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Math. Slovaca 26,1976, No. 3, 229—240 

ON QUASIPARABOLICAL DIFFERENTIAL EQUATIONS 
OF HIGHER ORDER 

IGOR BOCK 

We shall be dealing with the initial value problem 

du 
(0.1) 

(0.2) 

A ^ + +A 
dt dt 

+ Amu=f*(t) 

ďu 
âГ 

ur, r = 0, 1, ..., m — 1 

with the functions u: ([0, oo)_> H), f* : ([0, oo)_» H*), the operators Ar: (H-> 
H*) and the elements ur e H, where H is a real Hilbert space and H* is a dual 
space to PI. 

The existence and the uniqueness of a solution of (0.1), (0.2) will be verified in 
the first part. We shall analyze the behaviour of the solution for t—> oo j n the 
second part. We restrict ourselves only to the problems of the first and second 
order. The application on the equation of bending of viscoelastic plate is shown in 
the third part. 

1. Existence and Uniqueness of a Solution 

Let H be the real Hilbert space with a scalar product (.,.) and a norm | | . ||, H* be 
the dual spac,e to H i. e. the space of all linear and bounded functional over H with 
a norm | | . | | * . If f* e H, h e H, then we denote (/*, h) =f*(h). The Riesz 
operator R e L(H*, H) is defined by 

( ì . i ) (Rf*, h) = (f*, h),f* eH*,h eH. 

We denote by Om) ([0, oo), H) the space of all m-times continuously differentiate 
functions with the domain [0, oo) and with the values in H and by C([0, o°), H*) 
the space of all continuous functions with the domain [0, oo) and the values in H*. 

We assume that A0, ..., Am are linear and bounded operators with the domain H 
and the values in H i.e. 

(1.2) A, eL(H,H*),r = 0, 1, .. m 
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The operator A0 is assumed to be coercive i.e. 

(1.3) (AoX, x)^a« \\x\\2, x e H, a0 > 0. 

Definition 1.1. Let /* e C([0, »), //*), Ak e L(H, H*), k = 0,\,...,m, 
ur e H, r = 0, 1, ..., m — 1. The function u: ([0, oo)-_»//) /s a solution of the initial 
value problem (0.1), (0.2) iff 
i) ue Om)([0, oo), H) 

ii) w satisfies (0.1), (0.2). 

Theorem 1.1. Let /* e C([0, oo), //*), wr e //, r = 0, 1, ..., m - 1, 
A* e L(H, //*), k = 0, 1,..., m, i40 satisfies (1.3). TAe/i tAere exists a unique 
solution of the problem (0.1), (0.2). 

Proof. Using the Riesz operator R we convert the problem (0.1), (0.2) into the 
initial value problem for the differential equation in the space H in the same way as 
in the paper [4]: 

(1-4) B0%p+... + Bm-t^+Bmu=f{t) 

(1.5) ďu 
dľ 

= ur, r = 0, 1, . . . , / я - l , 
ř=() 

where 

(1.6) Br = RAreL(H,H),r = 0,\,...,m, 

(1.7) (Box, x) ^ a0 \\x\\2, xeH, a0>0, 

(1.8) f = Rf* eC([0, oo), H). 

The operator R is linear bounded and invertible and hence the problems (0.1), 
(0.2) and (1.4), (1.5) are equivalent. It is sufficient to show that there exists a 
solution u e Om) ([0, oo), H) of the problem (1.4), (1.5). That solution will be the 
solution of (0.1), (0.2) too. The initial value problem (1.4), (1.5) is equivalent with 
the problem 

(1.9) 

(1.10) 

where the inverse operator B0
l e L(H, H) exists due to (1.7). The existence and 

the uniqueness of a solution of (1.9), (1.10) is proved in [9] under more general 
assumptions. It is sufficient to consider the problem (1.9), (1.10) as the initial value 
problem of the first order in the space 3€=Hm. A solution u e C([0, oo), H) of 
(1.9), (1.10) is then a unique solution of the problem (1.4), (1.5) and (0.1), (0.2). 
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dmu 
dtm + tв^вr^ß=в-0ҷ(t) 

ďu 
dľ ,=0 = wг, r = 0, 1, . . . , / и - l , 



Remark. We can consider in (0.1) under suitable assumptions also the families 
of nonlinear operators Ar(t). The assumptions must be similar as in [4] for the 
problem of the first Order. 

r • 

2. Behaviour of a Solution for t—• <» 

We restrict our consideration only to the equations of the first and second order. 
The initial value problem (0.1), (0.2) for m = 1 has the form 

(2.1) A0^ + Axu=f*(t) 

(22) i/(0) = i/o 

We assume that A0, Ax satisfy the assumptions (1.2), (1.3) and moreover A0 is 
symmetric and Ax is coercive i.e. 

(2.3) (A0x, y) = (A0y, x), x,y e H 

(2.4) (Axx,x)^ax \\x\\2, xeH, ax>0. 

The following theorem expresses the asymptotic behaviour of the solution of the 
problem (2.1), (2.2). 

Theorem 2.1. Assume that the function /*, the element u0 the operators A0, Ax 

satisfy the assumptions of Theorem 1.1 and A0, Ax satisfy (2.3*), (2.4). Then the 
next estimate for a solution u e Ol)([0, oo), H) of (2.1), (2.2) holds with the 
constants M, v>0 depending only on A0, Ax 

t 

(2.5) | | « ( / )NAf .e - ( | | « 0 | | + | e " | | / * ( r ) | | * d r ) , /S*0 

If there exists such an element ft e H* that 

(2.6) * l im| | /*( / ) - /2 | |* = 0, 
, - » o o 

then 

(2.7) l im| | i / ( / ) - i / . | |=0 , 
r-*oo 

where w. is a solution of the equation 

(2.8) A1uO0=f£ 

Proof. The initial value problem (2.1), (2.2) is equivalent with the initial value 
problem 
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(2.9) ft + B7,lB,u = B7>

,f(t) 

(2.10) "(0) = Mo 

with the operators B0, B, and the function / defined in (1.6) and (1.8). The 
operators Br are coercive i.e. 

(2.11) (B,x,x)zzar \\x\\2, x e H, ar>0, r = 0, 1 

and B0 is symmetric i.e. 

(2.12) (B«x, y) = (JC, Boy), x, y e H 

The solution u(t) of (2.9), (2.10) can be expressed (see [1]) in the form 

(2.13) 

t 

u(t) = e-в^'u„+ í e-в«">u-тìBъ'f(r) dт, 

where e-B<"lB,r is the abstract exponential-operator function with values in the 
Banach space L(H, H) of all linear and bounded operators in H. The Bochner 
integral in H ([10]) is considered in (2.13). In order to estimate (2.13) we shall use 
th£ spectral theory. For this purpose we extend the space H to the complex Hilbert 
space which we denote again H. We extend the operators Br over the complex 
space too. It can be verified easily that B0 = B% and Bx satisfy the inequalities 

(2.14) (B0x,x)^a0\\x\\\ a0>0 

(2.15) Re(Bxx,x)^ax \\x\\\ ax>0,xeH. 

Let o(-B0
xBx) be the spectrum of -B0

lBx. If there exists such a constant v>0 , 
that 

(2.16) ReA<v, A eo(-B0'Bx) 

then there exists such a constant IV depending only on B0, Bx that 

(2.17) | |e-B"B ' ' | |^IVe-w, t e [0, oo) \ 

This assertion is proved in ([6], Th. 1.2). If (2.17) holds with v > 0 then the 
conclusions of the theorem follow easily from (2.13). We show at first that Re A < 0 
for all A e o(-B0

1Bx). It is sufficient to show that the relation 0 e o(kB0 + Bx) 
implies Re A < 0. 

Let Re A^0. We denote by 

(2.18) r(A)* = A'£() + #* 

the operator adjoint to T(A) = kB0 + Bx. The operators T(X) and T(A)* satisfy the 
relations 
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(2.19) Re(F(A)x , x) = Re(F(A)*x , x)^ax \\x\\\ ax>0,x e H. 

Using the Schwarz inequality and the corollary from ([10], VII) we obtain 

(2.20) R(T(?L)) = H, yV(F(A)) = {0), 

where R(T(h)) is the range of the operator F(A) and N(T(X)) = 
{x e / / , F(A)x = 0}. Hence A 6 o(-B„lBx) and so R e A < 0 for all 
A eo(-B^Bx). 

It remains to show the existence of a number v > 0 such that Re A < — v for all 
A e o( — Bo]Bx). Assume that there does not exist such a number. Then there 

exists a sequence A„ e o( — B0
ABX) such that HmReA„=0 . All points of 

o( — B()
]BX) lie in the circle | A | ^ | | — B^XBX\\ We can choose such a subsequence 

A„fc, that lim A^=A() and ReA() = 0. The spectrum o( — B0*Bx) is closed in the 
A — oc 

complex plane ([7]) and thereby A() e o( — B0
lBx), Re A„ = 0 that is a contradiction 

which completes the proof of (2.16). As we remarked above (2.16) implies (2.17) 
Then due to (1.8), (2.13), (2.14) the estimate (2.5) holds with the constant 
M = / V max (1, a '). 

We verify now the second part of the theorem. Assume that (2.6) holds. The 
existence of ux in (2.8) is secured because Ax e L(H, H*) and (2.4) holds. Let us 
denote 

(2.21) v(t) = u(t)-u„ 

(2.22) v0 = u0-ux 

(2.23) 0*(O = / * ( ' ) - / * 

The function v is a solution of the initial value problem 

(2-24) A0^ + Axv = g*(t) 

(2.25) v(0) = vo 

Using (2.5) we obtain 

(2.26) M O N A f e-( | | t /„ | | + J e " ||<7*(r)||* d r ) . 
0 

t 

If lim f eVT | |<?*(r)||*dr<oo then 
'—°° J 

0 

(2.27) lim MOll =0, 
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otherwise we use L'Hospitale rule and we obtain (2.27) from (2.6) too. Comparing 
(2.21) and (2.27) we arrive at (2.7) which completes the proof. 

Let us consider now the initial value problem of the second order 

(2.28) A0 ^+'At % + A2u =/*(/) 

(2.29) u(0) = uo 

(2.30) ff / = ( ) — U\ 

We assume that A0, Au A2 satisfy the assumptions of Theorem 1.1, A0, A, satisfy 
(2.3), (2.4) and A2 is symmetric and coercive i.e. 

s(2.31) (A2x, y) = (A2y, JC>, x,yeH 

(2.32) (A2x, x)^a2. \\x\\2, a2>0,xeH. 

The following theoren expresses the asymptotic behaviour of a solution of the 
problem (2.28), (2.29), (2.30). 

Theorem 2.2. Assume that the funnction /*, the elements u0, uu the operators 
A0, Au A2 satisfy the assumptions of Theorem 1.1 and A0, Au A2 satisfy (2.3), 
(2.4), (2.31), (2.32). Then a solution u e O2)([0, oo), H) of (2.28), (2.29), (2.30) 
satisfies the estimate 

(IM»II2 + II«'(»IIT2 

(2.33) 
t 

M e — [ ( | k | | 2 + | | M l | | T
2 + J e " ||/*(r)||* dr] 

O 

with the constants M, v > 0 depending only on A0, Au A2. 
If there exists such a functional f*eH that 

( 2 3 4 ) lim||/*(/)-/*.||* = 0, 

then 

( 2 " 3 5 ) ' l im(| |«(/)-K.| | + ||«'(0ll) = 0, 

where «« e H is a solution of the equation 

(2.36) A2w.=/2. 
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Proof. We can consider instead of (2.28) the equation 

(2.37) ђž + BťB^ + B^B^Bťfit) 

with the operators Br = RAr9 r = 0, 1, 2 and the function f = Rf*. The initial value 
problem (2.28), (2.29), (2.30) is equivalent with the problem (2.37), (2.29), 
(2.30). The operators Br are coercive 

(2.38) (Bj9 x)^ar \\x\\2
9 ar>09 r = 0, 1, 2, xeH. 

The operators B09 B2 are symmetric 

(2.39) (Bj9 y) = (x9 Bry)9 r = 0, 2; x9 y e H. 

The problem (2.37), (2.29), (2.30) can be formulated as the initial value problem, 
of the first order in the space 3€=H®H 

(2.40) ^+mu = F(t) 

(2.41) U(0)=Uo 

with 

(2.42) F{t) = (0,Bzlf{t))T 

(2-43) U0 = (u0,ut)
T 

(2'44) » - U ' B , B~/B) 
A solution U e O"([0, °°), X) of (2.40), (2.41) has the form 

(2.45) 

t 

U(t) = e-m'U0+ í e -^^FÍт) dт. 

We shall use the spectral theory in the same way as in the proof of Theorem 2.1. 
We extend the space H to the complex Hilbert space. The extended operators 
H0, Bl9 B2 remain coercive and B09 B2 remain symmetric. Our aim is to verify the 
existence of a constant v > 0 such that 

(2.46) R e A < - v , A e o(-M) 

If (2.46) holds, then there exists a constant IV depending only on 28 such that 

(2.47) | | e - " | | * ^ ATe-*/, t e [0, «>). 

Comparing with the proof of Theorem 2.1 we can see, that it is sufficient to verify 
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that R e A < 0 for all A e o(-0l). It can be verified easily that A e a ( - 3 8 ) iff 
0 e a(L>(A)), where 

(2.48) D(A) = A2H, + AH1+H2. 

If A = 0 , then D(A) = B2. The operator H2 is coercive and hence 0 e a(L>(A)). Let 
Re A^O, A-£0. We consider, instead od L>(A), the operator ([5]) 

(2.49) T(k) = k 'D(X) = kB() + B,+k~lB2. 

The adjoint operator F(A)* has the form 

(2 50) F(A)* = A~£0 + # * + A"-,£2 

The operators F(A), F(A)* satisfy the relations 

Re (F(A)x, x) = Re (F(A)*x, x) = 

(2.51) = Re A(H0x, x) + Re (# ,x , JC) + Re A |A | 2 (£ 2 x , x) ^ 

^ R e (_B,jr, x)^a, ||x||2, a , > 0 , x e / / . 

(2.51) implies, in the same way as (2 19) in the proof of T h e o r e m 2.1, that 
0 a(.T(A)) i .e. A «_ o(-9B). Hence R e A < 0 for all A e a(-3S) and as we 
remarked there exists v > 0 such that (2.46) holds. (2.46) implies (2.47). Combin
ing (2.45) and (2.47) we obtain 

(2.52) 
| | í / ( O І U « ! V e - " ( | | Ц ) | U + j e - | | F ( r ) | U d r ) 

Using (2.40), (2.42), (2.43), (2.52) we obtain the inequality (2.33) with the 
constant M = IVmax (1, a0

l). 
The second assertion of the theorem can be verified in the same way as (2.7) in 

Theorem 2.1. It is sufficient to use (2.33). 

3. Bending of Viscoelastic Plates 

The previous theory can be applied to the mixed problems which, express 
bending of viscoelastic plates ([2], [3]). 

(3.1) 2 K\%-^ u,llkl =/*(* . , x2, t) 

(3.2, £ ,_0 = wr, r = 0, 1, ..., m — 1 

(3.3) u=Џ = 0 on Әß 
дn 
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or 
w = 0 on 

m Лm—r 

(3.4) Nu = ^ Kfy-г----; u,u cos(n,xk) cos(n, xe)==0 on ЪQ 
r=o Q t 

We use the notation //,,,*/ ~ ^ ^ ^ ^ ^ ^ ^ > i,j,k,le {1,2}. Summation over 
94// 

9jt:,- 3xy dxk dxt 

repeated subscripts /. /. k. I is implied. The plate has the form of a bounded 
domain QczE2 with Lipschitzian boundary 3Q (def. [8]). The coefficients K\'k\ are 
symmetric i. e. 

t i ^ ^ O > — fc^O) — ^ r > — fc^r) 

I , J •~> J - ^ i/*/ ~~ - ^ //*/ ~~ - ^ i//* ~" -** */.'/ 

and positive definite i.e. 

(3 6x K^tEijSu ^ cr(rf, + rf2 + ei2), 
cr>0, r = 0, 1, ..., m, (eu, e12, e22) e E3. 

The classical solutions of the problems (3.1), (3.2), (3.3) or (3.4) can be 
established only for sufficiently smooth boundary 3Q ([2]). We introduce therefore 
a weak solutions of the problems. 

We denote by H*(Q) the Sobolev space of all functions from L2(Q), whose 
generalized derivatives up to the 2-nd order are in L2(Q). The scalar product in 
W(Q) is defined by 

(3.7) 
(«, v)2= ]Г í 0'uD'v áQ 

|l|*£2 J 

( 
_ Эим . . _ . , 
D'u=-——--— , / = /i + / 2 ) . 

ӘJCV Әлfз2 

Let 3)(Q) be the set of all arbitrarily differentiable functions with a compact 
support in Q and Hl(Q) be the closure of 3)(Q) in the space H*(Q). It is well 
known ([8]) that H0(Q) is a Hilbert space with a scalar product 

(3.8) 

and a norm 

(3.9) 

(", v)0= 2 í D'uD'v áQ 
|i|<2 J 

ll«llo = (S f(o'«)2dßГ 
|/|=2 J 

which is equivalent with the original norm in tP(Q). We denote further by H~2(Q) 
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the space of all linear functionals over Ho(£2). It can be verified with the help of 
Fridrichs inequality ([8]), that L2(£2) c H\£2) and if /* e L2(£2), h e Hl(Q), 

then </*, h)=f*(h)= [ f*h d£2. 

Definition 3.1. Letf* e C([0, ») , H~2(£2)), ur e M(£2), r = 0, 1, ..., m -1. The 
function u e Om)([0, <»), Hl(£2)) which is for each h e Ho(£2) a solution of the 
initial value problem 

(3.10) 

ďu 

m Am — r Ç 

2 ^ J *&«.«(')*,* d£2 = </*(/), h) 

(з. i i) dť = ur, r = 0, 1, ..., m — 1, 

/s a weak solution of the problem (3.1), (3.2), (3.3). 

Theorem 3.1. There exists a unique weak solution of the problem (3.1), (3.2), 
(3.3). 

Proof. It is sufficient to use Theorem 1.1. In this case the operators 
Ar: (Hi(Q)-^H^2(Q)) are defined with the help of the duality 

(3.12) 
(Aru,h) = j KXЖAыdQ, 

u,he Hh(£2), r = 0, 1, ..., m. 

The operators Ar are linear and bounded i. e.Ar e L(Hh(Q), H~2(Q)). Using 
(3.5), (3.6), (3.9) we obtain that Ar are symmetric and coercive and hence all 
assumptions of Theorem 1.1 are fulfilled. The initial value problem (0.1), (0.2) is 
in this case equivalent with the problem (3.10), (3.11) and the proof is complete. 

In the case of the problem (3.1), (3.2), (3.4) we define a weak solution which 
satisfies only the essential boundary condition u = 0 on dQ. We denote by IP(Q) 
the subspace of H*(Q) which consists of all functions vanishing on dQ: 

(3.13) H2(Q) = {ueH2(Q), w = 0 on dQ}. 

Due to the theorem on traces ([8]) FP(Q) is the closed subspace of H*(Q) and 
hence FP(Q) is the Hilbert space with the scalar product (3.7). It can be verified 
with the help of Friedrichs and Poincare inequalities ([8]) that (., .)0 defined in (3.8) 
is the scalar product on fP(Q) and the norm || • ||0 in (3.9) is equivalent with the 
original norm || • ||2 = (., .)1/2. Let us denote by H~2(Q) the dual space of IP(Q). 
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Definition 3.2. Let /* e C([0, oo), H~2(Q)\ ur e IP(Q), r = 0, 1, ..., m -1. 
The function u e Om)([0, oo), IP(Q)) which is for each h e IP(Q) a solution of 
the initial value problem 

(3.14) 
IJp \ KUu„Mh,kl dQ = (f*(t), h) 

(3-15) d(i = ur, r = 0, 1, ..., m — 1 

is a weak solution of the problem (3.1), (3.2), (3.4). 

Theorem 3.2. There exists a unique weak solution of the problem (3.1), 3.2), 

(3.4). 
Proof. It is sufficient to use Theorem 1.1 in the same way as in the proof of 

Theorem 3.1. The operators Ar: (H2(Q)^H~2(Q)) are of the form (3.12) for 
u, h e £P(Q). They are symmetric due to (3.5) and coercive due to (3.6) and 
(3.9). 

Theorem 3.3. Assume that m = \, or m = 2. Let /* e C([0, ™), H 2(Q)), 

ft e H~2(Q) (/* e C([0, oo), H~2(Q)), fZ e H~2(Q))), Urn | | /*( t)-/S| |*~0. / / 

u e C(m,([0, oo), Hl(Q)) (u e C(m>([0, oo), H2(Q)) is a weak solution of the problem 
(3.1), (3.2), (3.3), ((3.4)) then 

( 3 ' 1 6 ) l i m | | « ( / ) - « . | | = 0 , 

where u„ e H$>(Q) (u„ e LP(Q)) is for each h e H$>(Q) (h e FP(Q)) a solution of 
the problem 

(3.17) j K(
l
mJu,ilh,kldQ=(fZ,h). 

Proof. Due to the symmetry and the coerciveness of the operators Ar in (3.12) 
Theorems 2.1 and 2.2 can be applied. The result follows directly. 

Remark. Theorem 3.3 expresses the fact that a solution of viscoelastic problems 
(3.1), (3.2), (3.3), or (3.4) behaves for great time values as a solution of ela tic 
problem (3.17). 
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Mlynska dohnd 

S16 31 Bгdtisbvd 

ПČEУДOПAPABOЛИЧECKИE ДИФФEPEHЦИAЛЬHЫE УPABHEHИЯ 

БЫCШEГO ПOPЯДKA 

Иiop Бoк 

P e з ю м e 

B этoй paбoтe изyчaeтcя нaчaльнaя зaдaчa (0.1), (0.2) в пpocтpaнcтвe Гильбepтa H c 
oпepaтopaми Лr e L(H, H*). Ecли oпepaтop Л„ кoэpцивный, noтoм для любoй нenpepывнoи 
фyнкции и любыx элeмeнтoв ur e H cyщecтвyeт eдинcтвeннoe peшeниe нaчaльнoй зaдaчи (0.1), 
(0.2). Ecли этa нaчaльнaя зaдaчa пepвoгo или втopoгo пopядкa, oпepaтopы Л , Лx, Л2 

кoэpцивныe, oпepaтopы Л(), Л2 cимeтpичecкиe и lim \\f*(t)-ß\* = 0,ß e H*,тolim | | u ( t ) - u j -

0, гдe uж e H peшeниe ypaвнeния Лmv =ß. Пoлyчeнныe peзyльтaты иcпoльзyютcя для peшeниa 

cмeшaнныx пpoблeм, кoтopыe oпpeдeляют изгибы вязкoyпpyгиx плacтин 
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