for nominal unperturbed systems in Section 3, while Section 4 deals
with the control problem for systems subject to bounded disturbances. The paper
ends with some concluding remarks.

2. NOTATION AND BASIC DEFINITIONS

The Euclidean norm is denoted by ‖·‖. The symbol λi(T ) denotes the ith eigenvalue
of the matrix T , while the maximum eigenvalue of T is λM (T ). A diagonal matrix
T with diagonal elements t1, t2, . . . , tn is written as diag{t1, t2, . . . , tn}. A function
α(·): R≥0 → R≥0 is a K function if it is continuous, positive definite and strictly
increasing. A function β(·) is a K∞ function if it is a K function and β(s) →∞ as
s →∞.

3. PROBLEM FORMULATION AND SOLUTION

Consider the nonlinear, discrete, time-invariant system described by

x(k + 1) = f
(
x(k), u(k)

)
(1)

where x ∈ Rn is the state, u ∈ Rm is the control variable and f(·, ·) is a C1 function
of its arguments with f(0, 0) = 0. The state and control variables are required to
fulfill the following constraints

x ∈ X, u ∈ U (2)

where X and U are compact sets of Rn and Rm respectively, containing the origin
as an interior point.

For system (1) assume to know an “auxiliary” stabilizing control law

u = κf (x) (3)

and let Xf ⊆ X be a known positively invariant set for the closed-loop system
(1), (3) such that {

κf (x) ∈ U, ∀x ∈ Xf

f
(
x, κf (x)

)
∈ Xf , ∀x ∈ Xf .

(4)

Moreover, at any time instant k, let u[k,k+Nc−1] = [u(k) u(k + 1) · · · u(k + Nc − 1)]
be the sequence of current and future control moves over the control horizon Nc,
Nc being a positive integer, and define by the integer Np, Np ≥ Nc, the adopted
prediction horizon. Then, the multiobjective control problem considered here con-
sists of minimizing, at any time instant k and with respect to u[k,k+Nc−1], the r cost
functions

Ji

(
x(k), u(·), Nc, Np) =

k+Np−1∑

j=k

ϕi

(
x(j), u(j)

)
+ Vfi

(
x(k + Np)

)
, i = 1, . . . , r (5)

subject to:
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(i) the system dynamics (1),

(ii) the state and the control constraints (2),

(iii) the auxiliary control law

u(t) = κf (x(t)), t ∈ [k + Nc . . . k + Np − 1], (6)

(iv) the terminal state constraint
x(k + Np) ∈ Xf . (7)

In (5), αϕi(‖x‖) ≤ ϕi(x, u), i = 1, . . . , r, αϕi(·) being K∞ functions, while the ter-
minal costs Vfi have to be selected as positive functions, with Vfi(0) = 0, satisfying
the following conditions

Vfi

(
f(x, κf (x)

)
− Vfi(x) ≤ −ϕi

(
x, κf (x)

)
, ∀x ∈ Xf , i = 1, . . . , r

Vfi(x) ≤ βVfi
(‖x‖), ∀x ∈ Xf , i = 1, . . . , r

(8)

where also βVfi
are K∞ functions.

The problem stated can now be reformulated as follows:

Multiobjective Optimization Control Problem (MOCP)





min
u[k,k+Nc−1]

ε




J1

(
x(k), u(·), Nc, Np) ≤ ε

...
Jr

(
x(k), u(·), Nc, Np) ≤ ε

(9)

subject to (1), (2), (6), (7).

Let uo
[k,k+Nc−1] be the optimal solution of MOCP at time k, define the RH control

law κRH(x) = uo
[k,k](x), where uo

[k,k](x) is the first entry of uo
[k,k+Nc−1], and apply

at any time instant the RH control law
u = κRH(x). (10)

Denoting by XRH(Nc, Np) the set of states such that a feasible solution of MOCP
exists, the following stability result can be stated.

Theorem 1. The origin of the closed-loop system (1), (10) is an asymptotically
stable equilibrium point with positively invariant set XRH(Nc, Np).

P r o o f . Let x(k) = x̂ ∈ XRH(Nc, Np) be the current state at the generic time
instant k and

ξ = f
(
x̂, κRH(x̂)

)
(11)

its value at the next step due to the first entry of the optimal sequence uo
[k,k+Nc−1]

computed at time k. The control sequence ũ[k,k+Nc] =
[
uo

[k,k+Nc−1] κf

(
x(k + Nc)

)]
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is a feasible suboptimal sequence for the control problem at k with control horizon
Nc + 1 and prediction horizon Np + 1.

Now, let ũ[k+1,k+Nc] be the sequence obtained from ũ[k,k+Nc] by removing its first
entry ũ[k,k] and define




h = arg max
1≤i≤r

Ji(x̂, uo
[k,k+Nc−1], Nc, Np)

j = arg max
1≤i≤r

Ji(ξ, ũ[k+1,k+Nc], Nc, Np)

V (x̂, Nc, Np) = Jh(x̂, uo
[k,k+Nc−1], Nc, Np).

(12)

Notice that, for any x ∈ XRH(Nc, Np), the first inequality in (8) allows one to obtain
the following

V (ξ,Nc, Np) ≤ Jj(ξ, ũ[k+1,k+Nc], Nc, Np)

= Jj(x̂, uo
[k,k+Nc−1], Nc, Np)− ϕj

(
x̂, κRH(x̂)

)

+ ϕj

(
x(k + Np), κf

(
x(k + Np)

))

− Vfj

(
x(k + Np)

)
+ Vfj

(
f(x(k + Np), κf (x(k + Np)))

)

≤ V (x̂, Nc, Np)− ϕj

(
x̂, κRH(x̂)

)

(13)

so that, in view of (12) and the hypothesis concerning the ϕi(x, u) functions, for any
x ∈ XRH(Nc, Np),





V (x,Nc, Np) ≥ min
1≤i≤r

ϕi(x, κRH(x)) ≥ min
1≤i≤r

αϕi(‖x‖) = αϕ(‖x‖)

∆V (x,Nc, Np) = V (ξ,Nc, Np)− V (x,Nc, Np) ≤ −αϕ(‖x‖)
(14)

where αϕ(‖x‖) is a K∞ function. Moreover, letting

l = arg max
1≤i≤r

Ji(x̂, ũ[k,k+Nc], Nc + 1, Np + 1)

one has

Jl(x̂, ũ[k,k+Nc], Nc + 1, Np + 1) ≤ Jh(x̂, uo
[k,k+Nc−1], Nc, Np)− Vfl

(
x(k + Np)

)

+Vfl

(
f(x(k + Np), κf (x(k + Np)))

)
+ ϕl

(
x(k + Np), κf

(
x(k + Np)

))

and, recalling the conditions (8)

V (x̂, Nc + 1, Np + 1) ≤ Jl(x̂, ũ[k,k+Nc], Nc + 1, Np + 1)
≤ Jh(x̂, uo

[k,k+Nc−1], Nc, Np) = V (x̂, Nc, Np)

so that
V (x,Nc + 1, Np + 1) ≤ V (x,Nc, Np), ∀x ∈ XRH(Nc, Np). (15)

Now it is proven that, for Np ≥ Nc, also the following monotonicity property
holds

V (x, Nc, Np + 1) ≤ V (x,Nc, Np), ∀x ∈ XRH(Nc, Np). (16)
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To this end, let uo
[k,k+Nc−1],Np+1

be the optimal control sequence at time k with
control and prediction horizons Nc and Np + 1 respectively,

h′ = arg max
1≤i≤r

Ji(x̂, uo
[k,k+Nc−1],Np+1

, Nc, Np + 1)

and V (x,Nc, Np+1) = Jh′(x̂, uo
[k,k+Nc−1],Np+1, Nc, Np+1). Now recall that uo

[k,k+Nc−1]

is the optimal control sequence computed at time k by considering the same control
horizon Nc and the prediction horizon Np and that

h = arg max
1≤i≤r

Ji(x̂, uo
[k,k+Nc−1], Nc, Np).

It then follows that

V (x̂, Nc, Np + 1) ≤ Jh′(x̂, uo
[k,k+Nc−1], Nc, Np + 1)

= Jh′(x̂, uo
[k,k+Nc−1], Nc, Np)− Vfh′

(
x(k + Np)

)

+Vfh′

(
f(x(k + Np), κf (x(k + Np)))

)
+ ϕh′

(
x(k + Np), κf

(
x(k + Np)

))

≤ Jh(x̂, uo
[k,k+Nc−1], Nc, Np) = V (x̂, Nc, Np).

Finally, since for any x ∈ Xf

V (x, 0, 0) ≤ max
1≤i≤r

Vfi(x) ≤ max
1≤i≤r

βVfi
(‖x‖) = βVf

(‖x‖) (17)

where βVf
(‖x‖) is a K∞ function, from (15) and (16) it follows that in x ∈ Xf

V (x,Nc, Np) ≤ V (x,Nc, Np−1) ≤ . . . ≤ V (x,Nc, Nc) ≤ . . . ≤ V (x, 0, 0) ≤ βVf
(‖x‖).

(18)
In conclusion, from (14) and (18), V (x,Nc, Np) is a Lyapunov function for the closed-
loop system, see [5, 9], with the receding horizon predictive control law (10) and the
result follows. ¤

Remark 1. Many different choices of the auxiliary control law (3), of the terminal
set Xf and of the terminal costs Vfi have been proposed in the literature in order
to guarantee the closed-loop stability of standard RH control laws, i. e. such that
conditions (8) are satisfied, see e. g. [1, 3]. Among them, for systems (1) whose
linearization at the origin is stabilizable and for quadratic cost functions ϕi(x, u) =
‖x‖2

Qi
+ ‖u‖2

Ri
, i = 1, . . . , r, a possible way to compute the auxiliary control law

(3), the terminal costs Vfi , i = 1, . . . , r, and the terminal set Xf can be summarized
in the following steps:

1. compute the linearization of system (1) at the origin, i. e.

A =
∂f

∂x

∣∣∣∣
x=0,u=0

, B =
∂f

∂u

∣∣∣∣
x=0,u=0

;
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2. compute a stabilizing control law u = −Kx for the linearized system and solve
the Lyapunov equation

(A−BK)′P (A−BK)− P = −αI (19)

where I is the identity matrix of appropriate size and α > 1;

3. compute the neighborhood of the origin

Xf = {x |x′Px− c < 0} (20)

c being a positive constant, where the following two conditions are simultane-
ously satisfied

u = −Kx ∈ U (21)
f(x,Kx)′Pf(x,Kx)− x′Px < 0 (22)

Eq. (22) guarantees that there exists a positive value γ such that

f(x,Kx)′Pf(x, Kx)− x′Px < −γx′x

4. define λMi = λM (Qi + K ′RiK), i = 1, . . . , r;

5. set Vfi(x) =
λMi

γ
x′Px, i = 1, . . . , r. (23)

It is easy to see that this choice satisfies conditions (21), (22) inside Xf .

3.1. Simulation example

The system under control is the model of a head box of a paper machine, first
presented in [2] and later considered in [10], and described by

x(k + 1) =Ax(k) + Bu(k)

=
[

0.99 −0.0088
0.81 0.771

]
x(k) +

[
0.899 −0.0046
19.39 0.88

]
u(k).

(24)

The two state variables correspond to the stock level and the total pressure,
respectively, while the inputs are the deviations in the stock flow and in the air flow.

For this system it is possible to compute the stabilizing Linear Quadratic control
law

u(k) = −Kx(k) = −
[

0.4946 0.0185
−9.9509 0.4664

]
x(k). (25)

Letting the input constraints be given by

|ui| ≤ 5, i = 1, 2 (26)

by means of the procedure described in Remark 1 it is possible to calculate the
terminal set Xf , reported in Figure 1 and defined by (20) with c = 0.4, and the
matrix

P =
[

1.4672 −0.0168
−0.0168 1.1008

]
(27)
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Fig. 1. Example 1: terminal region and state trajectory.
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Fig. 2. Example 1: control variables.

obtained from (19) with α = 1.1.
The optimization problem consists of minimizing three quadratic performance

indexes, defined as follows

Ji

(
x(k), u(·), N

)
=

k+N−1∑

j=k

(
x(j)′Qix(j) + u(j)′Riu(j)

)
+ Vfi

(
x(k + N)

)

where Np = Nc = N = 10, R1 = R2 = R3 = 0.01I2 and

Q1 = diag {2.3, 2.3} , Q2 = diag {4, 1} , Q3 = diag {1., 2.8}
which apparently pose different weights on the transients of the state variables. The
functions Vfi(·) are computed as in the procedure described in Remark 1, i. e. from



656 D. DE VITO AND R. SCATTOLINI

0 5 10 15 20
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Iteration index

S
ta

te
 v

ar
ia

bl
es

x1
x2

Fig. 3. Example 1: state variables.
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Fig. 4. Example 1: index of the maximum cost function at any iteration.

(23) with γ = 1. Finally, the vector of the initial states is x(0) = x0 = [3 1]′, which
is outside the terminal region Xf .

By applying the algorithm previously described, the transients of the control vari-
ables shown in Figure 2 have been computed and the transients of the state variables
reported in Figure 3 have been obtained. These figures highlight that the predic-
tive control law stabilizes the system (24) in about 10 iterations notwithstanding
the presence of the control saturations, which are active in the initial time instants.
The state trajectories are also reported in Figure 1. Finally, Figure 4 shows, at any
iteration, the index of the cost function corresponding to the active constraint in the
optimization problem (9).
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4. SYSTEMS WITH DISTURBANCES

In this section, the RH approach to the multiobjective control problem is extended
to simultaneously minimize a set of H∞ cost functions for systems subject to a class
of bounded disturbances. To this end, consider the perturbed model





x(k + 1) = f
(
x(k), u(k), w(k)

)

ϕ∞
(
x(k), u(k)

)
=

[
x(k)
u(k)

] (28)

where the state x ∈ Rn and control u ∈ Rm variables must satisfy the constraints (2),
f(·, ·, ·) is a C1 function of its arguments, with f(0, 0, 0) = 0, and w is a disturbance
term.

It is well known that for perturbed systems the RH approach calls for the so-
lution of a closed-loop min-max optimization problem, where optimization must be
performed with respect to control policies, instead of sequences, so as to guarantee
that the effect of the disturbance term is compensated for any choice made by the
“nature”, see e. g. [8]. Then, let Qi ∈ Rn+m,n+m, i = 1, . . . , r, be a set of positive
definite matrices,

λi = min
j=1,...,n+m

λj(Qi) (29)

λm = min
i=1,...,r

λi (30)

and assume that the disturbance w belongs to the class Wγ∆ of admissible distur-
bances such that

‖w(k)‖2 ≤ λmγ2
∆‖ϕ∞(x(k), u(k))‖2, k ≥ 0 (31)

where γ2
∆ is a positive constant. The space of admissible disturbances satisfying (31)

will be denoted by Wγ∆ .
For the perturbed system (28) assume to know an “auxiliary” stabilizing control

law u = κf (x) (32)

such that the closed-loop system (28), (32) has an attenuation level γ, with γγ∆ < 1,
in an associated positively invariant set Xf where

{
κf (x) ∈ U, ∀x ∈ Xf

f(x, κf (x), w) ∈ Xf , ∀x ∈ Xf ,∀w ∈ Wγ∆ .
(33)

Define at time k the sequence of control laws by κ[k,k+Nc−1] =
[
κ0,k

(
x(k)

)
. . .

. . . κNc−1,k

(
x(k + Nc − 1)

)]
and by w[k,k+Np−1] = [w(k) . . . w(k + Np − 1)] the

future admissible disturbance samples over the prediction horizon. Then for system
(28) and for any admissible disturbance it is possible to state the following control
problem

min
κ[k,k+Nc−1]

max
w[k,k+Np−1]

J∞i

(
x(k), κ[k,k+Nc−1], w[k,k+Np−1], Nc, Np

)
, i = 1, . . . , r

(34)
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where, for γ such that γ2γ2
∆ < 1,

J∞i(x(k), κ[k,k+Nc−1], w[k,k+Np−1], Nc, Np)

=
k+Np−1∑

j=k

(
‖ϕ∞(x(j), u(j))‖2

Qi
− γ2‖w(j)‖2

)
+ Vf∞i

(
x(k + Np)

)

and subject to:

(i) the system dynamics (28),

(ii) the state and the control constraints (2),

(iii) the control law
{

u(t) = κt−k(x(t)), t ∈ [k . . . k + Nc − 1]

u(t) = κf (x(t)), t ∈ [k + Nc . . . k + Np − 1],
(35)

(iv) the terminal state constraint

x(k + Np) ∈ Xf . (36)

Also in this case, assume that the terminal costs have to be chosen so that, for
any x ∈ Xf , for any w ∈ Wγ∆ and for any i = 1, . . . , r,

Vf∞i
(x) ≤ βVf∞i

(‖x‖)

Vf∞i

(
f(x, κf (x), w

)
− Vf∞i

(x) ≤ −‖ϕ∞
(
x, κf (x)

)
‖2

Qi
+ γ2‖w‖2

(37)

where βVf∞i
are K∞ functions. Now, the original control problem (34) can be

reformulated in the following

Multiobjective Robust Optimization Control Problem (MROCP)




min
κ[k,k+Nc−1]

max
w[k,k+Np−1]

ε




J∞1 ≤ ε

...
J∞r ≤ ε

(38)

subject to (2), (28), (32), (35), (36).

As in the previous section, let κo
[k,k+Nc−1] and wo

[k,k+Np−1] be the optimal (min-
imizing) control and (maximizing) disturbance sequences, respectively, of MROCP
at time k. According to the Receding Horizon principle, define κRH(x) = κo

0,k(x)
and apply the control law u = κRH(x). (39)

Denoting by XRH(Nc, Np) the set of states such that a feasible solution of MROCP
exists, the following stability result can be stated.
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Theorem 2. If γγ∆ < 1, then for any w ∈ Wγ∆ the origin of the closed-loop system
(28), (39) is an asymptotically stable equilibrium point with region of attraction
XRH(Nc, Np).

P r o o f . Let x(k) = x̂ ∈ XRH(Nc, Np) and w(k) = ŵ ∈ Wγ∆ be the current
state and the current disturbance sample, respectively, at the generic time instant
k. Moreover, denote by

ξ = f
(
x̂, κRH(x̂), ŵ

)
(40)

the value of the state at the next step due to the first entry of the optimal sequence
κo

[k,k+Nc−1].
Now define

V (x̂, Nc, Np) = max
i=1,...,r

{
J∞i(x̂, κo

[k,k+Nc−1], w
o
[k,k+Np−1], Nc, Np)

}
(41)

and observe that κ̃[k,k+Nc] =
[
κo

[k,k+Nc−1] κf

(
x(k+Nc)

)]
is an admissible suboptimal

sequence for the control problem at time k concerning a control and a prediction
horizon of length Nc + 1 and Np + 1, respectively.

Then

J∞i(x̂, κ̃[k,k+Nc], w[k,k+Np], Nc + 1, Np + 1)
= J∞i(x̂, κo

[k,k+Nc−1], w[k,k+Np−1], Nc, Np)

+ ‖ϕ∞(x(k + Np), κf (x(k + Np))‖2
Qi
− γ2‖w(k + Np)‖2

+Vf∞i
(f(x(k + Np), κf (x(k + Np)), w(k + Np))− Vf∞i

(x(k + Np))

and, by recalling (37)

J∞i(x̂, κ̃[k,k+Nc], w[k,k+Np], Nc + 1, Np + 1) ≤ J∞i(x̂, κo
[k,k+Nc−1], w[k,k+Np−1], Nc, Np).

As such

V (x̂, Nc + 1, Np + 1)

≤ maxi=1,...,r

{
maxw[k,k+Np−1]

{
J∞i(x̂, κo

[k,k+Nc−1], w[k,k+Np−1], Nc, Np)
}}

= V (x̂, Nc, Np)
(42)

for any x ∈ XRH(Nc, Np).
Also in this case, a monotonicity property with respect to the prediction hori-

zon Np, and for a constant control horizon Nc, can be proven as follows. Let
κo

[k,k+Nc−1],Np+1 and wo
[k,k+Np],Np+1 be the optimal solutions of the optimization

problem at time k with control and prediction horizons Nc and Np +1, respectively.
Then, letting

h = arg max
1≤i≤r

J∞i(x̂, κo
[k,k+Nc−1],Np+1, w

o
[k,k+Np],Np+1, Nc, Np + 1)
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one has

J∞h
(x̂, κo

[k,k+Nc−1],Np+1, w
o
[k,k+Np],Np+1, Nc, Np + 1)

≤ J∞h
(x̂, κo

[k,k+Nc−1], w
o
[k,k+Np],Np+1, Nc, Np + 1)

= J∞h
(x̂, κo

[k,k+Nc−1], w
o
[k,k+Np−1],Np+1, Nc, Np)

+ ‖ϕ∞(x(k + Np), κf (x(k + Np))‖2
Qh

− γ2‖wo(k + Np)‖2

+Vf∞h
(f(x(k + Np), κf (x(k + Np)), wo(k + Np)))− Vf∞h

(x(k + Np))
≤ J∞h

(x̂, κo
[k,k+Nc−1], w

o
[k,k+Np−1],Np+1, Nc, Np)

≤ max
i=1,...,r

{
max

w[k,k+Np−1]

{
J∞i

(x̂, κo
[k,k+Nc−1], w[k,k+Np−1], Nc, Np)

}}
= V (x̂, Nc, Np).

Therefore V (x̂, Nc, Np + 1) ≤ V (x̂, Nc, Np) (43)

for any x ∈ XRH(Nc, Np).
From the above relations, it also follows that for any x ∈ Xf one has

V (x,Nc, Np + 1) ≤ V (x, Nc, Np) ≤ . . . ≤ V (x,Nc, Nc) ≤ . . .

≤ V (x, 0, 0) ≤ max
i=1,...,r

βVfi
(‖x‖). (44)

Now note that, denoting by κ̄[k+1,k+Nc−1] the control sequence obtained from
κo

[k,k+Nc−1] by removing its first entry, for any ŵ one has

V (x̂, Nc, Np) ≥ max
i=1,...,r

{
J∞i(ξ, κ̄[k+1,k+Nc−1], w[k+1,k+Np−1], Nc − 1, Np − 1

+‖ϕ∞(x̂, κRH(x̂))‖2
Qi
− γ2‖ŵ‖2

}

and, in view of (31) and (43), it follows that for any x ∈ XRH(Nc, Np) one has

V (x̂, Nc, Np) ≥ V (ξ,Nc−1, Np−1)+ min
i=1,...,r

(‖ϕ∞(x̂, κRH(x̂))‖2
Qi
−γ2‖ŵ‖2)(45)

≥ V (ξ,Nc, Np) + ϑ( ˆ‖x‖) (46)

where ϑ( ˆ‖x‖) is a K∞ function.
Finally, it is simple to verify that, for any x ∈ XRH(Nc, Np),

V (x, Nc, Np) ≥ σ(‖x‖) (47)

where σ(‖x‖) is a suitable K∞ function. In conclusion, from (44), (45) and (47),
V (x,Nc, Np) is a Lyapunov function for the considered system, see [5, 9], and, as a
consequence, the origin is robustly asymptotically stable in x ∈ XRH(Nc, Np).

Remark 2. In principle, MROCP calls for the solution of a computationally dif-
ficult infinite dimensional optimization problem. To this regard, note that in the
design phase it is possible to resort to finite dimensional parametrizations of the
control policies, see the simulation example reported below.
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Remark 3. A possible way to compute the robust auxiliary control law κf (x)
together with an associated positively invariant terminal set has been proposed in
[8] for a wide class of nonlinear systems.

4.1. Simulation example

The receding horizon approach previously described is now applied to the simulation
example already considered in [8]. The system under control is a cart moving on
a plane, which is attached to the wall via both a spring and a damper with an
uncertain damping coefficient h. Denoting by x1 and x2 the position and the speed
of the cart, the discretized equations of this system are

{
x1(k + 1) = x1(k) + Tcx2(k)
x2(k + 1) = x2(k)− Tc

k0
M e−x1(k)x1(k)− Tc

h̄
M x2(k) + Tc

u(k)
M + Tcw(k)

(48)

where M = 1 is the mass of the cart, k0 = 0.33 is the spring coefficient, h = 1 is
the nominal value of the uncertain parameter h, and the adopted sampling period
is Tc = 0.4. Moreover, w(k) = −∆hd

M x2(k), where |∆hd| < 0.5 is the uncertain
parameter affecting the system dynamics.

System (48) can be written in the form

x(k + 1) = f1(x(k)) + F2u(k) + F3w(k) (49)

and, according to the results reported in [8], the auxiliary control law can be com-
puted by solving, with respect to the positive definite matrix P , the H∞ Riccati
equation

−P + F ′1PF1 + I − F ′1P
[

F2 F3

]
R−1

[
F2 F3

]′
PF1 = 0 (50)

where
F1 = ∂f1/∂x|x=0 , R =

[
F ′2PF2 + I F ′2PF3

F ′3PF2 F ′3PF3 − γ2I

]
(51)

and by setting
κf (x) = −

[
1 0

]
R−1

[
F2 F3

]′
Pf1(x). (52)

In the design phase, it has been set γ = 1, while two H∞ cost functions have
been defined by setting Q1 = diag{1, 1, 2}, Q2 = diag{2, 2, 1}, Vf∞1

(x) = Vf∞2
(x) =

100x′Px. The adopted terminal set

Xf = {x|x′Px− 0.001 < 0} (53)

guarantees that the decreasing conditions (37) are satisfied.
The considered control policies are κi(x) = αiκf (x) + βix

2
1 + γix

2
2, where the

parameters αi, βi and γi to be optimized at any time instant over the control horizon
are limited as follows: 0.5 ≤ αi ≤ 1.8, |βi| ≤ 0.5, |γi| ≤ 0.5, while the adopted control
constraint is |u| ≤ 1.5. Different prediction (Np = 20) and control (Nc = 5) horizons
have been used, so reducing to 15 the total number of parameters αi, βi and γi to be
iteratively determined. Finally, at any time instant the maximization with respect
to the future disturbance sequence has been performed under the further constraint
∆hd(k + i) = ∆hd(k), i = 1, . . . , Np.
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The simulation results obtained starting from the initial state x(0) = [3 0]′ and
with ∆hd = 0.2 are reported in Figures 5 and 6. It is apparent that the control
constraint is active in the initial time instants.
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Fig. 5. State variables of Example 2.
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Fig. 6. Control variable of Example 2.

5. CONCLUSION

In this paper the multiobjective control problem for discrete-time, constrained, non-
linear systems has been solved by resorting to the Receding Horizon approach. The
proposed method has also been used to provide a solution to the problem of contem-
porarily minimizing a set of H∞ performance indexes for systems subject to a class



Multiobjective Optimization 663

of bounded disturbances. Two simulation examples have been reported in order to
witness the validity of the proposed theory. The first example concerns a determin-
istic linear discrete time model of a flow-box, while the second one deals with the
perturbed nonlinear model of a cart.

(Received May 23, 2008.)
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