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CANTOR EXTENSION OF A MIXED PRODUCT
OF DIRECTED GROUPS

STEFAN CERNAK

C. J. Everett [2] has defined the Cantor extension (C-extension) C(H)
of an Abelian I-group H. Let H = {TA,;(A € A) be an Abelian I-group, which
is the lexicographic product of I-groups 4,. In paper [1] the relation between
the l-group C(H) and the I-groups €(4,) was established.

The concept of the C-extension can be applied to Abelian directed groups.
Let G = Q4,(A € A) be an Abelian directed group which is the mixed product
of directed groups 4,, where the index A runs over an arbitrary partially
ordered set A. In this paper we describe the relation between C(G) and the
C-extensions of factors of the given mixed product. Let M be the set of all
maximal elements in A. It will be shown that the directed group C(@) is
isomorphic with the mixed product £2B,(A € A), where B, = C(4,) if A e M
and B;,ZA;. ifled \M

Let S be a partially ordered set and N the set of all positive integers. We
shall say that a sequence (x,) is in S if x, € S for each n € N. The sequence
(xn) in S is called increasing if xs < zp41 (n € N). Analogously we define
a descending sequence. We say that the sequence (zs) o-converges to a € S
(or @ is the o-limit of (x,)) and we write x, — a if there exist sequences ()
and (vs) such that the sequence (fs) is descending and the sequence (vy) is
increasing such that there exist A #,,\/ v, with properties

(i) va < *a < ta (mEN),
(ii) /\ tn =V VUn = a.

It is easy to verify that if the sequence (x,) is descending (increasing), then
% —a if and only if A 2, = a (\V #» = a). In this case we shall write z» | @
(zn 1 @) instead of z, — a.

Now let S be a directed set. The set of all upper (lower) bounds of elements
Z1, X2, ..., Zn € 8 will be denoted by Ul(xy, x2, ..., xa) (L(21, 22, ..., £,)). Choose
a fixed np € N and form the sequences A(no, ¥») and d(no, 2») as follows:

h(no, 2n) = d(no, ) = &n(n € N, n > no),
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h(no, xy) = u, where u is a fixed element of
Uxy, ®2, ..., Ta,)s

d(no, x,) = I, where ! is a fixed element of
Lz, 22, ..., Za,) (0 € N, n < ng).

We see that d(no, n) < 2n < k(no, ) (n € N). It is evident that h(no, )
} a(d(no, xy) 1 a) if and only if @ > Tpsi(@n < Tun)) M €N, n > ng) and
A Za(n = no) = aV xu(n = no) = a).

1. zy > a if and only if there exist sequences (t), (vn) and no € N such that
(i) holds true for each m € N, n > ng and h(no, ts) | a, d(no, va) 1 a.

Proof. If , - a, the assertion is implied by the definition. Conversely, let
there exist sequences (f,) and (v,) satisfying (i) for each n > no and let A(no,
tn) | @, d(no, va) } a. We have to show that there exist sequences (t,), (v,)
satisfying (i) and (ii) such that (t,) is descending and (v,) is increasing. Se-
quences (£,) and (v,) can be constructed by putting

t = tn if n > no; ¢, = u, where u is a fixed

element of U(xy1, 2, ..., Tp,—1, ta,) if < 00,
v, = vy if n > no; v, = I, where 1 is a fixed
element of L(xy, @2, ..., Tn,—1, ¥a,) if # < no.

Assume that @ is a partially ordered Abelian group. A sequence (z,) in (¢
is said to be fundamental if there is a sequence (¢,) such that ¢, | 0 and

(1) —ln < Tp — T "< n

holds for each » € N and each m e N, m > n.

2. Ifan | a, yal b, then xn + yu | a + .

Proof. Obviously, (xn + yx) is a descending sequence. By [3] (p. 47, the
property (d)) we have xn 4+ y» > a + .

By a zero sequence we understand a sequence which o-converges to 0,
where 0 is the zero element of the group G. The set of all fundamental (zero)
sequences in @ denote by H(E). Define the operation 4 in H in a natural
way by putting (zx) + (ya) = (xn + Ya).

3. H is a group.

Proof. Suppose that (zn), (ya) € H. Then there are u, | 0, v, |, 0 satisfying
the following inequalities:

—Un S Tn — Tm < Un,

—Vn S Yn — Ym < Un
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for each ne N and each m > n. Then —(un + va) < (X + Yn) — (@m +
+ Ym) < Un + vn. In view of 2, we get un + vs | 0. Indeed, if (z,) € H, then
(—zn) € H as well.

If for each (zn), (ya) € H the relation (x,) < (¥n) means that x, < ¥ (n € N),
H is a partially ordered group.

4. Every sequence (xn) € H is bounded.

Proof. By the definition there is a sequence (f,) with the properties ¢, | 0
and —t, < Tp— %y <tp MEN, m = n). Then x, — ¢, < Tm < T + ln.
If we put » = 1, then z; — ¢; is a lower bound and z; -+ #; is an upper bound
of the sequence (x,). In all that follows suppose that G is an Abelian directed
group. Then 5 and 6 hold true.

5. H is a directed group.

Proof. Let (x»), (yn) € H. In view of 4, there are a, b, ¢, d € G such that
a € 2p<b, c<ya< d (n € N). Choose the elements e € L(a, ¢) and f e U(b, d)
from G. Then (e, e, ...) < (z2), (yn) and (f, f, ...) = (za), (yn) for each n € N.
Obviously, the constant sequences (e, e, ...) and (f, f, ...) belong to H.

6. A sequence (%) is an element of H if and only if there exist no € N and
a sequence (tn) such that (1) is satisfied for each m € N, n > ng, each m € N,
m = n and h(ng, ts) | 0.

Proof. If (x,) € H, the statement immediately follows from the definition.
Conversely, let no and (¢,) exist with the properties A(no, t,) | 0, and let (1)
hold for each n > ng, m > n. Form a sequence (¢,) in the following way:

£, =tn,if n > no
ty = % —+ tu,, if 0 < mo, where u € U[ (x1 — X2), ...
s @1 — @), (@2 — @), ey (@2 — @),
voor = (Tngey — Tnp)s Engl-

Evidently, {, | 0 and (1) holds for each n < ng and each m such that n < m <
< ng. Again, let » << o, but m > no. Then
—t = — (% tn) = —% — tn, < (¥ — Tn,) + (Fn, — Tm) =
=X — X S U+ by, =1,.
The assumption implies that —t, < &n — Zm < £, (R € N, m > n).

One can easily verify that E is an o-ideal, i. e. a normal convex dirccted
subgroup in H. Then we can form H/E = C(G). The coset of C(G) containing
a sequence () € H will be denoted by (xs)*. The group C(G@) can be made
into a partially ordered group by defining the order relation between the
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cosets by the rule (£,)* < (y,)* if and only if (x,) < (7)) for some (x,) € (.L,'n)*
and some (y,) € (ya)*. Then (see [2]) for each (x,) € (xs)* there exists (y,) €

€ (yn)* such that (x,) < (y,). By virtue of 5 C(Q) is a directed Abelian group
which is called the Cantor extension of G.

The inequality (za)* < (ya)* is valid exactly if (xn — ya)* < E, that is,
if we can find a sequence (uy) € E such that (x, — yx) < (un). The sequence
(un) belongs to E if and only if there is a sequence (t,) such that ¢, , 0 and
—tn < %Un <ty (n € N); thus we conclude that (zn)* < (¥a)* if and only if

there is a sequence (fz) with the properties ¢, | 0 and (zz) < (yn) + (fn)-
For (xz) € H denote X, = (z,, %, ...)*

7. If tn | O, then Ty | E.
Proof. From ¢, > 0 we obtain T, > E (n € N). Assume that (x,)* € C((),
(@n)* < T'm (m € N). According to the definition of the partial order in C(G)
for each fixed m € N there is a sequence (') such that ¢}’ | 0 and (z») <

<

< (tms tm, ...) + (£2). Since (z,) € H, there exists a sequence (vs) with the
properties vs | 0 an @ — 2y < Vs (s€N, n > 8). Then x5 < ¥p + vs < tn +
+ 67 + vs. Hence 5 — vs — by <7 (meN,n> s) and so x5 — vs — I < 0
The inequality 25 — v5 < &y (m € N) implies xs — vs < 0 (s € N). Hence (x5)* <

< (v)* =K.
Let ¢ : G - C(@) be a mapping defined by the rule
pr) = (v, x, ... )*
for every x € . Let (x,) € H. Denote (x,)* = X.

8. If (xn) € H, then X, - X.

Proof. We have to prove that X, — X — E. For an arbitrary fixed ny N
we have

2

Xng — X = (Tng, Tngs ---)*¥ — (@n)* = (Xn, — X1, Tn, — T2, ..., Tn
— Zng-1, 0, Tng — Xpyt1, Tny — Tugt2s -+ .)F
= (0, Tn, — Tny+1, Tuy — Tng12, ---)*¥ = (Tn, — Tm)* (M = o).
Since (xx) € H, we can find ¢, | 0 such that
—ly KTy — Xy <ty (ReEN,m = n).
Let n € N be fixed. Then
—T'n < (@n — 2m)* — Xn — X < Ty.
By 7 we get T, | E and the proof is complete. Moreover, we have proved
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9. For each coset X € C(G) there exists a sequence in (G) which o-converges
to X.
We identify G and ¢(@) in the following theorem:

Theorem. The Cantor extension C(Q) of an Abelian directed group G is an
Abelian directed group. The mapping ¢ : x — (x, z, ...)* from G into C(Q) is
an o-isomorphism which preserves infinite joins and intersections. Every funda-
mental sequence in G has an o-limit in C(G) and every element from C(G) is
an o-limit of some sequence from G.

Proof. It is readily seen that the mapping preserves the group operation.
With respect to 8 and 9 it remains to prove only that ¢ preserves infinite
intersections. The idea of this proof is the same as in Everett, [2], where it was
used in the case of the lattice ordered groups. Assume that a,(y €I') and
that there exists A @, = a in G. We intend to show that there is A ¢(ay) in
C(G) and @(a) =A ¢(ay), i.e., (a, a, ...)* =A (ay, ay, ...)* holds. From a <
< ay(y € I') we obtain (@, @, ...)* < (ay, ay, ...)* (y €I'). Assume that (z,)* €
€ O(Q), (xn)* < (ay, ay, ...)* (y €I'). Then for each fixed y € I" there is a se-
quence (t;) such that ¢7 | 0 and x, < ay 4t} (n € N). Because of () € H,
there exists a sequence (f), tm | 0 and @pm — @4 < ¢ (m € N, n > m). Then
Tm € T+ tm < ay -+t +tm, Tm — ay — tp < t). Since m and y are fixed,
we get Xy — ay — ity <0, oy — by < Ay, Ty — b < @, Ty, < @& 4 Ep. Thus
(n)* < (@, a, ...)*

Let us recall the definition of the mixed product of partially ordered groups.
This concept is a common generalization of the concepts of the complete
direct product and the lexicographic product (see Fuchs, [3]).

Let A be a partially ordered set and 44(1 € A) groups with nontrivial partial
order. Let us form the complete direct product €9 = ITA;(A €A) of the
groups A ;. For «, y € 07 we denote

o(x, y) = {A e A :2(2) # y(A)}
and by min ¢(z, y) the set of all minimal elements in o(z, y). We shall write
o(x) instead of o(x, 0). Let G be the set of all x € 09 such that o(x) satisfies
the descending chain condition. Indeed, G' is a subgroup of C. If we put
xz > 0if and only if (1) > 0 for each A € min o(x), then @ is a partially ordered
group which is called the mixed product of partially ordered groups 4;(4 €4
and denoted by G = 24;(1 € A4).

Observe that @ = 24,(A € A) is a directed group if A4, is a directed group
for each A € A. In fact, if z, y € G, then there exists z € G such that z(1) >
> x(4), y(A) for each 4 € o(x) U o(y) and z (1) = 0 otherwise and there is ful-
filled z > «, y.

If QA4;(AeA) is a directed group, then A4; need not be directed for each
Aed.
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Let A be a root system, i. e., a partially ordered set such that no pair of
incomparable elements of A have a common lower bound and let 4;(4 € A)
be partially ordered groups. Now we state a necessary and sufficient condition
for the mixed product of partially ordered groups to be a directed group pro-
vided the set A has the property mentioned above. The set of all minimal
elements of 4 is denoted by .

10. Let A be a root system. Let A be nontrivially ordered for each A € A. Then
G = QA4,(A € A) is a directed group if and only if A, is a directed group for
each A € Ay.

Proof. Let G be a directed group and Ay # 9. Pick out arbitrary Ay € Ao
and a,b e 4;,. We have to find an element ¢ € 4, ¢ > a, b. Construct the
elements z,y € G such that x(d) = a, y(d) = b, z(1) = y(1) = 0 for each
Aed, A #~ X . If aand b are comparable, the assertion is obvious. Let @ || b (i. e.,
a and b are incomparable). Tne assumption implies that there is z €@, z >
> z,y. From a # b it follows z(dg) 7~ @ or z(do) #% b. If 2(A) # a, then Ap €
€ min o(z, 2), hence z(4y) > a. From a || b we get 2(49) 7% b. In a similar manner
as above we obtain z(19) > b. The proof is complete if we put ¢ = z(4).

Conversely, let 4, be a directed group for all 1 € Ay. If z, y € G, denote
Ay = min o(x), 42 = min o(y) and by 4;,» we denote the set of all minimal
elements of 4;UAs. Assume that 1 € Ay,2, 4 ¢ Ao and pick pyed \ 41,5 with
2 < A. From the fact that 4 is a root system we deduce that u,, || %1, when-
ever A1, A2 €12, M, As € Ao, &1 # A2. Consequently an element z € 09 such
that z(ua) > 0if A € A12, A ¢ Ao, 2(A) > x(A), y(A) if 2 € 41,2 N Ap and 2(4) = 0
otherwise belongs to @ and z > z, y is valid.

If Ap = 0 and the set A is not a root system, then @ fails to be a directed
group in the general case.

Example. Let 4, = 4A(A €4) be an arbitrary partially ordered but not
directed group and let 4 be a tree shown in the following figure:

LI BN ‘3 "2 -1 0 1 2 3.0. T
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There are elements a, b € A such that the set U(a, b) in 4 is void. Elements
z,y € G such that z(1) = a, y(A) = b for each 1 €7 and z(1) = y(4) = 0 if
A €A \T have no common upper bound in G.

In the following it will be assumed that G = 24, (1 € A), where A is an
arbitrary partially ordered set and A, a directed Abelian group for every
AeA. Taen @ is again a directed Abelian group. In the sequel, we shall in-
vestigate the connection between C(G) and C(4,) (A €A4). The set of all
maximal elements of A is denoted by M.

11. Let (tx) be a sequence in G with ty | 0. Then for each A € A there exists
no(A) € N satisfying

(i) A(no(2), ta(A)) | O,
(ii) tx(u) = O for each n € N, n > no(A) and each p € A, u < A.

Proof. Assume that ¢, | 0. The assertion is obvious if ¢, = 0 holds true for
some n € N. Let ¢, > 0 for every n € N. First let us prove that for each A € A
there exists ng(A) such that #,,1(u) = 0 whenever u €4, u << A. Suppose by
way of contradiction that for some 1 €4 and every n € N there is u(n) €4,
u(n) < A such that ,(u(n)) #% 0. Then for each n €N there is ug(n) €4,
to(n) < 4, po(n) € min o(fz), hence #y(uo(n)) > 0. Choose an element g € G
such that g(1) > 0 and g(v) = 0 for every » € 4, » # A. Consequently, for each
neN and uo(n) e min o(ts, g) we have t,(uo(n)) > g(uo(n)) = 0. We infer
0 < g <tn(n €N), which is contrary toA ¢, = 0.

Further we show that #y(u) = 0 for each ped, y < 1 and each n e N,
n 2= no(1). Assume by way of contradiction that for some n; € NV, n1 > no(1)
there exists u(n1) €4, p(m) < 4 such that fs,(u(n1)) 7 0. Then there exists
po(n1) € A, po(n1) < 4, po(n1) € min o(ty,) and so £y (uo(n1)) > 0. Since uo(n1) €
€ min o(tn,, tnyn), we have &y (uo(n1)) > tanyz(po(n1)) = 0. This is impossible
because of ¢y, < tn, (2 and thus (ii) is valid.

Therefore, we have also proved (i) for each A € 4 \ M. Suppose that 1 € M.
As we have already proved above there exists no(1) such that #,(u) = 0 for
each n e N, n > no(d), each ued, u<i. If my > ny > ne(), then either
tn,(2) = tn,(A) or A € min o(tn,, ts,), whence 0 < tn,(1) < t4,(4). To complete
the proof it suffices to show that A £,(1) (n > no(1)) = 0. Assume that there
exists a; € 4, such that ay < t,(1) (n € N, n > no(2)). If we choose an element
x € G such that z(1) = a; and z(v) = 0 for each v €A, v 5~ A, then = < ¢,
(n > no()). Then x < ty(n € N) and so the hypothesis implies x < 0. Hence
a; < 0, and (i) holds.

If a sequence (£,) in @ fulfils (i) and (ii), then in general the assertion £, | 0
is false. The following two counterexamples show that this fails already to
hold in the cases of G being the complete direct product of partially ordered
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groups (G = II*4;) or G is the lexicographic product of partially ordered
groups (G = UTA;,; the lexicographic order goes from the left). In the following
examples let 4,(n € N) and 4, be the additive groups of all integers with
the natural order.

Example 1. Let G = IT*An(n € N). Define a sequence (¢,) in G as follows:
ta(m) = 1 if m = n and &,(m) = 0 if m # n. Then the sequence (t,) fails to
be a descending one.

Example 2. Let @ = YTAn(n € N). Let us consider a sequence (t,) in G
formed by the rule f2n_1(m) = 1, ton(m) = 2if m = nand tz, 1(m) = tan(m) 0
if m £ n.

If (¢) is a sequence in @ such that ¢,(4) | 0 for each A € A4 and if (t,) does
not fulfil (ii), then in general ¢, | 0 need not hold.

Example 3. Let 4 = N U {w} and G = UI4,(A €A). Let us form a se-
quence (f,) in G by putting t,(m) = 0if m <, ty(m) =m —n + lifm > n
and t,(w) = 0. The condition (ii) is not fulfilled for A = w. Let ¢ be an arbitrary
element from @ satisfying ¢ < ¢, (n € N). If we choose an element g € G with
the components g(A) = (1) (Aed, A# w) and g(w) = a, where ae A,,
a > t(w), then t < ¢ < ta(n € N). Thus A , does not exist.

Remark. If (£,) is a sequence in @ = IT*4 (A € A) such that ¢,(4) | 0 (2 € A),
then it is casy to verify that ¢, | 0.

12. Let (tn) be a sequence in G. If for each A € A

(i) ta(2) | 0,
(ii) there exists no(A) € N such that tu(u) = O for each n. € N, n > no(A) and
cach ped, p <2, then ¢, | 0.

Proof. It is clear that the sequence (¢,) is descending and ¢, > 0. The state-
ment is evident if ¢, = 0 for some n € N. Let £, > 0 (n € N) and suppose that
there exists t € @ with property ¢ < ¢, (n € N). Further, let 4 € min o(?).
By (ii) there exists ng(l) € N such that £,(u) = 0 for each n € N, n > no(4o)
andeach y € 4, u < 2. If n > no(4o), then either {(do) = £,(do) or Ao € min o(¢x,
t). Thus () < tu(lo) whenever n > ng(4), hence by (i) ¢(d0) < 0 and so
t <0.

Let (xx) be a sequence in G. We shall consider the following condition on (xx):

(*) for every A € A there exists no(1) € N such that x,(u) = xn(u) whenever
n, meN,n,m 2 nd), ued, p <4i

Remark 1. If (z,) fulfils (*), then for each y € A4 \ M there exists a uniquely
determined element x# € 4, such that for some n1(#) € N we have xn(p) — x#
for each n > ni(u).
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Remark 2. We see that (z,) fulfils (*) if and only if (g + ) fulfils (*)
where ¢ is an arbitrary element from G.

13. If a sequence (xy) satisfies (*), then the set S = U o(xs) satisfies the de-
scending chain condition.
Proof. We have to show that an arbitrary descending chain

(1) A>h>A>...

in 8 is finite. The hypothesis implies that there exists 7o(%0) such that x,(1,) =
=2 (p=1, 2, ...; n > no(h)). Form the sets A = U a(x,) (n < no(h))
and B = U a(x,) (n > no(do)). Then § = A4 U B. For each 4, (p =1, 2, ...)
from the chain (1) there is n < no(4o) such that (1) % 0. Therefore, from
A1 the chain (1) lies in 4. The set A is a union of a finite number of sets satisfying
the descending chain condition. Because of this fact, the set A fulfils this
condition and thus the set S fulfils this condition as well.

Let us recall that by €7 we have denoted the complete direct product of
the groups 4, (without considering the partial orders on the groups 4;).

Remark 3. If g € €/ such that g(u) = 0 for each u €A \ M, then ge 2
A (A €A). In fact, if v € 6(g), then » € M and thus » € min o(g).

Corollary 1. Suppose that the sequence (xy) in G fulfils (*). For each y € A \ M
let z¢ be defined as in Remark 1. Then there exists x € G such that x(u) = z#
foreach ped \ M.

Proof. First let us form the element 2’ € 07 such that z'(u) = x# for each
ueAd \M and a'(u) = 0 if u e M. Evidently, o(x') = 8 and consequently,
in view of 13 the element z’ belongs to G. By Remark 3, the element g € 0¥
such that g(u) =0 if pued \ M and g(u) = «(u) if u €M, belongs to G.
Then o' +-g==z€e(G.

Since every constant sequence in G fulfils (*), we obtain the following
assertion:

Corollary 2. If z € G and 2z’ € C7 such that z'(u) = 2z(u) for each pyed \ M,
then 2’ € Q.

Now we shall formulate a necessary and sufficient condition for a sequence
(xa) (expressed by means of components of the elements x,) to be zero or
fundamental. The set of all zero (fundamental) sequences in 4 ; will be denoted

by EA(H).

14. (x4) € E if and only if for each A €A the following conditions hold true:

(i) (zn(2)) € B4, .

(ii) there exists no(A) € N such that xn(u) = 0 for each n € N, n > no(1) and
each peA, uy < 2.
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Proof. Suppose that (x,) € E. Then there exists a sequence (f,) in G such
that £, | 0 and —fy < 2 < tn (n € N). If 1 and ne() are as in 11, we get
tn(p) = 0, hence x,(u) = 0 for each n > no(d) and each p << A. Thus (ii) is
proved. With respect to 1 we have also proved the assertion (i) for each
AeAd \ M. Let A€ M and let no(A) be as above. If 2 € a(xy, tn) (n = no(A)),
then by (ii) A € min o(xx, tx), hence —tn(A) < 24(1) < ta(d) (0 = no(4)). By (i)
in 11, A(no(A), ta(4)) | 0 and according to 1 we obtain (x4(1)) € E2.

Conversely, suppose that (i) and (ii) are fulfilled and let 2 € 4. From (i) it
follows that there is a sequence (t7) in 4, such that ¢, | 0 and —t; < @a(2) <
< t}(n € N). If there is k(J) € N such that x,(1) = 0 for each n € N, n > k(1),
then by p(1) we denote the least element of N with this property. Let (£}) be
a sequence in 4, defined as follows: if there is p(4), then we put £} = 0 (n € N,
n > p(A) and t' =t n e N, n < p(A). If p(A) does not exist, then we put
t* =t} (n € N). For each n € N let us form the element ¢, € C7 such that
t/(2) = t}(A € A). Because of (ii), the sequence (x,) fulfils (¥). Let S be as in
13. Since o(t,) = S(n € N), according to 13, (¢,) is a sequence in G. As for
—t,(A) < za(A) < tXAed), we have —t, < xp < t,. From (ii) and from the
fact that no(1) > p(u) (k < A) we infer that t,(u) = 0 (8 <2, n > no(A)).
Further, we see that t,(1) | 0 (1 €A). Then by 12, ¢, | 0 and the proof is
complete.

15. If a sequence (xy) satisfies (*), then the set 8 Uo(ws am)melN
m > n) fulfils the descending chain condition.

Proof. We have to prove that an arbitrary chain in S’ of the form (1) is
finite. If » is a fixed positive integer and m > n, then in view of Remark 2
after 12, the sequence (¥,— ) has the property (*). Hence by 13 theset
Ay = U o(xy — xp) (m = n) fulfils the descending chain condition. Let ng(%o)
be as in 13. Denote 4 = U Au(n < no(do)) and B = U Ap(n > no(do)). Then
8 =AU B.For ip (p =1,2,...) from the chain (1) we get xn(Ap) = xm(iyp)
=a’, i.e., Tu(lp) — Tm(dp) = 0 (n = mo(o), m = n). Thus 4, (p=1, 2, ...)
belongs to 4. The set A fulfils the descending chain condition and so the chain
(1) is finite.

16. (x,) € H if and only if for each A € A the following conditions hold true:
(i) (zn(2)) € HA,

(1) there exists mo(A) € N such that xu(u) = xm(u) for each ped, p < i,
n = no(d), m = n.

Proof. If (x,) € H, there exists a sequence (t,) such that ¢, | 0 and —t, <
< ¥p — Tm < ta (n €N, m > n). If ng(A) is as in 11, then (xn — xn) (u) O,
that is zn() = Zm(p) (n > me(A), m > n and p e A, u < A) and (ii) is proved.
We have also shown that (i) holds true for each 1€ A \ M. Now let A e M.
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By (ii) either (x5 — @m) () = 0 or A €min o(®y — Zm) (n = no(d), m > n).
Then either (x5 — xp) (A) = ta(d) or A e min o(Xn — Xm, ta). Hence —i,(A) <
< (n — Zm) (1) = 2a(A) — 2m(2) < ta(4). From 11 we get A(ng, tx(2)) ] 0.
Then in view of 6 we obtain (z.(1)) € HA.

Conversely, assume that (i) and (ii) are fulfilled and further that 2 is an
arbitrary element from A. With respect to (i) there is a sequence (£;) in A4;
such that ¢ | 0 and —t} < @4() — xm(d) < ¢, (neN, m > n). From (ii)
it follows that x,(u) — zm(u) = 0 (n = no(d), m > n, p e d, u < A). If there
exists k(1) € N such that x,4(1) — zw(4) = 0(n > k(A), m > ») denote by p(4)
the least positive integer with this property. Let us form sequences (t) and
(t,) in the same way as in the proof of 14. From (ii) it follows that (x,) satisfies
(*). Sinoe o(t,) = S'(n € N), therefore, by 15, (¢,) is a sequence in G. The proof
can be finished in a similar way as in 14.

Theorem. C(G) ~ QB;(A €A), where By = A; if AeA \ M and B; = C(4,)
if Ae M.

Proof. Let (x,) € H and let 2 € G be as in the Corollary 1 of the assertion 13.
We denote by b an element from the complete direct product of the groups
Bj(A e A) such that b(d) = z(A) if Aed \ M and b(A) = (za(d))* if 1€ M.
From 16 it follows (z,(1)) € H* and so (z,(A))* € C(4,) (A € A). Therefore, if
we apply Corollary 2 to the complete direct product of groups B;(4 € 4) and
to B = QB;(AeA), we get b eB.

Let ¢ : O(@) — B be a mapping defined by the rule

@((xn)*) = b.

Let (zn), (yn) € H, p((xa)*) = b1, @((yn)*) = ba. Assume that (z,)* = (y,)*.
If2ed \ M and 2y €A, 29 > A, by 16 there is no(4do) such that zu(1) = b1(4),
Yn(A) = ba(A) (n > no(lo)). Since (¥, — ya) € K, by using 14 we get z,(1) —
— yn(A) = b1(A) — ba(d) = 0(n > no(do)), that is by (1) = be(4). If 1 € M, again
by 14 we obtain ((Xn — ¥a) (1)) = (%u(d) — yu(d)) € B4, i.e., (xa(d))* =
= (yn(A))*, that is again b1(1) = b2(1). We infer that b; = ba. Conversely, if
b1 = bs, then by 14 we obtain (x,)* = (y»)*. We conclude that the mapping
@ is correctly defined and one-to-one.

It can be verified that ¢ is a mapping from C(G) onto B. In fact, if b € B,
then b(1) e A; for Aed \ M and b(A) = (x})* € C(A4;) for Ae M, where
(x}) € H*. For each n € N let us form an element x, € 07 such that x,(1) =
=0b(A) if AeA \ M and xy(A) = «} if A€ M. Corollary 2 implies that (xy)
is a sequence in G and by 16, (x,) € H. We conclude (z,)* € C(G) is the origin
of b under the mapping ¢.

We can easily verify that ¢ preserves the group operation and the partial
order relation.
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