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A GENERALIZED CONTINUITY AND PRODUCT SPACES 

TIBOR NEUBRUNN 

A generalization of Kempisty's notion of quasicontinuity is known as 
somewhat continuity. The present paper shows tha t a separate somewhat 
continuity need not imply somewhat continuity, while a function / (x, y) qua-
sicontinuous in one variable and somewhat continuous in the other variable 
is shown to be somewhat continuous. Kempisty's classical theorem on the 
quasicontinuity of separately quasicontinuous functions is obtained in a general 
setting as a corollary. 

The notion of a quasicontinuous function / : X -> Y where X, Y are topo­
logical spaces was introduced for the case of Euclidean spaces by K e m p i s t y 
in [2]. In the general case (see e. g. [3]) / is said to be quasicontinuous at 
XQ e X i£ f"1 (V) n U contains a nonempty open set for any open sets U, V 
where x0 e U,f(x0) e V. I t is said to be quasicontinuous if it is quasicontinuous 
at any xo eX. The notion of a somewhat continuous function (see [1]) gen­
eralizes the notion of quasicontinuity. / : X -> Y is said to be somewhat 
continuous if for any open f c 7 such that/~1(V) ^ 0 w e have int/_ 1(V) =£ 0. 

A theorem concerning quasicontinuity on product spaces, stating that 
separate quasicontinuity implies quasicontinuity, was given for the case of 
the function f(x, y) of two real variables by K e m p i s t y in [2]. JNT. F . G. Mar­
t i n [3] has given a general version of Kempisty's theorem for the functions 
/ : X x Y -» Z, where X is a Baire space, Y second countable and Z metric. 

If / is a function denned on the product space X X Y, we shall call an 
x — section for a given x e X the function fx defined on Y such tha t fx(y) = 
= f(x, y). The y — section fy for a given y e Y is defined analogouslv. 

Theorem 1. Let X be a Baire space, Y second contable and Z regular. Let 
f: X x Y ~> Z have all x — sections somewhat continuous and all y — sections 
quascicontinuous. Then f is somewhat continuous. 

Proof . Let / not be somewhat continuous. There exists G ^- 0 open such 
that /- i(G) -£ 0 and mtf-^G) = 0. 

Let (xo, yo) f~x(G). Choose G± open such tha t G\ <~ G, f(xo, yo) ~ G\. This is 
possible because of the regularity of Z. Owing to the quasicontinuity and 
hence somewhat continuity of fVo a t the point xo we have int fy](G\) -?-- 0. 
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Put U = int fy](Gi). For any x e U form fx\Gi). Since fx(y0) = f(x, yo) e Gi, 
we have fx

1(Gi) i=- 0. The somewhat continuity of fz gives int fx^(Gi) =£ 0 
for any x e U. 

Let {Vn} be a countable basis of the space Y. Define An as the set of all 
00 

x G U for which Vn <= i n t / ^ G i ) . Evidently \J An^U. 
n=l 

Let # <= U be any nonempty open set. Let us form 8 X Vn for given n. 
Because of the fact int f~x(G) = 0 there exists (x*, y*) e 8 X Vn such that 
f(x*, y*) $ G. 

Choose a neighbourhood G* of f(x*, y*) such that G*C\Gi = 0, Using the 
quasicontinuity of/,* at x* we obtain that there exists a nonempty set S' <= S 
such that f(x, y*) e G* for any x e S', hence f(x, y*) $ Gi.Thus y""^fx

1(Gi). 
This implies Vn 4= ^(Gi), hence a; & An. Thus &' n An = 0. This means that 
-Aw is nowhere dense and the set U= [J Anis of the first category. This is 

n=l 

a contradiction. 

Theorem 2. Let X oe a Baire space, Y second countable and Z regular. 
Then a function f: X X Y -+Z quasicontinuous in each variable separately is 
quasicontinuous on X X Y. 

To prove the above Theorem we shall prove first the following. 

Lemma. A function f: X -» Y (X, Y arbitrary topological spaces) is quasi -
continuous on X if and only if there exists a basis £8 of the space X such that 
for any element B e^ the restriction f/B is somewhat continuous. 

Proof . Necessity. Let Be@. Suppose that (f/B)~^ (V) ^ 0 for some V 
open. Then there exists x0 e B such that (f/B) (x0) e V. From the quasicon­
tinuity of / at x0 it immediately follows that there exists a nonempty open 
set G <= B such that (f/B) (G) <= V. 

Hence int (f/B)~± (V) -^ 0. 
Sufficiency. Let x0 e X be any point, U an open set containing x0 and V 

an open set containing /(#0). Let B e & he such that x0 e B <= U. 
Consider the restriction//^. We have (f/B)~l (V) j± 0, hence int (f/B)-1 (V) -^ 

^ 0 . Put G = int (f/B)-1 (V). Evidently ffc U and / (G) cz V. The quasi 
continuity of/ at #o is proved. Since x0 was arbitrary, the quasicontinuity of 
/ on X follows. 

P r o o f of T h e o r e m 2. Let {Vn)n-i be a basis of Y and &l any basis of X . 
The collection of B X Vn, where n = 1, 2, . . . and 2? runs over ^?, is a basis 
of X X Y. Considering the restriction f/B X Vn, we see that it satisfies on 
each B X Vn the assumptions of Theorem 1. (B x Vn is considered with the 
relative topology). Hence f/B x Vn is somewhat continuous. Now the result 
follows from the lemma. 
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The following example shows that the somewhat continuity of f(x, y) in 
each variable separately does not imply the somewhat continuity of f(x, y) 
as a function of two variables. 

E x a m p l e . Define the functions fi,fz,fe, f* on 

<0, i) X <0, 1>, < i , 1> X <0, 1>, <0, 1> X < - i , 0) 

<0, 1) X <—1, — I) respectively. 

1 if y is rational 
0 if y is irrationa 
0 if y is rational 

P u t f±(x, y) — I . .n . . , . i J v ' i j f (0 if y is irrational 

Mx, y) 11 if y is irrational 
... . (1 if x is rational 

Mx'v) = (o if* is is irrational 

f ( . f 0 if a; is rational 

Functions / s , /6 , / ? , / s are defined on 

< - l , 0 ) X < | , 1>, < - l , 0) X <0, 1), < - l , i ) x < - l , 0) 

<—- \, 0) X <—1, 0) respectively, as follows 

Hx> y) ==/-(—x> —y), fe(x, y) =/3(—x, —y) 

fi(x,y) =/2(—a?, —.7), / s ( ^ 2/) = / i ( — » , —2/) 

Denote the interval <—1, 1> x <—1,1> a s / . Put/(o: , ?/) =• fi(x, y), where 
1 ^ i ^ 8 . / is unambiguously defined on I by means of the functions ft. 
I t is easy to check that / is not somewhat continuous on I while the sections 
fz and fy are somewhat continuous for every 

x e <—1, 1>, y e <—-1, 1>, respectively. 
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