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POLARS AND X-IDEALS IN SEMIGROUPS 

BOHUMIL SMARDA 

In the first part of the paper the foundations of the theory of polars are 
generalized from lattice ordered groups (^-groups) to ^-ideals in commutative 
semigroups (see [1]). 

In the second part of the paper a characteristic of x-ideals of a finite character 
is given. 

Definition. Let (S,.) be a semigroup. A mapping x: 2s -> 2s that fulfils the 
conditions 

I. 4 c S - > i g Ax, 
I I . A,B<z S, Acz Bx=>Axs^ Bx, 

III. A^ S => 8 .Axcz Ax, 
IV. A9BcS=>A.Bx^(A. B)x, 

is called an ideal-mapping and a set A c= S with Ax = A is called an x-ideal 
in 8. A system of all x-ideals in 8, for the given ideal-mapping x, is called an 
x-system. 

R e m a r k . 1, From I. and I I . it follows Axx = Ax. 2. If (S, .) is a semigroup, 
then for any A, B c S we denote A : B = {c e S : c . B c A}. With regard 
to [1], Th. 3 the condition IV. is equivalent to (Ax : b)x = Ax : b, for each 
A ^ S, b G S if we suppose I. a:nd I I . 

E x a m p l e s . 1. If (G, + ) is a group, a 0b = —a — b -f- a -f- b, then (G, o) 
is a semigroup and a ma/pping x such that it maps every subset A ^ G on the 
normal subgroup Ax in (G, + ) generated by A is an ideal-mapping. 

2. If (L,V,A) is a distributive lattice, a .b = a/\ b, then (L, 0) is a semi
group and a mapping x such that it maps every subset A ^ L on the lattice-
ideal Ax in (L,V,A) generated by A is an ideal-mapping. 

3. If (B, + , .) is a ring, then a mapping x such that it maps every subset 
i c 12on the ring-ideal Ax in (R, -f, .) generated by A is an ideal-mapping., 

1.1. Let G be an l-group,Ai be a convex l-subgroup in G generated by A c G, 
for each A c G. Then I: 2G •> 2G is an ideal-mapping on the semigroup (G, 0} 
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where a ob = \a\/\ \b\, for each a, b e G. Further, if B is an x-ideal in (G, ) , 
that is a subgroup in G, then B is a convex l-subgroup in G. 

Proof . Evidently A ^ At and A ^ Bi => At ^ Bt. For each a e A, b e Bu 

A, B c G there is a 0 b = |e»|A |b| < |b| and thus A . Bi c= Bt. Now we prove 
that Ai : g is a convex Z-subgroup in G, for each A <= G, g e G: 

If a, b e Af. g,h eG,\h\ < \a\, then h Qg = \h\/\ \g\ < \a\,\ g = a g e At 

and h 0g eAi, h eAf.g, |—a|A IfJI = MA M = « o g eAu i. e., —a G At : g. 
Further, (a + 6) o g = \a + b|A \g\ < (\a\ + \b\ + \a\)A \g < (|a A g) -1-
+ (|6,A Igl) + (l«IA IfIl) e At, (a +b) cg eAt,a + b eAf.g, (ay 0) r/ 
- Î V7 0|A |y| < |« A \g\ eAi, a+eAf.g. Together (Af.g)x = Af.g and 
according to Remark 2. the mapping I defines an x-sy^stem on (G, <•>). 

Now, let B be an x-ideal in (G, 0), H be a subgroup in O. If b G H, # G 6\ 
O, < |b|, then \g\ = \b\ A \g\ = b o g e B, b+ = |b V 0 = |b| A b V 0 
= b o (bV 0) G # . 

R e m a r k . We shall suppose that in this paper a semigroup is always com
mutative . 

Definition. Let (S, . , e) be a commutative semigroup with a zero element, i.e., 
s . e = e . s = e, for each s e S. Then we define relations 6*, 6' in S: 

xd*y o x .y = e, for x, y e S 

xb'y o x . y = e, for x,y e S, x ^ y 

xS'x o x = e, for x e S. 

Further, K* = {s e S : sd*k, for each k e K}, K' = {s e S : sd'k, for each 
keK}, K** = (K*)*, K" = (K')'. A set K^ S with the property K** 
= K(K" = K) is called a d*-polar (a 3'-polar). 

R e m a r k . 1. K c= K**, K c= K". 2. A zero element e in a semigroup S is 
contained in every x-ideal in S. 

1.2. Let (S, . , e) be a commutative semigroup with a zero e. Then there holds: 
1. A c B c S => A' =2 B',A* =2 B*, 
2. A c S => A'" = A', A*** = A*, 
3. A ^ S => A' and A* are subsemigroups in S, 
4. i c S = > i ' c i * ; 

5. i c ^ ^ > i * nA** c { S G £ : S ( 5 * S } , 

6. ^ c 5 ^ ^ ' n ^ l " = 4 ' .A" = {e}. 
1.3. Zel S be a commutative semigroup with a zero e. For each A <= S 

put 71*A = .A**. F̂Aew 7T* is a/i ideal-mapping. 
Proof . A c ^ * * and ^. c H** => A** c £**** = £** Further, for each 

5 G S, a e A**, b e A* there holds (s . a) . b = s . (a . b) = s . e = e, s . a e A**, 
S.A**c A**. If seS,heA*, A c S, then A**: s = {c e S : c . s e A**} 
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and e - (c . s) . h = c . (s . h), i.e., ce(s . A*)*. If c e (s . A*)*, h e A*, then 
e c . (s . h) -= (c . s) . h, i.e., c . s e A** and (A**: s) = (s . A*)*, (A**: s)** = 

A**:s. 
1.4. If G is an l-group, then for each a,b e G the following assertions are 

equivalent: 

] . |a| A |b| = 0, 2. ab'b, 3. ad*b. 

Definition. Let (S, . , e) be a semigro^lp (commutative) with a zero e. Then 
7t*(S) (nf(S)) is the system of all d*-polars (6f-polars) in S. 

R e m a r k . If G is an l-group, then F(O) denotes the system of all polars in G 
with respect to the relation S: 

abb o \a\ A |b| = 0, a,b e G. 

1.5. Corollary. / / G is an l-gro^lp, then n*(G) = n(G) = F(G) ^vith respect to 
a semigroup operation 0 (a 0 b = \a\ A |b|, a, b e G) on G. 

R e m a r k . Further, let us denote a* = {a}*, a** = {a}**, af = {a}f, aff = 

W"-
1.6. If (S, ., e) is a semigro^lp with a zero e, then the folfaving assertions are 

equivalent: 
1. ad*b o adfb, for each pair a,b e S, 
2. a.a = e=>a = e, for each a e S, 
3. ad*b => a** n b** = {e}, for each pair a,b e S, 
4. a* n a** = {e}, for each a e S. 

Definition. We say that a semigroup (S, ., e) with a zero e has the property (E) 
if a . a — e => a = e, for each a e S. 

R e m a r k . A semigroup (S, .,e) has the property (E) if and only if the 
relations 6* and Sf are identical. We shall further suppose in this paper that (E) 
is valid; a (5*-polar of S will be called a polar of 8. 

1.7. Theorem. Let a commutative semigroup (S, ., e) have the property (E), x be 
an ideal mapping on S. Then the following assertions are equivalent: 

'• {«}* = {*}. 
2. n{Ax:A^S} = {e}, 
3. Every polar A in S is the greatest x-ideal Bx in S with respect to Bx C* A' = 
{e}, 

4. Every polar in S is an x-ideal, 
5. (Ax)

ff =(A")X = A",A^ 8, 
6. (Ax)

f = (Af)x =A',A^ S. 
Proof . 2 ==> 1: From the fact that e e Ax for every A ^ S it follows {e}x c 

<= n {Ax: A c 8} = {e}. 
1 => 3: If p eAx, c e A', then c . p e A' . Ax ^ (Af . A)x = {e}x = {e}, i.e., 
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p e A" = A, Ax<=i A and A is an .r-ideal in S. Further, if Bx is an x-ideal 
in S, Bx n A' = {e}, b e Bx, a e A, then (b . c) . a = b . (c . a) = b . e = e, 
b . c e A' n Bx = {e}. I t means that b e A", Bx c: 4 . 
3 >̂ 4 evidently. 4 => 2: {e} c n {Ax : A c S} c ,4' n .4" = {e}. 
4 = > 5 : ( ^ y = . 4 " , ( ^ y 2 4 " and .4* c: 4 " => (Ax)" <= .4". Together ( 4 y = 
= (,4'% = .4". 
5 => 4, 6 => 4 evidently. 4 => 6: (..4% = -4'. Further, from 4 the property 
5 follows and thus (4*) ' = (Ax)'" = [(Ax)"]' = (A")' = A'" = A'. 

1.8. If A, B, A^(X E A) are subsets in a commutative semigroup (S, ., e) with 
the property (E), then ({J A;)' = f) A' 

h A A?A 

Proof . ( \J Ayl)' c f] A[ (see 1.2., 1) and if x e f] A[, y e \J A :, then 
X.A X A 

x . y = e and thus f] A'x c: ( JJ A 
/ л ;. л 

1.9. Theorem. L^he sei TI(S) of all polars in a commutative semigroup (S, ., e) 
with the property (E) is a Boolean algebra, where a complement of a polar A 
in S is A' and the order in TI(S) is defined by set-inclusion. 

Further, /\ A\ = f) A"K , \/ A[ = (\J A?)",for each Ax c S, A e A, A" v B" = 
AtA /.(A A A I A 

= (A"KJB")" = (A' nB'Y = (Au B)", for eazh A,B^S, A" \ B" = 
= A" n B" = (A' u B')' = (A . B)", for each A, B c S, A" A B" = (A n B)", 
for each x-ideaJs A, B in S. 

Proof . S = {e}' is the greatest element in TZ(S), {e} = S' is the smallest 
element in n(S). If Ak E TZ(S) for I e A, then ( f ) A"x)" = [ f | (A'JY = 

X.r-4 ?.:A 

= ( [J A'?)' = f l A\ and thus f\A^= f\ Ax. Therefore n(S) is a complete 
X A }.-A teA XrA 

lattice and V Ak = ( JJ A;)" and for each A e n(S) A A A' = A n A' = {e}, 
/ A X.A 

A v A' = (AKJ A')" = (A' n A")' = {e}' = S. 
Further, for every A, B c S there is A" v B" = (A" u B")" = (A' n B')' = 

= (A: u 23)", .4" A B" = ^4" n B" = (A' u 23')' - see 1.8. If c e A . B, d e A' 
are arbitrary elements, then c = a . b for suitable elements a e A, b e B and 
d . c = d . (r/ . b) = (d . a) . b = e . b = e, i.e., c e A". From this A . B ^ A" 
and similarly 4 . B c IT, thus 4̂ . 23 c 4 " n B", (A . B)" c 4 " n £". For 
every x e A" n 23", 7/ G (4 . B)', c e A . B there is (x . y) . c = x . (y . c) = 
= x . e = e, i.e., a; . ^ e ( i . 2?)' and for each a e A, b e B we have e = 
= (a; . y) . (a . b) = (x . y . a) . b, x . y . a e B' n 2?" = {e}, x . y e i ' n J " •= 
= {e}. Finally, A" n 2T c (4 . 5 ) " and 4 " n B" = (A . B)". If A, B are 
x ideals in S, then (4 . B)" ^ (A n B)" c (4» n 23")" = .4" n B". 

Now we prove the distributivity of TT(S) : If A, B, C e TZ(S), then (A v B) \ 
U (A . C) U (A.B)u(B. C)Y c [4 u (23 n O)]" = 4̂ v (23 A C) - see the 
following Remark. 

34 



R e m a r k . For every A c S, a e A", b e A', s e S there holds that b . (a . s) = 
- (b.a).s = e.s = e, i.e., A" . S c A". From this A" . B" c ,4" n £" . 

2. 

Definition. Let x be an ideal mapping on a semigroup S. We say that x defines 
an x-system of finite character if Ax = u {Nx : N c A, card N < No} for 
each A c S. 

2.1. / / C7 is cm l-group, a .b = \a\ t\ \b\, for each a,b eG and C(G) is a set 
of all convex l-subgroups in G, then C(G) is an x-system of finite character on 
(G,.). 

R e m a r k . The set of all x-idoals on a semigroup forms a complete lattice 
with respect to set-inclusion (s^e [1], Prop. 1). 

2.2. Theorem. / / (S, .) is a semigroup, 6 is a lattice of x-ideals, then the 
following assertions are equivalent: 
1. S is an x-system of finite character. 
2. 3 is the lattice of all subalgebras of an algebra. 
3. The join of every upper directed set of x-ideals is an x-ideal. 

Proof . 1 => 2: We consider an algebra (S,Q), where Q is the set of all 
n-ary operations fulfilling the condition: OJ e £?, ?i-ary, aL, . . . , an e S => 
=> a} . . . anoj = b e {a\, ..., an}x. Hence an x-ideal Ax in S is an algebra 
in (S, Q) because for every OJ e Q, w-ary, ai, ..., an e Ax there holds ai ... anoj e 
e{ai, ...,a:,)x ^ Ax. Conversely every subalgebra P in (S,Q) is an x-ideal 
in S. In fact for every finite set N c p we have Nx ^ P and thus Px = 
= u {Nx :N c P9N finite} c P,PX = P . 
2 => 3: I t follows from [2], Satz 1. 
3 => 1: If A c S, then Ax^\j {N x : N c A, N finite} and the set {Nx : N c 
^ A, N finite} is upper directed, i.e., Ax = U {Nx : i V g A, N finite}. 

Definition. Let Ax be an x-ideal in a semigroup (S, .). The set \ Ax = {a e S: 
there exists a positive integer n,al e Ax} is cabled a radical ofAx. If Ax = | Ax, 
then Ax is called an x-seniiprimeideal. If every x-ideal is an x-semiprimeideal 
then an x-system is called an x-semiprimesystem. 

2.3. / / a commutative semigroup (S, . ,e) has the property (E), then the set 
7i(S) of a7l polars in S is an x-semiprimesystem. 

Proof. x(S) is an x-systam (see 1.3) and according to [1], Prop. 11 it is 
sufficient for every A c s to prove: a2 e A" => a e A". If a2 e A" for some 
a e S and some A c S, then for each b e A' we have a2 .b = e and (a . b)2 = 
== a2 .b2 = (a2 .b) . b = e . b = e. F'rom the property (E) it follows 
a .b = e, a e A". 
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Definition. Let Px be an x-ideal in a semigroup (S, .). Then Px is called: 
an irreducible x-ideal, ifPx = RxnQx,R,Q<^ S implies Px Rx or Px Qx: 
a primary x-ideal, ifa,beS,a.be P x, a $ Px implies the existence of a positive 
integer n such that bn e Px\ 
a prime x-ideal, if a,b e S, a . b e Px, a $ Px implies b e Px; 
a simple x-ideal, if a, b e S, a . b = e, a <£ Px implies b e Px, wliere e is a zero 
in S. 

R e m a r k . The definition of prime, irreducible and primary x-ideals is 
taken over [1]. 

2.4. If (S, . ,e) is a commutative semigroup with the property (E), then every 
simple x-ideal is a prime x-ideal in S. 

Proof . Let Px be a simple x-ideal in S. If Px = S, then clearly P r is 
a prime x-ideal. If Px =£ S, a ^ Px, b $ Px, a e S, b e S, a . b e P.,, then 
a' c Px,b' c Px and for each c e (P x)' there holds e = (a . b) . c a . (b . c) 
= b . (a . c), b . c e a' ^ Px, c . a eh' c= px. I t implies that b . c, c . a e 
e (Px)' nPx = {e}, ce(a' n b') n (Px)' <= (Pxy n Px - {e}, i. e., (Px)' <e}, 
Px = S, which is a contradiction. 

2.5. Corollary. For a commutative semigroup (S, . ,e) tvith the property (E) 
and an x-semiprimesystem L in S, Px e L, the following assertions are equivalent: 

1. Px is a prime x-ideal, 
2. Px is an irreducible x-ideal, 
3. Px is a primary x-ideal, 
4. Px is a simple x-ideal. 
Proof . 1 o 2: see [1], Prop. 14, 1 => 3 is clear, 4 => 1: see 2.4, 3 => 4: 

Por a, b e S, c . b = e, a $ Px there exists a positive integer n with tho property 
bn ePx. If n = 1, then b ePx. Suppose that n > 1. Lot k be the minimal 
positive integer with the property bk ePx. If k > 2, then there exists a po
sitive integer m, m < k, 2m > k. I t implies bk . b2m k ePx, because Pr 

is an x-ideal in S, i. e., b2m e Px, (bm)2 e Px. From [1], Prop. 11 there follows 
bm ePx. From this contradiction k = 2, b2 ePx follows and b ePx again 
according to [I], Prop. 11. 

2.6. Tho K r u l l — S t o n e T h e o r e m ([1], Th. 12). If (S, .) is a commutative 

semigroup with an x-system, then for every A c= S there holds that \ Ax 

-= n {Px : Px is a prime x-ideal in S, Px =2 Ax}. 
C o r o l l a r i e s of t h e K r u l l — S t o n e T h e o r e m : 

2.7. Let G be an l-group. Then there holds: 
1. The set of all convex l-subgroups in G is an x-semiprimesystem and every 

convex l-subgroup Ai generated by a set A in G is an intersection of simple I sub
groups in G containing A. 
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2. ([3], 2.3, 9) Every polar A' in G is an intersection of all minimal simple 
l-subgroups in G not containing A. 

3. There exists an l-group G sich that the set of all l-ideals in G forms no x-system 
in G. 

Proof . 1. I t follows from 1.1, 2.5 and the definition of the x-semiprime-
system. 

2. According to 2.3 for every polar A' in G there is y A' = A' and the rest 
follows from 2.5 and 2.6. 

3. We suppose that the set of all Z-ideals in G is an x-system in G. Then 
it is clearly an x-semiprimesystem and {0} is an intersection of simple Z-ideals 
in G. In case that G has no realization, it is impossible. 

2.8. If (S, . ,e) is a commutative semigroup with the property (E), then every 
polar in S is an intersection of maximal polars in G. 

Proof . 7i(S) is an x-semiprimesystem (see 2.3). Every polar in 8 is an 
intersection of simple polars in S (see 2.6). Now we prove that a polar P being 
a simple x-ideal in S is a maximal polar in S (i. e., a dual atom in n(S)). Namely, 
if Q e 7t(S), Q z> P , S ^Q =£P, then Q' c P c Q and Q' = {0}, Q = Gy 

which is a contradiction. 
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